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Chapter 1

Introduction

The overarching topic of this thesis is mapping class groups of 4-manifolds. More

precisely, the main objects we are interested in are the smooth mapping class groups of

smooth, compact, and oriented 4-manifolds. In this thesis, unless otherwise stated, all

manifolds fall into the above class.

Let X be an n-manifold, and let A be a submanifold of X (A can be empty). Two

self-diffeomorphisms Φ0 and Φ1 of X are called isotopic (or isotopic relative to A) if there

is a smooth map F : I ×X → X such that F0 = Φ0, F1 = Φ1, and Ft is a diffeomorphism

(or a diffeomorphism that fixes A pointwise) for all t ∈ I. Unless otherwise stated, we

use Diff(X,A) to denote the group of orientation-preserving self-diffeomorphisms of X

fixing A pointwise. When A = ∅, we just write Diff(X). Also, following the convention

as in [3], we use Diff0(X,A) (or just Diff0(X) when A = ∅) to denote the subgroup of

diffeomorphisms that are homotopic to the identity relative to A. Note that this convention

may be non-standard for some readers, but we stick to it for better comparison with [3,4].

We call the group π0Diff(X) the mapping class group of X, and the group π0Diff(X, ∂X)

the mapping class group of X relative to the boundary. We equip them with the Whitney

C∞ topology (see Section 4.4 of [26] for background reading). These are groups of isotopy

classes of diffeomorphisms of X, and are related by the long exact sequence of homotopy

1



CHAPTER 1. INTRODUCTION 2

groups induced from the fibration

Diff(X, ∂X) → Diff(X) → Diff(∂X)

given by the restriction of diffeomorphisms to the boundary ∂X. These groups capture

the information of symmetries of X. In this thesis, we will focus on the case when the

dimension of X is 4.

The thesis is structured as follows. Chapter 2 introduces two classes of 4-manifold

diffeomorphisms, namely barbell diffeomorphisms [3,4] and Montesinos twin twists [9,11],

and explores the relationship between them. The main result of Chapter 2 is Theorem

2.11 which roughly says that barbell diffeomorphisms are special cases of Montesinos twin

twists. This is achieved by realizing both classes as compositions of levelwise Dehn twists.

Theorem. (Theorem 2.11) Let M be a 4-manifold, and let B be an embedded thickened

model barbell in M that induces a barbell diffeomorphism ΦB ∈ Diff(M,∂). Then there

exists a Montesinos twin W in M such that the corresponding Montesinos twin twist ΦW

is isotopic to ΦB. Further, W can be constructed from B.

Chapter 3 describes an approach to understanding diffeomorphisms of manifolds (more

precisely, handlebodies) via representing isotopy classes of diffeomorphisms by handle

moves, and gives examples of such representations. These include examples that are cov-

ered in Chapter 2. In Section 3.1, we discuss how handle slides, level-preserving isotopies

and adding/removing cancelling pairs of n-dimensional handlebodies give rise to isotopy

classes of diffeomorphisms of handlebodies, which we call handle animation diffeomor-

phisms. We then discuss the case when n = 4 in Section 3.2. Finally, low dimensional

examples are given in Section 3.3. These include Dehn twists on orientable surfaces, the

boundary Dehn twist of S1 ×D2, Montesinos twin twists and barbell diffeomorphisms.

Theorem. (Theorem 3.6) For an oriented, compact, smooth 4-manifold X with a preferred

handle structure σ, consider any finite sequence S

(D1, ϕ1) → (D2, ϕ2) → · · · → (Dm, ϕm)
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of Kirby diagrams Di together with attaching maps ϕi : #rS
1 × S2 → ∂X2

Di
of 3- and

4-handles, connected by handle moves, where D1 and Dm are identical as diagrams repre-

senting σ, along with identical attaching maps ϕ1 = ϕm of 3- and 4-handles. Here r is the

number of 3-handles.

In this scenario, there exists a handle animation self-diffeomorphism Φ induced from

S as a composition of induced diffeomorphisms from each handle move in the sequence,

which is well-defined up to isotopy. If X has less than or equal to one 3-handle (r ≤ 1),

then we do not need to keep track of the attaching maps of 3- and 4-handles.

We conjecture that mapping classes of manifolds in all dimensions are handle animation

diffeomorphisms. The following theorem proves that this is true in dimension 2.

Theorem. (Theorem 3.10) Let S be an orientable surface (with or without boundary).

Then there exists a handle structure of S such that for any embedded simple closed curve

l in S, the Dehn twist Tl along l can be factored as a sequence of 1-handle slides starting

and ending with isomorphic handle structures. Thus π0Diff(S, ∂) are handle animation

diffeomorphisms.

Theorem. (Theorem 3.16) For any element in the subgroup M0 of π0Diff(S4) generated

by half-unknotted Montesinos twin twists, there exists a handle structure σ of S4 such that

this element is realized by a sequence of Kirby diagrams starting and ending with the same

diagram representing σ, connected by handle moves. In other words, Montesinos twin

twists are handle animation diffeomorphisms.

Moreover, the same is true for the subgroup B0 generated by half-unknotted barbell

diffeomorphisms.

Chapter 4 is centered on the detection of barbell diffeomorphisms of S1 × D3 by an

invariant called W3 defined by [3,4]. We review the W3 invariant for π0Diff(S1×D3, ∂) and

present some new results. In [3] and [4], Budney–Gabai proved that there exist infinitely

many linearly independent barbell diffeomorphisms δk for k ≥ 4 in π0Diff(S
1 × D3, ∂)

using this invariant W3. We present more linearly independent barbell diffeomorphisms

in addition to δk. We extend the calculations of W3 in [4] in Theorem 3.5 using the
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approach presented in [4]. We also outline the ideas of calculating the invariant W3 of any

diffeomorphism induced from an unknotted barbell in S1 × D3 (see Lemma 4.26). Our

main results in Chapter 4 are

Theorem. (Lemma 4.19 and Theorem 4.23) The barbells θk(ei, ej) with j > k − i and

k ≥ 3 satisfy

W3(θk(ei, ej)) =

(k − i− 1)(−tj1ti3 − ti1t
j
3 + t−i

1 t
j−i
3 + tj−i

1 t−i
3 )+

(−k + j + i− 1)(−t−j
1 ti−j

3 + t−i
1 t

j−i
3 + tj−i

1 t−i
3 − ti−j

1 t−j
3 )+

(k − j − 1)(−t−j
1 t−i

3 − t−i
1 t

−j
3 − t−j

1 ti−j
3 + t−i

1 t
j−i
3 + ti1t

i−j
3 + ti−j

1 ti3 + tj−i
1 t−i

3 − ti−j
1 t−j

3 ).

Theorem. (Theorem 4.28) The elements θk(ek−1, ek−3) for k ≥ 6 of π0Diff(S1 × D3, ∂)

are linearly independent. Further, these elements are linearly independent to

δk = θk(ek−1, ek−2) = θk((0, . . . , 0, 1), (0, . . . , 0, 1, 0))

for k ≥ 4.

More generally, there exist linearly independent elements θk(ek−1, ek−m) of π0Diff(S1×

D3, ∂) for m ∈ {3, 4, . . . , [(k− 1)/2]− 1} with k ≥ 2m− 1. Here [(k− 1)/2] is the integer

part of (k − 1)/2.

Chapter 5 is part of an ongoing but unfinished project aimed at finding isotopically

non-trivial splitting 3-spheres of the 2-dimensional unlink in S4. In this chapter, we define

a version of the W3 invariant for π0Diff(♮mS1 ×D3) with m ≥ 2 where ♮mS1 ×D3 denotes

the boundary connected sum of m copies of S1×D3. We then focus on the m = 2 case, and

study the mapping class group π0Diff(♮2S1 ×D3). In particular, we prove the following.

Theorem. (Theorem 5.15) The group π0Diff(S1×D3♮S1×D3, ∂)/
∏

2 π0Diff(S
1×D3, ∂)

has an infinitely generated subgroup. Moreover, there exist infinitely many properly em-

bedded separating 3-balls in S1 ×D3♮S1 ×D3 with common boundary that are not isotopic

relative to the boundary.
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Finally, in Section 5.4, we describe an unfinished program about how the above can be

used to construct knotted splitting 3-spheres of the 2-dimensional unlink in S4.



Chapter 2

Barbell diffeomorphisms and twin twists

In this chapter, we talk about examples of 4-manifold diffeomorphisms. We review the

notion of barbell diffeomorphism defined by Ryan Budney and David Gabai [3, 4], and

the notion of Montesinos twin twist defined by David Gay [9], inspired by Montesinos

[22], in Sections 2.1 and 2.2. We then explore their relationship in Sections 2.3 and 2.4.

Roughly speaking, we show that barbell diffeomorphisms are special cases of Montesinos

twin twists. Definitions and results in this chapter will be needed in the following chapters.

2.1 Barbell diffeomorphisms

Ryan Budney and David Gabai proved that the mapping class group π0Diff(S1×D3, ∂) is

infinitely generated. They proposed a method for creating diffeomorphisms of a 4-manifold

by embedding a “barbell manifold” inside of it and performing a construction similar to

the “point-pushing” map on surfaces. The resulting diffeomorphism is referred as the

associated barbell diffeomorphism. They then exhibit (isotopically) non-trivial barbell

diffeomorphisms in S1 ×D3. Here we recall their construction.

The model barbell in R3 ⊂ R4 is the union of two 2-spheres of radius 1 centered at

(0, 0,−2) and (0, 0, 2) in R3 with the interval [−1, 1] × (0, 0) ⊂ R × R2 connecting the

two 2-spheres. The two 2-spheres are called the cuff spheres, and the interval is called

the bar. See Figure 2.1. The thickened model barbell B is a closed neighbourhood of

6
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Figure 2.1: The standard model barbell.

Figure 2.2: The thickened barbell manifold.

the model barbell in R4. It can be identified with the boundary connected sum of two

trivial D2-bundles over S2, i.e. S2 × D2♮S2 × D2. which is also naturally isomorphic to

S2 × B1 × I♮S2 × B1 × I, and we denote the I-coordinate by t. In other words, this can

be obtained by taking a tubular neighbourhood of the model barbell in R3 and taking the

product with I. See Figure 2.2. We call the vertical direction the y direction.

We will now define an element in π0Diff(B, ∂) that will be called the barbell diffeo-

morphism. Denote the two complementary 4-balls of the thickened model barbell B by α1

and α2, both are parameterized by I×B3. Let (αi)t for t ∈ [−1, 1] denote the intersection

between αi and the t-slice Bt of B. The two slices (α1)0 and (α2)0 are shown in Figure

2.2 The two 2-disks E1 and E2 represent two properly embedded orthogonal 2-disks to

the 2-spheres ∂(α1)0 and ∂(α2)0. More precisely, if we give B a standard handle structure

(cf. Section 3.1 for discussion of handle structures) with one 0-handle and two 2-handles,

then they can be viewed as the cocores of the two handles. At the t = 0 slice of B, push

the 3-ball (α1)0 along a closed loop around (α2)0, but not touching (α2)0, as in Figure 2.3.

This leads to a path of embedded 3-balls in (B)0 ∪ (α1)0 ∪ (α2)0. As t approaches ±1,

swing the path to the upward/downward direction, tracing out two hemispheres, until it
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Figure 2.3: The model barbell and the t = 0 slice of the thickened barbell manifold.

Figure 2.4: The time-dependent path in the barbell that defines the barbell diffeomorphism
via isotopy extension.

reaches the trivial arc orthogonal to α1 (parallel to the normal 2-disk E1 to the 2-sphere

∂(α1)0). See Figure 2.4 for the loops when t = ±0.5 and t = ±0.75. Note that we draw the

left 2-sphere (and the complementary 3-ball (α1)0) it bounds) as a black dot just to make

it easier to visualise. The above defines a loop of embedded 4-balls, or more precisely, a

loop of string links (i.e. a loop of embeddings of I × D3), in B ∪ α1 based at α1 that is

t-level-preserving. We also arrange so that it is away from the boundary of B.

Now, applying the isotopy extension theorem to this loop in the manifold B ∪α1 gives

rise to a well-defined isotopy class of diffeomorphisms of B, which only depends on the

isotopy class of this t-level preserving path by the uniqueness of the isotopy extension

theorem. This is called the barbell diffeomorphism. Since the barbell diffeomorphism fixes

the boundary pointwise, we can make the following definition.
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Definition 2.1. Let X be a 4-manifold. Let B be an embedded barbell in X. The induced

barbell diffeomorphism ΦB ∈ Diff(X, ∂) is defined by extending the barbell diffeomorphism

using the identity map to the rest of the ambient manifoldX, and it gives rise to an element

[ΦB] ∈ π0Diff(X, ∂). This is called a barbell implantation.

Since we always assume that X is orientable which implies that embedded 2-spheres

admit unique framings, such an embedding is determined by the embedding of two disjoint

2-spheres together with a framed embedded bar connecting them. As argued in Remark

5.12 in [3], different framings of the bar give rise to different barbell implantations that

are related by full right-hand twists of the x-y plane as one travels along the bar. Such

twists preserve isotopy classes of barbell implantations since they fix the union of E1 and

its image under the barbell diffeomorphism setwise (see Remark 5.4 of [3]) for details).

Therefore, when talking about barbell implantations, we usually do not distinguish

between an embedded barbell and an embedded thickened model barbell. We sometimes

omit the word embedded as well.

We set up some more terminology. A barbell in X is called unknotted if its two cuff

spheres are both isotopically unknotted. By an isotopically unknotted 2-sphere in X

we mean an embedded 2-sphere that bounds a D3. Similarly, a barbell in X is called

half-unknotted if at least one of the two cuffs spheres is isotopically unknotted.

We consider the case whenX = S1×D3. An unknotted barbell in S1×D3 is determined

by the relative isotopy class of the bar. Namely, if we choose two embedded unknotted

spheres B and R in X, together with two fixed points b0 on B and r0 on R, then the space

of unknotted barbells is determined by isotopy classes of embeddings

π0Emb(I,X; b0, r0)

which can be described by a word in the free group F3 with 3 generators: the meridians νR

and νB of the two spheres, and the circle factor t of S1 ×D3. We orient the bar by saying

that it starts from B and ends at R. In other words, the induced barbell diffeomorphism

is obtained by looping B around R. In fact, the opposite orientation gives the inverse of
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the barbell diffeomorphism, which can be seen by directly tracking the definitions.

If the bar links the sphere B before looping around the S1-factor at all, or links the

sphere R just before reaching R in the end, then these linkings can be eliminated by an

isotopy that directly drags the spheres B and R out of the parts of the bar near the two

ends. Therefore, such barbells are completely determined by the double coset

⟨νB⟩\⟨νB, νr, t⟩/⟨νR⟩.

In other words, we do not need to consider words that start with νB or end with νR.

Example 2.2. There is a subclass of such barbells studied by Budney and Gabai, which

will play an important role in the coming sections and chapters. For k ∈ Z+ and

(v)i, (w)i ∈ Zk−1 where i = 1, 2, . . . , k − 1, let θk(v, w) denote the following barbell in

S1×D3: choose two disjoint, parallel embedded 2-spheres B ⊂ {s2}×D3 ⊂ S1×D3, R in

{s1} ×D3 ⊂ S1 ×D3 with s1 ̸= s2. We specify a bar connecting them. The integer k − 1

indicates the number of times the bar moves around the S1 factor in total, and we require

the bar to go in the negative S1 direction (we give the product orientation to S1 × D3)

only throughout. If we cut the bar with a 3-ball {s0} ×D3 ⊂ S1 ×D3 with s0 /∈ {s1, s2}

such that the order of the triple (s0, s1, s2) agrees with the orientation of S1, then there

are k−1 intersection points between the bar and {s0}×D3. We arrange these intersection

points to lie on the same line in {s0}×D3 and give them indices {1, 2, . . . , k−1} as shown

in Figure 2.5 for θ10((0, . . . , 0, 1, 0), (0, . . . , 0, 1, 0)). Note that for better compatibility with

Budney–Gabai’s work, we follow the convention used in [4] that we label the strands in

opposite directions at the top and bottom. So, the journey of the bar from B to R leads to

k−1 vertical (i.e. parallel to the circle direction) strands with indices and R can link each

of these strands. We use each entry of the vector (v)i with i ≥ 1 to indicate the signed

number of times the i-th vertical strand of the bar wraps around the sphere R, counting

from left to right at the bottom of Figure 2.5. We fix the convention such that a vertical

strand going through a cuff sphere from top to bottom (i.e. pointing to the negative S1

direction) is positive. Similarly, for the blue cuff B, following the convention as in [4], we
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Figure 2.5: The embedded barbell θ10((0, . . . , 0, 1, 0), (0, . . . , 0, 1, 0)). Strand number k on
the top is glued to strand number 10− k on the bottom.

give indices to the same strands, but with reversed order. These are shown in Figure 2.5

on the top. Each vector entry (w)i with i ≥ 1 indicates the signed number of times the

i-th vertical strand of the bar wraps around the sphere B counting from right to left on

the top. When both B and R link the same strand, we only consider the barbell such that

such a strand first links B, and then links R. Note that we always keep B in {s2} ×D3

and R in {s1} ×D3.

In the language of free group words, θk(v, w) corresponds to the word

ν
vk−1

R t−1νw1
B ν

vk−2

R t−1 . . . t−1ν
wk−2

B νv1R t
−1ν

wk−1

B .

Example 2.3. Fix a point x0 ∈ S3. Let S1
0 denote the circle S1 × {x0} ⊂ S1 × S3 and

N(S1
0) denote a neighbourhood of S1

0 . Consider the fibration

Diff0(S
1 × S3, N(S1

0)) → Diff0(S
1 × S3) → Emb0(S

1 ×D3, S1 × S3)

given by restricting a diffeomorphism of S1 × S3 to a neighbourhood of S1
0 . The fiber

is homotopy equivalent to Diff0(S
1 ×D3, ∂), the subgroup of diffeomorphisms homotopic
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to the identity. The base space Emb0(S
1 ×D3, S1 × S3) is the component that contains

N(S1
0) and is homotopy equivalent to Emb0(S

1, S1 × S3).

We justify that this fibration map is well-defined. For Φ ∈ Diff0(S
1 × S3), the image

Φ(N(S1
0)), after composing with a homotopy equivalence, lives in Emb(S1, S1 × S3), and

is homotopic to S1
0 thruogh an induced homotopy from a choice of a homotopy between

Φ and IdS1×S3 . For embedding of 1-manifolds in a 4-manifold, homotopy implies isotopy.

Hence Emb0(S
1, S1 × S3) is the correct base space.

A detailed discussion of this fibration can be found in Section 3 of [3]. The final part

of the long exact sequence of homotopy groups is as follows:

· · · → π1Emb0(S
1, S1 × S3;S1

0) → π0Diff0(S
1 ×D3, ∂) → π0Diff0(S

1 × S3) → 0

where the first map is given by isotopy extension and the second map is induced by inclu-

sion and extension by the identity map. The following proposition is implicitly discussed

and used in [3].

Figure 2.6: The barbell in S1×D3 induced by α3. The strand i on the top is glued to the
strand 4− i on the bottom for i = 1, 2, 3.

Proposition 2.4 ([3]). The image of π1Emb0(S
1, S1 × S3;S1

0) is generated by a set of

barbells denoted by αi (i ≥ 1). Figure 2.6 shows the case when i = 3. The barbell αi is

given by taking two 2-spheres B and R in S1 × D3 and letting the bar start from B, go

through R once negatively and go through B negatively for i times as it goes along the
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Figure 2.7: The generator α3 in π1Emb0(S
1, S1 × S3;S1

0)

positive S1 factor for i times and finally gets to R.

In fact, as discussed in [3], the group π1Emb0(S
1, S1 × S3;S1

0) has a generating set

given by a sequence of embedded tori αi : S
1 × S1 → S1 × S3. Each torus αi is defined

as follows: fix the embedded torus S1
0 × S1 ⊂ S1 ×D2 ⊂ S1 ×D3 and add an arm to the

boundary of this torus that first loops i times positively around the S1-factor, and then

links itself. Figure 2.7 shows α3 where the vertical cylinder is part of the torus with the

top and bottom identified. Using Construction 5.25 of [3], we pick a short vertical subarc

of S1
0 in the cylinder part of Figure 2.7 (drawn as a double-arrow arc) near where the arm

is attached, and we perform a spinning of this arc around the red sphere following the arm.

This gives rise to an embedded barbell in S1 × S3 as shown in Figure 2.8 by the isotopy

extension theorem. Details about spinning can be found in Section 4 of [3]. Alternatively,

one can apply Proposition 2.1 in Section 2 of [4] to deduce the barbell in Figure 2.8 by

resolving the double point near the red sphere (sphere R). The dashed line in Figure 2.8

indicates S1
0 . Drilling out a neighbourhood of S1

0 gives rise to the barbell in Figure 2.6.

To end this section, we give some insights of the barbell diffeomorphism as a gener-

alization of Dehn twists in dimension 2. Since the barbell diffeomorphism preserves the

t-levels by construction, we can consider each t-slice separately. We will describe the bar-

bell diffeomorphism as a composition of levelwise (we will explain the meaning of this in

a second) Dehn twists.



CHAPTER 2. BARBELL DIFFEOMORPHISMS AND TWIN TWISTS 14

Figure 2.8: The initial barbell induced from α3 in S1 × S3.

Figure 2.9: An alternative model of the barbell diffeomorphism.

To simplify our argument, we make use of an equivalent but slightly different model of

the barbell manifold and the barbell diffeomorphism. We construct a bundle over [−1, 1] as

in Figure 2.9. Each fibre is diffeomorphic to a cylinderical 3-ball with two 3-balls removed,

leaving two 2-sphere boundaries which we draw as red and blue in Figure 2.9. They form

a bundle in the following way. For t ≥ 0.5, the blue sphere is located in the lower half near

the bottom of the cylinder, and for t ≤ −0.5, the blue sphere is located in the upper half

near the top. During [−0.5, 0.5], the blue sphere moves down from the top to the bottom,

and when t = 0, it is located at the middle horizontal plane (at the same level of the red

sphere). Throughout, the red sphere stays in the same position. To define the barbell
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Figure 2.10: The t = 0, y = 0 slice of the barbell diffeomorphism as three Dehn twists.

diffeomorphism in this setting, we specify a fiberwise path (of embedded 3-balls based at

the red sphere R) as follows. For t ∈ [−0.5, 0.5], the path stays in the y = 0 plane as in

Figure 2.9. For t ≥ 0.5 and t ≤ −0.5, we apply a planar null-homotopy of this path to

contract it to the trivial path based at the centre of the left inner 3-ball (with boundary

the red sphere). The barbell diffeomorphism is then defined in each fiber as the result of

isotopy extension applied to this path.

This alternative description has the advantage that the barbell diffeomorphism now

becomes both t- and y-level preserving (recall that we use the vertical direction as the

y-direction as in Figure 2.2).

With this definition, we can now analyze each t- and y-level separately. We start by

looking at the t = 0, y = 0 slice as a surface. The restriction of the barbell diffeomorphism

to this twice punctured disk is shown in Figure 2.10 as a point-pushing map:

Definition 2.5. Let S be a surface with a fixed point x ∈ IntS. Let γ : [0, 1] → S be

a loop in S based at x as an isotopy of points. The point-pushing map of X along γ,

denoted by push(x, γ) is the mapping class obtained from applying the isotopy extension
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theorem to γ.

This mapping class is determined by looking at where the three colored arcs in Figure

2.10 go. From this we deduce that the restriction of the barbell diffeomorphism to the

t = 0, y = 0 slice is isotopic to a composition of three Dehn twists drawn in the upper

picture of Figure 2.10 as circles with arrows. Fix t = 0. When y goes positive or negative,

these three Dehn twists remain, but the core circles of the Dehn twists gradually become

null-homotopic as the two punctures become smaller and finally disappear completely.

This means that the Dehn twists become twists along curves bounding disks, thus can be

null isotoped to the identity map as y approaches ±1.

Figure 2.11: The barbell diffeomorphism for t = 0.125 and y = 0.125 (a) and for t = 0.125
and y = 0.5 (b).

Next, we analyze the situation for t being positive. Figure 2.11 shows the situation

when t = 0.125 and y being positive. When t goes positive, the blue sphere moves down.

This implies that for y = 0, the restriction of the barbell diffeomorphism will change

gradually from the composition of three to only two Dehn twists, since the right puncture

disappears as t increases. Also, for a fixed t-positive level, the behaviour in the y-levels is



CHAPTER 2. BARBELL DIFFEOMORPHISMS AND TWIN TWISTS 17

as follows: as y goes positive, the core circles of the Dehn twists (two or three, depending

on the exact value of t) becomes smaller in order. Namely, the right one disappears

first, followed by the disappearance of the left one. See Figure 2.11. Similarly, as y goes

negative, the left core circle disappears first, followed by the right one.

When t goes negative, the blue sphere moves up. Therefore, the opposite of the previous

paragraph happens. We summarize these in the following proposition.

Proposition 2.6. The thickened model barbell B can be parameterized in the way as in

Figure 2.9 such that the barbell diffeomorphism is both t- and y-level preserving. Fur-

thermore, in each slice t = a, y = b where a, b ∈ [−1, 1], the restriction of the barbell

diffeomorphism is given by a composition of up to three Dehn twists along disjoint core

curves as in the first picture of Figure 2.10. As t or y approaches ±1, all of the three

Dehn twists become trivial.

2.2 Montesinos twin twists

In this section, we summarize the concept of Montesinos twin twist of 4-manifolds due to

[9], which was inspired by [22].

Definition 2.7. A Montesinos twin (or just a twin) in a 4-manifoldX is a pairW = (R, S)

of embedded 2-spheres which intersect each other at 2 points transversely.

A basic example is to take the two standard perpendicular 2-planes in R4 and view

them as a pair of 2-spheres in S4 that intersect at the origin and the point at infinity.

The local picture of a Montesinos twin is described in the following two lemmas. Details

can be found in Section 3 of [22].

Lemma 2.8 ([22]). Let W = (R, S) be a twin in a 4-manifold X, and let N(W ) be a

closed regular neighbourhood of W . Then N(W ) can be parameterized by the space

E4 = {(x1, x2, x3, x4) ∈ R4 : x21 + x22 ≤ 1 or x23 + x24 ≤ 1} ∪ {∞} ⊂ R4 ∪ {∞} ∼= S4
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Figure 2.12: A handle structure of E4 that consists of one 0-handle, one 1-handle and two
2-handles.

sitting in the one-point compactification of R4. The 2-spheres R and S are parametrized

by the (compactified) coordinate planes:

R ∼= R2 × {0} ∪ {∞}, S ∼= {0} × R2 ∪ {∞}

that intersect transversely at the origin and {∞}.

Moreover, if we parametrize R and S using the longitude-latitude coordinate systems

(t, g) and (t, h) with g and h being the longitude angle coordinates, and t ∈ [0, 1] being the

latitude coordinate, then the boundary ∂E4 can be understood as the quotient

⊔
2

[0, 1]× S1 × S1/((0, g, h) ∼ (0, h, g), (1, g, h) ∼ (1, h, g))

which is diffeomorphic to the 3-torus S1
l ×S1

r×S1
s where S1

l corresponds to the t-coordinate.

We describe a handle structure of E4 as shown in Figure 2.12 following an approach

due to Montesinos. See Section 3 of [22] for details.
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Lemma 2.9 ([22]). The space E4 has a handle structure that can be built through the

following steps. See Figure 2.12 which is meant to be a 2-dimensional slice of E4.

• Take a neighbourhood of an arc in S that connects the two intersection points as a

0-handle.

• Choose three (oriented) curves α, β and γ on the boundary of the 0-handle as shown

in Figure 2.12.

• Attach a 0-framed 2-handle along a neighbourhood of α to complete a regular neigh-

bourhood of S.

• Attach a 1-handle to connect β and γ, along a neighbourhood of the pair of black

dots as shown in Figure 2.12.

• Attach a 2-handle along a neighbourhood of the curve, drawn as horizontal dashed

in Figure 2.12, consisting of parts of β, γ together with two parallel curves along the

core of the newly attached 1-handle to complete a regular neighbourhood of R.

A Kirby diagram of E4 is given by Figure 2.13. The additional green arc represents

the coordinate-t circle S1
l . Equivalently, it is the Borromean rings with one circle dotted

and the other two 0-framed. See Figure 2.14. The three circles of the boundary torus can

be seen in the diagram as three merdians of the Borromean rings, with S1
l corresponding

to a meridian of the dotted circle.

Definition 2.10. Let X be a 4-manifold and let W be a twin embedded in the interior

of X with N(W ) parameterized by E4. Choose a closed collar neighbourhood of ∂N(W )

in N(W ) which is parameterized by [0, 1]× S1
r × S1

s × S1
l as discussed in Lemma 2.8 and

Lemma 2.9. Define a self-diffeomorphism of this collar by taking the product of a Dehn

twist along [−1, 1] × S1
l with the identity map on the other two circles. In other words,

we take the map

Φ′
W : [−1, 1]× S1

l × S1
r × S1

s → [−1, 1]× S1
l × S1

r × S1
s
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Figure 2.13: A Kirby diagram of E4 with an additional green arc representing S1
l .

Figure 2.14: A Kirby diagram of E4 in dotted circle notation.
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given by

(θ, t, g, h) → (θ, te2πiθ, g, h).

The Montesinos twin twist ΦW of X induced from W is given by

ΦW =


Φ′

W on [−1, 1]× ∂N(W )

Id Otherwise
.

A twin embedded in X unknotted or half-unknotted if two or at least one of the two spheres

is isotopically unknotted respectively.

Remark. We describe a standard way of constructing Montesinos twins in S4 proposed by

[9,11]. By [3], the fundamental group of the space of embeddings π1Emb(S1, S1 × S3;S1
0)

is generated by embedded tori S1 × S1 ↪→ S1 × S3 (see also Proposition 2.4). If we pick

such an embedded torus and perform a surgery to the pair (S1 × S3, S1 × S1) along the

base circle {p}×S1 (drawn in red in Figure 2.15) that replaces D3×S1 by S2×D2. Then

the torus becomes a 2-sphere that intersects the dual sphere of the circle {p} × S1 at two

transverse points. This gives a Montesinos twin in S4. Any unknotted or half-unknotted

Montesinos twin embedded in S4 can be described in this way. To see this, observe that

we can do the reversed surgery to an unknotted twin on an unknotted sphere to get an

embedded torus out of it.

Figure 2.15: A Montesinos twin represented by an embedded torus in S1 × S3.
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2.3 Relationship between barbell diffeomorphisms and

Montesinos twin twists

In this section, we describe the relationship between barbell diffeomorphisms and Mon-

tesinos twin twists. We start by summarizing the setup so far. Let M be a 4-manifold.

An embedding of the thickened model barbell B in (the interior of) M induces an element

[ΦB] in π0Diff(M,∂). We would like to construct a corresponding embedded twin W in

M such that the induced twin twist ΦW is isotopic to ΦB in Diff(M,∂). In other words,

the twin twist induced from W of this embedded barbell lies in the same isotopy class as

the barbell diffeomorphism induced from B.

More precisely, we have the following theorem.

Theorem 2.11. Let M be a 4-manifold, and let B be an embedded thickened model barbell

in M that induces a barbell diffeomorphism ΦB ∈ Diff(M,∂). Then there exists a Mon-

tesinos twin W in M such that the corresponding Montesinos twin twist ΦW is isotopic to

ΦB. Further, W can be constructed from B.

Proof. The idea is roughly as follows. Pushing a finger from one of the two cuff spheres

of B along the bar and performing a finger move near the other cuff sphere creates a pair

of transverse intersection points and thus alters the two cuff spheres into a twin.

We now describe such an induced twin in detail. We use the alternative description

of the barbell diffeomorphism as in Figure 2.9. We would like to describe a twin in this

picture. Imagine that the model barbell is sitting in the t = 0 slice of the thickened model

barbell (drawn as dotted) as two 2-spheres with each 2-sphere looping around one of the

two complementary 3-balls, and the bar is the straight arc connecting them as in Figure

2.16. Figure 2.17 shows an induced twin W . For the t = 0 slice, draw a bigger sphere

around the left-hand side inner 3-ball, representing one of the 2-spheres of the twin which

we denote by RW . In other words, we take the left hand side sphere of the embedded

model barbell in Figure 2.16 as one sphere of our twin. To describe the other sphere BW ,

we draw a circle (drawn as a blue solid circle in Figure 2.17) in the t = 0, y = 0 plane
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Figure 2.16: The t = 0 slice of the thickened model barbell with the model barbell sitting
inside.

Figure 2.17: A Montesinos twin inherited from the barbell manifold.

intersecting R at two points. When t goes positive, the blue inner 3-ball moves downwards,

so we draw the dotted blue circles as in Figure 2.17 that initially move downwards with

size unchanged until t = 0.5, then continue moving down and get smaller until converging

to a single point as t approaches 1. This forms a hemisphere of BW . Similarly, when t

goes negative, the dotted blue circles that converge to a single point in the upper half

of the thickened model barbell form the other half of BW . Combining both hemispheres

gives rise to the second sphere B. Then the pair W = (BW , RW ) is a twin embedded in

the thickened model barbell.

Figure 2.18 shows the t = 0 slice of a neighbourhood of W , i.e. the intersection of

N(W ) with the t = 0 level of the thickened model barbell. It is diffeomorphic to a space
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Figure 2.18: The local picture of a neighbourhood of RW ∪ SW at t = 0.

that is obtained by attaching two 1-handles to S2 × I to the two boundary components

respectively. The two black dots indicate the pair of intersection point of the twin. By

imagining the paper to be the y = 0 plane, we can also observe the t = 0, y = 0 slice from

the same figure as a 2-disk with three punctures, each of which is indicated by an inner

yellow circle. The boundary 2-spheres of the two inner 3-balls of the thickened model

barbell, which we denote using the notations B and R, are drawn as blue and red dotted

spheres contained in the two upper punctures respectively. Note that they are different

from the notation we use for the twin W = (BW , RW ).

The t-slices of N(W ) with t ̸= 0 can be obtained from Figure 2.18 as follows. When t

change from 0 to 1, Figure 2.18 gradually becomes a disjoint union of a thickened sphere

with a solid torus, i.e. the two 1-handles gradually merge into a solid torus as they get away

from the neighbourhood of R by moving into the page. This solid torus then converges to

a point and disappears, with the thickened 2-sphere stays still. The same thing happens

when t becomes negative with the two 1-handles moving out of the page, merging into a

solid torus and disappearing.

To locate the three circles of the 3-torus boundary of N(W ), we look a bit closer at
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the local neighbourhood of R ∪ S at various values of t. At t = 0, as shown in Figure

2.18, we have a thickened 2-sphere with two 1-handles attached, one from the inside and

one from the outside. The boundary is a disjoint union of two tori. In Figure 2.18, S1
r

is drawn in blue as a meridian of the black dotted line and S1
s is drawn as two red dots

which trace out a red circle when varying t. The t = 0, y = 0 slice has 4 boundary circles,

all of which are copies of S1
l drawn in yellow in Figure 2.18. As y changes, the biggest

yellow circle and the upper inner yellow circle trace out a torus boundary and the two

lower inner ones trace out another torus boundary. Dehn twists are performed along each

of these circles. They can be drawn as in the upper picture of Figure 2.10 with one more

trivial Dehn twist along a null homotopic loop added between the outer Dehn twist and

the left-hand side inner Dehn twist. This shows that the restriction of ΦW to the t = 0,

y = 0 slice of the thickened model barbell is isotopic to the restriction of ΦB to the same

slice. In particular, on the t = 0, y = 0 slice, only three of the four Dehn twists on this

twice-punctured disk are non-trivial. This matches with the fact that on this slice the

barbell diffeomorphism recovers the point-pushing map which is a composition of three

Dehn twists as discussed in Section 2.1.

When y goes to the positive direction, the core circles of the four Dehn twists become

smaller and diverge to points and disappear. This is exactly what happens to ΦB except

for the existence of a trivial Dehn twist. Therefore, this tells us ΦB and ΦW are isotopic

on the t = 0 slice.

When t changes from 0 to ±0.5, the dotted blue sphere B moves down or up as in

Figure 2.9. As we already discussed, the t-slice (W )t of the twin remains essentially the

same shape as for t = 0, but the two 1-handles move down or up from the y = 0 plane.

When t continues to increase or decrease to ±1, (W )t firstly becomes a solid torus (the

neighbourhood of R disappears) and then converges to a point and disappears. Therefore,

for y = 0, and as t goes from 0 to ±0.5, the Dehn twist around the dotted blue sphere B

gradually becomes trivial. And when t continues increasing to ±1, the four Dehn twists

gradually become two Dehn twists around the y = 0 slice of the dotted red sphere R with

opposite directions, and finally disappear completely. All of this behaviour is consistent
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with ΦB up to null-isotoping trivial Dehn twists, and up to replacing the planar null-

homotopy used in defining ΦB in Figure 2.9 by the process of a neighbourhood of RW

getting thinner and disappearing (and hence two Dehn twists around the y = 0 slice of a

neighbourhood of R disappear in the end as t goes to ±1).

In fact, for a fixed t, one can similarly analyze the behaviour of ΦW when varying y,

and verify that ΦB and ΦW are isotopic on all t- and y-levels, because W and B share

the red sphere, i.e. RW is isotopic to R. Moreover, one can choose such t- and y-levelwise

isotopies, by varying the size of RW and BW in an appropriate way if necessary, such

that they assemble into a continuous t- and y-parameter families of isotopies. Thus, we

conclude that [ΦB] = [ΦW ] ∈ π0Diff(M,∂). So we have proven Theorem 2.11.

From a personal communication with David Gay [10], the author understands this is

obtained independently by David Gay as well.

Remark. Conversely, given a Montesinos twin W in M , if there exists an appropriate

Whitney disk such that then one can resolve the pair of intersections, then this gives rise

to an embedded barbell B. In this case, one can argue that ΦB is isotopic to ΦW . However,

we do not expect this to be always possible in general.

2.4 Half-unknotted barbells and Montesinos twins

Recall that we call a barbell, or a Montesinos twin, half-unknotted if at least one of the

cuff spheres, or one of the embedded 2-spheres of the twin, is unknotted.

Let M0 denote the subgroup of π0Diff(S4) generated by half-unknotted twin twists

and let B0 denote the subgroup of π0Diff(S4) generated by half-unknotted barbell diffeo-

morphisms. Gay–Hartman [11] showed that every twin twist in the 4-sphere that arises

from a half-unknotted twin is isotopic to a twin twist arises from an unknotted twin. More

precisely, they give a set of generators of M0 called W (i), i ≥ 1, which are unknotted.

Figure 2.19 shows W (3). It is isotopic to Figure 2.20 which is deduced from Figure 2.6 by

viewing it in S4.
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Figure 2.19: Gay’s twin W (3) (the original picture used as Figure 2 in [11]).

Figure 2.20: The barbell αi viewed as a Montesinos twin W (αi) in S4.
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Theorem 2.12. ([9,11]) The group M0 is generated by the twin twists ΦW (i) from twins

W (i). Moreover, W (i) is isotopic to W (αi) where W (αi) is the induced twin from αi (see

Figure 2.20, for the case i = 3) viewed as a barbell in S4.

As an application of Theorem 2.11 and Theorem 2.12, we prove the following result.

Theorem 2.13. There is an isomorphism from B0 to M0 given by taking the induced twin

of a barbell. In particular, half-unknotted barbell diffeomorphisms of S4 can be understood

through unknotted barbells in S4.

Proof. By Theorem 2.11, we have B0 ⊂ M0. We define an inverse. By Theorem 2.12, it

suffices to consider the twins W (i). As discussed in Section 3 of [11] (and in particular

Figure 5 and Figure 6 of [11]), after reversing surgeries as discussed in the end of Section

2.2, W (i) can be represented by an unknotted embedded torus with an arm that goes

around the S1 factor i times and links the arm itself. For example, see Figure 2.15 when

i = 2 and Figure 2.7 when i = 3.

Such a torus induces a barbell B(αi) as discussed in Section 2.1 (see Figures 2.6, 2.7 and

2.8). One can recover the twin W (i) from B(αi) via a finger move as in Section 2.3 and in

the proof of Theorem 2.11. Therefore, the corresponding induced barbell diffeomorphism

ΦB(αi) is isotopic to the twin twist ΦW (αi) by Theorem 2.11.



Chapter 3

Representing diffeomorphisms by

handle moves

In this chapter, we discuss an approach to understanding diffeomorphisms of manifolds

through handlebody decompositions and handle moves. We give necessary definitions and

construction in Section 3.1, followed by a discussion for dimension 4 in Section 3.2. Finally,

low-dimensional examples are given in Sections 3.3.

3.1 Definitions and construction

We start by giving a definition of handlebodies and handle decompositions of manifolds.

The reader can refer to [12] for a detailed discussion of handle structure of smooth mani-

folds, and see [21] for a treatment of Morse theory. Here, we first recall some terminology

of the theory of handle decomposition of smooth manifolds that we will use in this thesis.

For 0 ≤ k ≤ n, an n-dimensional index k-handle, or just a k-handle, is a copy of Dk×Dn−k.

The disk Dk ×{0} is called the core, the disk {0}×Dn−k is called the cocore, ∂Dk ×Dn−k

is called the attaching region, ∂Dk × 0 is called the attaching sphere and {0} × ∂Dn−k is

called the belt sphere. We define an n-dimensional handlebody as follows.

Definition 3.1. An n-dimensional handlebody consists of

• for each 0 ≤ k ≤ n, a collection of n-dimensional k-handles {hki }

29
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• for each 0 < k ≤ n, a collection of embeddings gki : (∂Dk ×Dn−k ⊂ ∂hki ) → ∂Xk−1

called gluing maps, where Xk−1 is recursively defined as X0 =
⊔
h0i and X l =

(X l−1 ∪
⊔
hli)/(x ∼ gli(x)) for l ≥ 1.

There is a canonical way of smoothing corners by replacing an angular boundary by

a smooth corner. Thus an n-dimensional handlebody can be interpreted as a smooth

n-manifold. A handle decomposition of an n-manifold X is an identification of X with

an n-dimensional handlebody. A k-handlebody is a handlebody consisting of handles of

index at most k.

Let X be a connected n-manifold. Choose a Morse function f0 : X → R together with

a gradient-like vector field v0 on X. In other words, we fix a triple (X, f0, v0). With some

additional auxiliary data, this induces a handle decomposition of X. There are three

kinds of elementary handle moves that preserve the diffeomorphism type, namely level-

preserving isotopies, creating/cancelling (i/i + 1)-pairs and handle slides. The key idea

behind the results in this section is that these moves induce diffeomorphisms that are well

defined up to isotopy. We shall now discuss these moves separately in detail. We begin

with a notion of isomorphism of handlebodies.

Definition 3.2. Let X and X ′ be n-dimensional handlebodies. Denote the handles of

X and X ′ by {hki } and {hki
′} respectively, and denote the gluing maps of X and X ′ by

{gki } and {gki
′} respectively (cf. Definition 3.1). Then X and X ′ are called isomorphic

handlebodies if there is an isomorphism of handlebodies between X and X ′ which consists

of

• for each k, a bijection {hki } → {hki
′} giving rise to a canonical diffeomorphism

ψk :
⊔

i h
k
i →

⊔
i h

k
i
′ where hki

′ are handles of X ′ attached via {gki
′}.

• for each k, a diffeomorphism Ψk : X
k → X ′k recursively defined using the bijection

with Ψ0 = ψ0 satisfying gki
′
= Ψk−1 ◦ gki : ∂Dk ×Dn−k → Xk−1′.

In other words, such an isomorphism gives rise to a handle by handle identification between

X and X ′

Φ := Φn : X = Xn → X ′ = Xn′.
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that is intertwined with the attaching maps of handles.

With the above definition, we now describe diffeomorphisms induced from elementary

moves. Assume that the Morse function f0 has critical points with distinct critical values,

and satisfies the condition that the critical points with higher indices have larger criti-

cal values. Then it produces a handle decomposition of X with all handles attached in

increasing index order.

A level-preserving isotopy ϕt of index k with respect to the Morse function f0 is an

isotopy (of attaching regions of index k handles) that moves the attaching regions of index

k handles and keeps them disjoint. Such an isotopy ϕt induces a diffeomorphism Φ1 from

Xk−1 to the {k− 1}-skeleton Xk−1′ of a handlebody X ′ by the isotopy extension theorem

applied to the {k− 1}-skeleton of X. Here, the handlebody X ′ is defined as Xk−1 ∪Φ1◦g C

where C is the union of handles of X with indices k or higher, and g : ∂C → ∂Xk−1 is

the union of the gluing maps of X with indices k or higher. Extending Φ1 to the higher

index handles by dragging the attaching maps of the higher dimensional handles along

and extending using the identity map, we get the induced diffeomorphism Φ is defined by

Φ =


Φ1 on Xk−1

Id on the k-handles with attaching regions removed.

Id on the higher dimensional handles with attaching regions removed.

.

Note that the handle structure of X ′ can be obtained from the pair (f0 ◦ Φ−1,Φ∗(v0)). If

the handle structures of X and X ′ are isomorphic in the sense of Definition 3.2, then using

Definition 3.2, we can view Φ as a self-diffeomorphism of the handlebody X. In low

dimensions, one often relies on pictures and diagrams to naturally identify handlebodies.

However, one needs to be careful that choices are involved in such identifications.

Example 3.3. The standard handle decomposition of D2 × S2♮D2 × S2, the boundary

connected sum of two D2-bundles over S2 has a Kirby diagram which contains an unlink

with framing numbers 0. An isotopy that drags one of the unknots through the other

one and then comes back to its original position gives rise to a self-diffeomorphism by the
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Figure 3.1: An example of a level-preserving isotopy in a 4-manifold with one 0-handle
and two 0-framed 2-handles.

isotopy extension theorem. This diffeomorphism acts trivially on homology. See Figure

3.1 for a picture. The dashed light green path indicates this isotopy. However, it is not

clear to the author whether this diffeomorphism is isotopic to the identity.

Another example of a non-trivial diffeomorphism can be constructed by exchanging the

locations of the two unknots in Figure 3.1 following the dashed red lines. The resulting

handlebody is isomorphic to the original one. The induced diffeomorphism acts non-

trivially on homology, namely, it exchanges the two generators of the second homology.

Therefore, it can not be isotopic to the identity.

More generally, for any 4-dimensional 2-handlebody M , there is a homomorphism from

the fundamental group of the embedding space of L (the link which specifies M) in S3,

which is denoted by π1Emb(L, S3), to π0Diff(M).

Suppose hk1 and hk2 are k-handles of X whose attaching maps have codomain ∂Xk−1.

A handle slide of hk1 over hk2 ∼= Dk ×Dn−k is defined by an isotopy

ϕt : S
k−1 = ∂Dk × {0} → ∂(h2 ∪Xk−1)

of the attaching sphere of hk1 that drags it along a k-disk Dk × {∗} inside hk2 and returns

it to ∂Xk−1. This move induces an isotopy class of a diffeomorphism Φ1 from X to the

handlebody X ′ = Xk−1 ∪Φ1◦g C by the isotopy extension theorem. Here C denotes the

union of all handles with indices k or higher except hk1 and hk2, and

g : C → ∂(hk2 ∪Xk−1 ∪ hk1)
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is the union of the gluing maps of X with indices k or higher except hk1 and hk2. In

particular, we define a diffeomorphism Φ of X in a similar way as for level-preserving

isotopies:

Φ =


Φ1 on Xk \ (hk1 \ Sk−1)

Id on hk1 with the attaching sphere removed.

Id on the higher dimensional handles with attaching regions removed.

Here Φ1 is the result of isotopy extension applied to ϕt. Again, higher-dimensional handles

get dragged along the way, i.e. they are attached by the compositions of their original

attaching maps with Φ. Thus, we have a diffeomorphism from X to X ′. Note that Φ1 is

isotopic to the identity as a diffeomorphism of Xk \ (hk1 \Sk−1), but this is not necessarily

the case when we add the remaining part of h1. Handles slides can be viewed as isotopies

that do not preserve levels, i.e. isotopies that do not keep the attaching regions of index

k handles disjoint. This means that during a handle slide of index k, handles of index

k can not be attached at the same time, i.e. not all index k handles belong to the same

attachment level anymore.

We have now described how handle slides and level-preserving isotopies induce dif-

feomorphisms. We now turn to the last type of handle move. We denote a cancelling

(i/i+1)-pair by (hi, hi+1, p) where hi is an index i handle, hi+1 is an index i+1 handle, and

p is the unique intersection point between the belt sphere of hi and the attaching sphere

of hi+1. Such a cancellation can be described by a perturbation of the Morse function

f0 to a new Morse function f ′
0 with 2 fewer critical points. The corresponding perturbed

new gradient-like vector field is distinct from the old one only in a small neighbourhood

of the integral curve between the two critical points that define hi and hi+1 that passes

through p. The manifold X ∪ hi ∪ hi+1 is diffeomorphic to X through a natural choice of

diffeomorphism (which we shall describe now) that is supported in a neighbourhood N of

hi ∪ hi+1 in X ∪ hi ∪ hi+1.

For all n and 0 < i < n, we fix two standard decompositions of the n-ball Dn as a
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Figure 3.2: A standard decomposition of the n-ball into a cancelling pair.

Figure 3.3: Another standard decomposition of the n-ball into a cancelling pair.

union of two handles hi = Di ×Dn−i and hi+1 = Di+1 ×Dn−i−1 as shown in Figures 3.2

and 3.3 (for dimension 2, with higher dimensions obtained by taking a suspension with

standard parameterized intervals). The attaching regions are thickened in black, and we

will denote them by ∂Dn
−. The rest of the boundary is denoted by ∂Dn

+. Up to smoothing

the corners, we will use these standard models as our models for cancelling pairs.

We now define a diffeomorphism from X ∪ hi ∪ hi+1 to X in the following way. We

first map X i−1 ∪ hi ∪ hi+1 to X i−1 through a diffeomorphism Φ. Namely, take an n-ball

collar neighbourhood B of the attaching region of hi ∪ hi+1 in X i−1. It is drawn in green

Figure 3.4: The domain X i−1∪hi∪hi+1 of the induced diffeomorphism Φ from a cancelling
pair.
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Figure 3.5: The image Φ(X i−1∪hi∪hi+1) of the induced diffeomorphism Φ from a cancelling
pair.

in Figure 3.4. The union B ∪ hi ∪ hi+1 is also an n-ball. It admits an interval fibering:

for n = 2, the fibering is drawn in Figure 3.4, and for n > 2, we take the product with

In−2. We define a fiberwise diffeomorphism using this fibering. For each interval fiber of

B ∪ hi ∪ hi+1, we use a diffeomorphism that contracts this interval to the corresponding

shorter interval in B. Intuitively, we “push” the cancelling pair into the interior of X i−1.

Note that the attaching region is mapped to the interior.

Figures 3.4 and 3.5 illustrate the domain and image of Φ for n = 2 respectively. The

boundary of X i−1 is drawn as a black line in Figure 3.4. Note that the parts of X i−1

that are not moved by Φ are not drawn. The image of the cancelling pair hi ∪ hi+1 fits

into the decomposition illustrated in Figure 3.3, with corners smoothed. Note that Φ

maps ∂Xi−1 ∩ (hi ∪ hi−1) (i.e. ∂Dn
+) to Φ(∂Xi−1) ∩Φ(hi ∪ hi−1). Therefore, the attaching

maps of the remaining handles of X (with index i or higher) whose attaching regions have

non-empty intersection with ∂Xi−1 ∩ (hi ∪ hi−1) get dragged by Φ. It follows that we can

extend Φ to the complement C of X i−1∪hi∪ ii+1 in X ∪hi∪hi+1 via handle-wise identity

maps. We take this extension as the induced diffeomorphism from this cancellation pair.

In particular, the induced diffeomorphism from adding a cancelling pair to X is Φ−1, and

the induced diffeomorphism from removing such a pair is Φ.

For 0/1-pairs, i.e. i = 0, one can perform the same procedure as above using another

two different decompositions of the n-ball as a union of a 1-handle and a 0-handle, as

shown in Figure 3.6.
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Figure 3.6: Two standard decompositions of the n-ball for 0/1-pairs.

Remark. There is an alternative view of the induced diffeomorphism from deleting/adding

a cancelling pair. If X ′ is obtained from X by adding a cancelling pair, then we can take

the composition Φ ◦ i : X → X ′ → X where i is the natural inclusion map and Φ is the

induced diffeomorphism described above. This can be considered as a self-embedding of

X (viewed as a manifold rather than a handlebody). More precisely, it is an embedding of

X, equipped with one handle structure, into X, equipped with a different, induced handle

structure from Φ and X ′. One can show that this map is isotopic to the identity map of

X, as a manifold. Roughly, there is an isotopy of Φ ◦ i that gradually enlarges the image

Φ◦ i(X) to cover the entire X. From this point of view, Φ is indeed isotopic to the identity

of X, as a manifold diffeomorphism. However, one must be very careful since Φ ◦ i does

not give rise to an isomorphism between handlebodies.

Combining the discussion so far, we have the following definition.

Definition 3.4. Given a finite sequence (mi) of handle moves of (X, v0, f0) that transforms

X to a manifold (X ′, v1, f1) with the same diffeomorphism type, there is a well-defined

diffeomorphism Φ(mi) : X → X ′ up to isotopy, called the induced diffeomorphism from

(mi). If X and X ′ are isomorphic as handle decompositions, then Φ(mi) is considered as a

self-diffeomorphism of X and defines an element in π0Diff(X).

To end this section, we state the following conjecture that concerns the inverse without

giving a proof.

Conjecture 3.5. Let X be an n-dimensional connected manifold. Then every element

Φ ∈ Diff(X) can be factored into a composition of a finite sequence of diffeomorphisms,

each of which is induced by a handle slide, a cancelling pair creation/cancellation or a

level-preserving isotopy.
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The possible ideas behind the proof would be based on Cerf theory: given a diffeomor-

phism Φ of X, the composition f0 ◦ Φ−1 : X → R is also a Morse function on X. Cerf [6]

proved that there exists a 1-parameter family of smooth functions ft on X where f0 = f

and f1 = f ◦ ϕ, and this family can be deformed into a smooth function G : X × I → R

on X × I that is Morse for almost all t except at finitely many isolated values of t where

types of the critical points are classified, i.e. we can control the types of singularities at

these isolated points. In particular, cusp singularities correspond to cancelling pairs and

integral flowline between critical points of the same index correspond to handle slides. We

plan to return to this topic in greater detail in future work.

3.2 Dimension 4

In this section, we focus on diffeomorphisms of 4-dimensional handlebodies. We will

explore representing diffeomorphisms of 4-dimensional handlebodies by sequences of Kirby

diagrams connected by handle moves. Readers that are not familiar with 4-manifold

handle decompositions and Kirby calculus can refer to [12] for a detailed treatment. For a

connected 4-manifold X, there exists a handle decomposition of X induced from a Morse

function f on X together with a gradient-like vector field v, such that there is a unique

0-handle. If X has no boundary, we can assume a unique 4-handle by cancelling some

3-4 pairs, if necessary. The 2-skeleton X2 of X can be described by a Kirby diagram that

consists of dotted, unknotted circles (1-handles) and knots/links with framing numbers

noted (2-handles). By [19], any diffeomorphism of a connected sum of finitely many copies

of S1 × S2 extends to a diffeomorphism of the corresponding boundary connected sum

of the same number of copies of S1 × D3. Thus, a Kirby diagram determines a closed

4-manifold up to its diffeomorphism type. Any two Kirby diagrams (together with the 3-

and 4-handles) represent the same handlebody if and only if they are related by a sequence

of handle moves.

If X has no 3- and 4-handles (so X = X2), then a sequence of Kirby diagrams that

starts and ends with the same diagram of X, connected by handle moves, induces a
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self-diffeomorphism of X up to isotopy, since we can identify the starting and ending

diagrams via the natural identification of diagrams which then leads to an isomorphism

of handlebodies (cf. Definition 3.2 and Example 3.3).

It remains to deal with the attaching maps of 3- and 4-handles if X admits 3- and

4-handles. Note that although we can assume that a connected 4-manifold X admits a

handle decomposition with at most one 4-handle as mentioned above, sequences of handle

moves of X may introduce cancelling 3-4 pairs that are not recorded in detail in Kirby

diagrams. A typical scenario is as follows: we start with a finite sequence of Kirby diagrams

(Di) together with attaching maps ϕi of the 3- and 4-handles representing handlebodies

XDi
connected by handle moves

(D1, ϕ1) → (D2, ϕ2) → · · · → (Dm, ϕm)

where ϕi : #kiS
1×S2 → ∂X2

Di
and ki is the number of 3-handles of XDi

. We allow 3-handle

moves to appear in the above sequence. In this case, two items in the sequence connected

by a 3-handle move will share the same diagram but different attaching maps of 3- and

4-handles.

We denote the composition of the induced diffeomorphisms from the handle moves by

Φ: XD1 → XDm . We further assume Dm and D1 are the same diagram, i.e. the sequence

starts and ends with the same diagram, and XD1 and XDm have the same attaching maps

for 3- and 4-handles. It follows that XD1 and XDm are isomorphic handlebodies. Thus

we have a well-defined self-diffeomorphism of X up to isotopy (cf. Definition 3.2). In the

special case when X has no 3-handles, we can simplify the data needed. We consider three

cases separately.

1. There are no 3-handles involved.

Let ϕ1 : ∂D
4 → ∂X2

D1
and ϕm : ∂D4 → ∂X2

Dm
denote the attaching maps of the

4-handles of XD1 and XDm respectively. Since Diff(S3) is homotopy equivalent to

SO(4) by [14], the mapping class group of orientation-preserving diffeomorphisms

π0Diff(S
3) is trivial. So ϕ1 and ϕm are both isotopic to the identity and thus are
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isotopic. By choosing an isotopy from fm to f1, we can line up these two attaching

maps and thus extend the isomorphism between the 2-skeletons to the 4-handles

(thus to an isomorphism between XD1 and XDm). The only thing we need to check

is that the choice of isotopy does not affect the isotopy class of Φ. Since π1Diff(S3) ∼=

Z/2 is generated by a path of rotations that fix an axis by [5], the effect of performing

an isotopy along the collar of the 4-handle can be undone by rotating the inner part

of the 4-handle. This tells us that we do not need to keep track of the attaching

maps of the 4-handles in our sequence.

2. There is only one 3-handle involved.

The union of the 3-handle with the 4-handle gives rise to a copy of S1 ×D3. To see

this, note that we can take the standard decomposition of S1×D3 which consists of

a 0-handle and a 1-handle, and take it upside and down.

We can apply a similar argument with ϕ1 : ∂(S
1 × D3) → ∂X2

D1
and ϕm : ∂(S1 ×

D3) → ∂X2
Dm

denoting the attaching maps of the 3- and 4-handles of XD1 and XDm

respectively. By [13], the group Diff(S1 × S2) is homotopy equivalent to O(2) ×

O(3) × ΩO(3) with π0Diff(S
1 × S2) being isomorphic to (Z/2)3 which is realized

by rotations on S1 and S2, and loops of rotations around S2, and these extend

naturally to S1 × D3. Note that here (but not below) we use Diff(S1 × S2) to

denote all diffeomorphisms including orientation-reversing ones. We isotope ϕ1 and

ϕm to diffeomorphisms ϕ′
1 and ϕ′

m generated by these generators and use ϕ′
1 ◦ ϕ′

m
−1

to identify D1 and Dm. It remains to show that the isotopy class of ϕ′
1 ◦ ϕ′

m
−1 is

independent of choices. Two choices of isotopies give rise to a loop in π1Diff(S
1 ×

S2) ∼= Z×Z/2 which is generated by loops of rotations. Thus we can again “rotate”

the interior of S1 ×D3 to cancel the effects of this loop.

3. There are two or more 3-handles involved.

Similar to the previous cases, we are looking at π0Diff(#kS
1×S2) and π1Diff(#kS

1×

S2) where k is the number of 3-handles involved. By [17,18] (see also [1]), π0Diff(#kS
1×
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S2) is described by the following short exact sequence:

1 → Twist(#kS
1 × S2) → π0Diff(#kS

1 × S2) → Out(Fk) → 1

where Twist(#kS
1×S2) ∼= Z2

k is the group of sphere twists generated by the twists

along the k core spheres S2 × {pt} of the k different summands, and Out(Fk) is the

group of outer automorphisms of the free group on k generators. (cf. Example 3.13

below). This short exact sequence splits and π0Diff(#kS
1×S2) is isomorphic to the

semidirect-product Twist(#kS
1×S2)⋊Out(Fk). The automorphism group Aut(Fk)

has a countable set of standard generators: for distinct 1 ≤ i, j ≤ k, elements Lij

and Rij defined via the formulas:

Lij(ak) =


ajak if k = i

ak otherwise
Rij(ak) =


akaj if k = i

ak otherwise

and for 1 ≤ k ≤ n, and elements

Iij(ak) =


a−1
k if k = i

ak otherwise

for 1 ≤ i ≤ n. This induces a generating set of Out(Fk). It follows that we can

isotope the attaching maps of 3- and 4-handles f1 and fm as standard pairs in the

above semi-direct product and use these to identify XD1 and XDm . So in this case

the extra information needed is contained in π1Diff(#kS
1 × S2), which is not yet

sufficiently understood to the author’s knowledge.

The following theorem is a refinement of Definition 3.4 in dimension 4.

Theorem 3.6. For an oriented, compact, smooth 4-manifold X with a preferred handle

structure σ, consider any finite sequence S

(D1, ϕ1) → (D2, ϕ2) → · · · → (Dm, ϕm)
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of Kirby diagrams Di together with attaching maps ϕi : #rS
1 × S2 → ∂X2

Di
of 3- and

4-handles, connected by handle moves, where D1 and Dm are identical as diagrams repre-

senting σ, along with identical attaching maps ϕ1 = ϕm of 3- and 4-handles. Here r is the

number of 3-handles.

In this scenario, there exists a handle animation self-diffeomorphism Φ induced from

S as a composition of induced diffeomorphisms from each handle move in the sequence,

which is well-defined up to isotopy. If X has less than or equal to one 3-handle (r ≤ 1),

then we do not need to keep track of the attaching maps of 3- and 4-handles.

Remark. In fact, each attaching ϕi can be realized by a sequence of surgery diagrams

connected by Kirby moves. In particular, #kS
1 ×S2 may be represented as the boundary

of the standard diagram of k dotted unknots of ♮kS1 × D3, and each ϕi is realized by a

sequence of diagrams from this standard diagram to the boundary surgery diagram of Di.

See Example 3.13 in the next section.

3.3 Examples

In this section, we discuss examples of diffeomorphism representations of handlebodies in

dimension 2, 3 and 4.

Figure 3.7: Dehn twist.

Example 3.7. We look at orientable surfaces first. Recall that the mapping class group

π0Diff(S, ∂S) of an orientable, compact surface S is generated by Dehn twists (see Figure

3.7) along essential curves (i.e. loops that do not bound disks) in S. Let S be a connected,
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Figure 3.8: A punctured torus specified by an oriented circle with two pairs of points.

orientable surface with boundary. Then S can be specified by an oriented circle with

labelled ordered pairs of points on the circle, annotated by (a, a′), (b, b′) . . . . To recover

the surface by building up a handlebody, one first considers the circle as the boundary of

a 2-disk, as a 0-handle, then attaches an oriented 1-handle to a neighbourhood of each

pair of points in the way that the resulting surface is orientable. The orientation of the

circle leads to an ordering of all labelled points on it. We call such a circle a pointed

circle. If we further require that surgering out the pair of points out of the pointed circle

gives rise to a connected 1-manifold, then such a circle specifies a surface with only one

boundary component. Figures 3.8 and 3.9 indicate a punctured torus described in this

way. The arrow in the former figure indicates that the two ordered pairs of points are

surgered out, leading to a connected 1-manifold. Each ordered pair of points (a, a′) and

(b, b′) determines an oriented core curve. See Figure 3.9: the red dotted circle with arrows

is the core curve determined by (a, a′). Our first claim is the following theorem which is

also described in [20] as Lemma 2.1 in a different language of arc-slides for surfaces with

one boundary component.

Theorem 3.8. Let S be an oriented surface determined by a pointed circle with pairs of

annotated points on it. Assume that there is only one annotated point, say b′, between an

ordered pair of points a and a′ on the pointed circle (using the orientation of the pointed

circle). Then the Dehn twist along an oriented core curve l specified by the ordered pair

(a, a′) can be realized by sliding b′ over the 1-handle specified by (a, a′) once along the

direction of l.
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Figure 3.9: Realizing a Dehn twist of a punctured torus.

The proof makes use of the Alexander method, which roughly says that a diffeomor-

phism of S can be (partly) understood by looking at its effects on a collection of curves

and arcs. It is briefly summarised below. For details, see Proposition 2.8 of [8].

Proposition 3.9. (The Alexander method) Let S be an orientable surface, and let Φ ∈

Diff(S, ∂). Fix a collection C of pairwise non-isotopic, essential, simple closed curves and

simple, properly embedded arcs that fill S, meaning that the result of cutting along these

curves and arcs is a disjoint union of disks and once-punctured disks, satisfying

• Curves in C are pairwise in minimal position, meaning that the geometric intersection

number is realized.

• For distinct α, β and γ ∈ C, at least one of α ∩ β, α ∩ γ and β ∩ γ is empty.

If Φ fixes all curves and arcs in C with orientations preserved, then Φ is isotopic to the

identity.

Proof of Theorem 3.8. We compare the induced handle slide diffeomorphism Φb′→(a,a′)

from sliding b′ over the 1-handle specified by (a, a′) and the Dehn twist Tl along l. First,

observe that both diffeomorphisms can be arranged to have the same supports, namely

a neighbourhood N(l) of l away from the boundary of S. Note that Φb′→(a,a′) can be

arranged to fix the boundary of S pointwise since the attaching region of b′ is pushed
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Figure 3.10: The Lickorish generators plus curves around each boundary component, as a
collection of curves that fills S.

to its original position by the slides. We would like to apply the Alexander method to

the composition Φb′→(a,a′) ◦ T−1
l . We fix a collection C of essential, simple closed curves

and simple, properly embedded arcs that fill S, meaning that the result of cutting along

these curves and arcs is a disjoint union of disks and once-punctured disks, and satisfies

the additional conditions as stated in Proposition 3.9 and Proposition 2.8 of [8]. Such a

collection can always be found. For example, if the genus of S is g and if S has n boundary

component, then it contains g holes and a puncture, so we can choose such a collection C

by taking the Lickorish generators (see Section 4 of [8], namely by picking all meridians

and longitudes of all holes, together with circles that go through consecutive holes, and

circles separating the boundary components, as shown in Figure 3.10 for the case when

S is a genus g surface with three boundary components. The boundary components are

drawn as red circles. Each of the meridians and longitudes corresponds to a 1-handle

determined by an ordered pair of points on the pointed circle as its core curve.

Let γ ∈ C. Suppose that the (oriented) intersection number between γ and l is zero,

then one can modify C by isotoping γ such that γ is disjoint from a neighbourhood of l.

It follows that both Tl and Φb′→(a,a′) fix γ (see Proposition 3.2 of [8] for an argument for

Dehn twists). If the intersection number between γ and l is non-zero, then one can again

isotope γ if necessary such that it intersects a neighbourhood of l in minimal (cannot be

reduced further), finitely many sub-arcs, with the two endpoints of each sub-arc contained

in the two boundary components of N(l) ∼= I× l. In fact, one can further arrange for these

sub-arcs to be parallel copies of I × {pt} in N(l). Now, observe that Φb′→(a,a′) fixes the

endpoints of each sub-arc but replaces a smaller piece of the interior of each sub-arc by

an arc that twists along l once, since the sliding of b′ drags it along l. But this is exactly
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what a Dehn twist around l does. For example, in Figure 3.9, the short small sub-arc of

the green solid curve determined by (b, b′), which is indicated by a short black interval, is

mapped to the green dotted arc by both Φb′→(a,a′) and Tl. Now, by the Alexander method

applied to Φb′→(a,a′)◦T−1
l , we conclude that Φb′→(a,a′)◦T−1

l is isotopic to the identity which

implies that Φb′→(a,a′) is isotopic to Tl.

Remark. In fact, one can show that Theorem 3.8 is true in greater generality. In general,

when there is more than one annotated point between (a, a′), one slides all these annotated

points along the 1-handle specified by (a, a′) to realize the Dehn twist along (a, a′).

More generally, we can realize the entire mapping class groups.

Theorem 3.10. Let S be an orientable surface (with or without boundary). Then there ex-

ists a handle structure of S such that for any embedded simple closed curve l in S, the Dehn

twist Tl along l can be factored as a sequence of 1-handle slides starting and ending with

isomorphic handle structures. Thus π0Diff(S, ∂) are handle animation diffeomorphisms.

Proof. If l is null homotopic, then Tl is isotopic to the identity map, thus we can take

the empty sequence. Otherwise, Tl can be factored into a composition of Dehn twists

along the Lickorish generators and boundary Dehn twists along the separating curves of

the n boundary components, as shown in Figure 3.10. So it suffices to prove that there

exists a handle structure such that all Lickorish generators can be realized by sequences

of 1-handle slides.

Let n denote the number of boundary components of S, and let g denote the genus of

S. We fix a handle decomposition of S that contains a 0-handle, 2g + n 1-handles, and

a 2-handle. Denote the attaching spheres of the 1-handles by ordered labelled pairs of

points

(x1, x
′
1), (x2, x

′
2) . . . , (x2g, x

′
2g), (y1, y

′
1), . . . , (y2g, y

′
2g), (z1, z

′
1), . . . , (zn, z

′
n).

These are attached to the 0-handle in the following order

x1, y1, x
′
1, y

′
1, x2, y2, x

′
2, y

′
2 . . . , xg, yg, x

′
g, y

′
g, z1, z

′
1, . . . , zn, z

′
n



CHAPTER 3. REPRESENTING DIFFEOMORPHISMS BY HANDLE MOVES 46

Figure 3.11: Realizing the mapping class group of the annulus.

with the 2-handle attached to the “big” boundary circle which has non empty intersection

with all 1-handles. Figure 3.9 shows the 1-skeleton of this handle structure for S being a

torus.

To realize a boundary Dehn twist along a separating curve of one of the n boundary

components say (zi, z
′
i), we attach a 1-2 cancelling pair to this boundary circle (to the

0-handle of S) and slide the newly attached 1-handle over the 1-handle corresponding to

(zi, z
′
i) twice so that both feet are slid (with the newly attached 2-handle following), and

finally cancel this pair. A primary example is the annulus, whose mapping class group is

generated by the Dehn twist along its core curve. It has only one 1-handle, so we cannot

recover the twist without adding cancelling pairs. See Figure 3.11. Another example is the

pair of pants whose mapping class group has three free generators, each of which can be

represented by attaching a 1-2 pair to each of the the corresponding boundary component,

sliding this newly attached 1-handle around that boundary component with the 2-handle

following, and finally cancelling the pair. Note that if we do not require that the boundary

is fixed pointwise, then boundary Dehn twists are isotopic to the identity. We generally

do require boundary to be fixed pointwise, and then we apply this requirement to each

step in the composition realising a boundary Dehn twist..
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Combining the above with Theorem 3.8, it remains to prove that Dehn twists along the

Lickorish generators ci (see Figure 3.10) for i = 1, . . . , g−1 can be factored as sequences of

1-handle slides. This is illustrated in Figure 3.12, reading from the top to the bottom. This

figure is meant to be a portion of S containing four 1-handles (xi, x
′
i), (yi, y

′
i), (xi+1, x

′
i+1)

and (yi+1, y
′
i+1) (which we relabelled as (a, a′), (b, b′), (c, c′), (d, d′)) and the 0-handle of S.

The red dotted curve in the top picture represents ci. The Dehn twist along ci is realized

by first sliding b′ over (c, c′), then c′ over (b′, b), then d over (b′, b). then c over (b′, b), a′ over

(b′, b), and finally sliding b′ over (c′, c) to move it back to the original position. This se-

quence starts and ends with the same handle structure and realizes Tc1 . To see this, we ap-

ply the Alexander method again to the collection of curves that fill S shown in Figure 3.10.

Except for the core curves determined by the four 1-handles (xi, x′i), (yi, y′i), (xi+1, x
′
i+1) and

(yi+1, y
′
i+1), the remaining curves do not move under both the Dehn twist Tci along ci and

the above sequence of handle slides. Therefore, it suffices to show that the image of the

core curves la, lb, lc and ld determined by (a, a′), (b, b′), (c, c′), (d, d′) respectively under this

sequence of slides coincide with the image of the same curves under the Dehn twist Tci .

We illustrate the images of lc and ld along the sequence of handle slides in Figure 3.12,

and the images of la and lb can be obtained by symmetry.

Remark. For orientable surfaces, level-preserving isotopies induce diffeomorphisms be-

tween isomorphic handlebodies, thus self-diffeomorphisms, that are isotopic to the identity.

Example 3.11. We describe an analogous case in dimension 3. We would like to realize the

twist of a collar neighbourhood of the boundary torus of a solid torus. Denote the boundary

torus of D2 ×S1 by S1
B ×S1

R. We take a collor neighbourhood N = [−1, 1]×S1
B ×S1

R and

define a diffeomorphism of N by taking the product of the Dehn twist on [−1, 1]×S1
R with

the identity map on S1
B. We extend it to a diffeomorphism of D2 × S1 via the identity

map. We denote this diffeomorphism by ΦS1
R
. We will describe a construction similar to

what we did with the annulus in the previous example, by attaching a “hula hoop” (which

we will describe below) to the boundary of the solid torus. The desired diffeomorphism

induced by the Dehn twist will then realized by sliding the hula hoop around S1
R.
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Figure 3.12: The Dehn twist along c1 as a sequence of 1-handle slides.
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We first give a handle structure to S1×D2. The standard decomposition of the annulus

with one 0-handle and one 1-handle induces a product decomposition of the solid torus

S1×D2 with one 0-handle and one 1-handle. From the last example, we see that an extra

1-2 pair is needed to realize the Dehn twist along the core circle of the annulus. The hula

hoop is a general construction as follows.

Definition 3.12. For n ≥ 3, the n-dimensional hula hoop is the n-manifold S1
1×. . . S1

n−2×

D2 that admits the following product decomposition.

• The disk D2 is decomposed as a 2-dimensional 1/2-pair.

• Each circle S1
i , i ≥ 1 admits a standard decomposition as a 0-handle and a 1-handle.

In dimension 3, the hula hoop is the product of such a 2-dimensional 1-2 pair with S1.

The hula hoop itself with this decomposition is illustrated in Figures 3.13. It is attached

to SB×SR as shown in Figure 3.14. Let x0 ∈ S1
B be a fixed point, and let a, b ∈ {x0}×S1

R

be two points that are close to each other. Attach a 1-handle to a neighbourhood of a and

b in S1
B × S1

R, and then attach a 2-handle to make a cancelling 1-2 pair, as indicated in

Figure 3.14. Then we attach another 2-handle along the blue curve L. Finally, we attach

a 3-handle to make a solid torus. It is diffeomorphic to a solid torus. In other words, we

have attached two cancelling pairs, one 1-2 pair and one 2-3 pair. The 3-manifold S1×D2

with a hula hoop attached is shown in Figure 3.15 in terms of a Heegaard diagram. Note

that B1, B2 specifies a 1-handle that cancels the 2-handle in the middle, and the 3-handle

then cancels the remaining 2-handle, giving back S1 ×D2.

The Dehn twist along S1
R is realized by sliding both feet of the 1-handle of the hula

hoop over the original 1-handle in the solid torus, and going back to its original position.

In Figure 3.15, this is done by sliding both B1 and B2 over A. As before, the rest of

the higher dimensional handles will follow. To see this, we note that for each fixed point

x ∈ S1
B, the restriction of ΦS1

R
to the slice x×S1

R× [−1, 1], which is an annulus, is given by

the Dehn twist of along the core curve x× S1
R × 0. We observe that sliding the hula hoop

along the S1
R direction realizes this Dehn twist in each slice by imagining cutting the hula
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A comparison with dimension 2.

The hula hoop as two cancelling pairs.

Figure 3.13: The hula hoop construction.
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Figure 3.14: The 3-dimensional hula hoop attached to S1
B × S1

R.

Figure 3.15: Solid torus with a hula hoop attached.

hoop into a S1
B-parameter family of 2-dimensional 1-2 pairs, and applying the previous

example.

Example 3.13. Consider the 3-manifold Mk = #kS
1 × S2, for k ≥ 1 (cf. the discussion

before Theorem 3.6). The manifold Mk can be constructed by removing 2k disjoint 2-

spheres from S3 and identifying the boundary in pairs. Thus it admits a handle structure

with a 0-handle, k 1-handles, k 2-handles and a unique 3-handle. Alternatively, Mk can

be viewed as the boundary of either ♮kS1 ×D3 or ♮kS2 ×D2. Here we think of it as the

boundary of ♮kS1 ×D3, which admits a handle structure that contains a 0-handle and k
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Figure 3.16: The manifold ♮kS1 ×D3 and generators of the mapping class group of Mk.

1-handles as in Figure 3.16. We would like to realize the mapping class group of Mk by

handle moves of 4-manifolds.

Recall that a sphere twist RS of Mk around an embedded 2-sphere S ⊂ Mk can be

described by fixing a neighbourhood U ∼= S × [0, 1] of S and taking the diffeomorphism

U → U defined by

(x, y) → (r(y) · x, y)

where r : [0, 1] → SO(3) is a loop that rotates R3 about an axis by a full turn. The

group of sphere twists R(Mk) ∼= (Z/2)k is generated by the twists about the core spheres

(separating spheres) {∗}×S2 in each of the k summands and is a normal abelian subgroup

of π0Diff(Mk). These can be described by rotating the corresponding pairs of 2-spheres

(representing 1-handles) by 2π. More precisely, to realize the sphere twist around the i-th

core (separating) sphere in Mk, we take a Kirby diagram of ♮kS1 ×D3 as shown in Figure

3.16, and perform a level-preserving isotopy by rotating the i-th 1-handle by 2π. This

gives rise to a self-diffeomorphism of ♮kS1 ×D3 whose restriction to the boundary realizes

the sphere twist we want.

Furthermore, the generators Rij (again, cf. the discussion before Theorem 3.6) can be

realized by dragging the top sphere (i.e. the top attaching region) of the i-th 1-handle and

sliding it over the bottom sphere of the j-th 1-handle. Similarly, the generators Lij can be
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Figure 3.17: The Kirby diagram of T 2 ×D2.

realized by dragging the top sphere (i.e. the top attaching region) of the i-th 1-handle and

sliding it over the top sphere of the j-th 1-handle. Finally, the generators Ii are realized

by exchanging the position of the two boundary points of the attaching sphere of the i-th

1-handle using an isotopy. These are shown in Figure 3.16.

We now turn to examples in dimension 4. We will look at barbell diffeomorphisms

and Montesinos twin twists introduced in Chapter 2. Unless otherwise stated, all of our

2-handles in Kirby diagrams without framing numbers are 0-framed.

Example 3.14. We consider T 2 × D2 whose boundary is a 3-torus. There is a natural

handle structure of T 2 × D2 defined by taking the natural handle structure of the torus

(which contains a 0-handle, two 1-handles and a 2-handle, see Figure 3.9) and taking the

product structure. In particular, it has one 0-handle, two 1-handles and one 2-handle. See

Figure 3.17 for a Kirby diagram of T 2 ×D2. The two meridians of the two 1-handles, and

the meridian of the attaching circle of the 2-handle form 3 circles of the boundary 3-torus

which we denote by m1, m2 and m3 respectively.

We now describe Dehn twists along the boundary circles analogous to the hula hoop

construction in Example 3.11. Take a collar neighbourhood N = [−1, 1]×m1 ×m2 ×m3

of ∂(T 2 × D2). The boundary Dehn twist along mi for i = 1, 2, 3 is the product of the

Dehn twist on [−1, 1] × mi with the identity maps on the other two circles. We would

like to realize the twist along m2. We attach a 4-dimensional hula hoop as defined in
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Definition 3.12. The 4 extra cancelling pairs needed, as a 4-dimensional hula hoop, will

be attached to a neighbourhood of m1 ×m3 in S3. For each point in m3, a 3-dimensional

hula hoop is attached. The 4-dimensional hula hoop is diffeomorphic to S1×S1×D2 and

we decompose it into one 1-handle, three 2-handles, three 3-handles and one 4-handle by

taking the product with the 3-dimensional hula hoop (cf. Figure 3.13). Figure 3.18 shows

the handle diagram of T 2×D2, not including the 3- and 4-handles, with this 4-dimensional

hula hoop attached. The 2-handles are denoted by x, y, z and u.

The 3-handles are attached in the following way. The first 3-handle is attached to a

neighbourhood of the obvious sphere determined by the region bounded by A, C and C ′,

and the 2-handles z and y. In particular, this region is a 2-sphere with three boundary

components, each of which bounds a disk in either z or y. This 3-handle cancels with the

2-handle z. The second 3-handle is attached to a neighbourhood of a 2-sphere determined

by the 2-handles x, u and z and the 1-handles attaching regions A, C and C ′. In particular,

the path following x and u that is connected by A, C and C ′ defines a 2-sphere with 3

boundary components with each boundary component bounding a disk in a 2-handle.

This 3-handle cancels with the 4-handle. Finally, the attaching region of the 3-handle

that cancels u is indicated in the first picture of Figure 3.18 in blue. It is attached to a

blue sphere as a result of gluing four pentagons (denoted by 1,2,3 and 4) together. Each

pentagon has 3 edges on A, C and C ′, and three more edges on x, u and z. The four large

pink arcs are internal in the four pentagons. One imagines that each pentagon, as a disk,

is attached to the blue lines in the four regions, and contains one of the four pink arcs.

Gluing them together gives rise to a 2-sphere with three holes, and each hole bounds a

disk in a 2-handle.

The boundary Dehn twist along m2 can now be realized by first sliding both feet of

the new 1-handle (with attaching regions C and C ′) over B, then sliding one of the new

2-handles over the original 2-handle twice as denoted in the third diagram of Figure 3.18.

This sequence of moves brings the diagram back to the starting position. As before, the

higher dimensional handles (3- and 4-handles) get dragged along the way. In the end, we

cancel the three cancelling pairs.
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Note that in this example, although there are more than one (indeed two) 3-handles

involved in our sequence of handle moves, we can keep tracking their attaching maps to

see that they are identical in the starting and ending diagrams.

Figure 3.18: The twin twist along the boundary of T 2 ×D2.

Example 3.15. Recall from Section 2.2 that a Montesinos twin twist ΦW of a twin W

embedded in a 4-manifold is supported in a collar neighbourhood of a 3-torus. Since ΦW
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is only non-trivial on a collar neighbourhood of the boundary 3-torus, there is not much

difference between ΦW along the boundary 3-torus of E4 (cf. Figure 2.14) and boundary

Dehn twists of T 2 ×D2 discussed in the previous example. We just need to figure out the

correspondence between the two collections of 3 boundary circles. To do this, we first put

their handle diagrams in the same position by transferring them to dotted-circle notation.

See the lower picture of Figure 3.19 for a Kirby diagram of E4 with a hula hoop attached.

The hula hoop is drawn (roughly) in the dotted box. The upper picture of Figure 3.19

is the same diagram in dotted circle notation. The manifold T 2 ×D2 ∪ hula hoop can be

obtained from the upper picture by replacing the 2-handle in the centre of the diagram

(denoted by centre 2-handle in Figure 3.19) by a dotted circle. If we make this change,

then we can pair Figures 3.17 and 3.18 with Figure 3.19 such that m2 in Figure 3.17

corresponds to a meridian of the centre 2-handle in Figure 3.19. We can now observe that

the twin twist restricting to a boundary collar neighbourhood of E4 is the same as the

boundary Dehn twist along m2 of T 2 × D2 restricting to a boundary collar. We further

observe that sliding both feet of a 1-handle over the 1-handle B in Figure 3.18 induces the

same diffeomorphism of this collar neighbourhood as pushing the corresponding 1-handle

in Figure 3.19 through the centre 2-handle. It follows that we can realize the twin twist

by following the same process as in Example 3.14 and Figure 3.18 with the exception that

we replace 1-handle slides over B by pushing the attaching regions of the corresponding

1-handle through the centre 2-handle. This realizes the Montesinos twin twist of E4.

In fact, we can consider twins in other ambient 4-manifolds. For example, Figure

3.20 shows E4 embedded in S4 in a standard way, with two additional 3-handles and a

4-handle not drawn. To see how it is interpreted as a diagram of S4, one starts with the

top picture and performs two handle slides. Then the 1-handle cancels with the green 2-

handle, leaving us the bottom picture which is an unlink which are then cancelled by two

3-handles, giving back to the standard Kirby diagram diagram of S4. It follows that we

can realize this twin twist as a diffeomorphism of S4 using the previous paragraph. More

generally, recall from Section 2.4 the unknotted twins W (i) in S4 proposed by Gay in [9].

We can draw Kirby diagrams of the pairs (S4,W (i)). For example, a Kirby diagram of S4
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Figure 3.19: The twin twist along the boundary of E4.
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Figure 3.20: The standard Montesinos twin embedded in S4.
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Figure 3.21: A Kirby diagram of the pair (S4,W (3)).

with a neighbourhood of the twin W (3) (cf. Figure 2.19) embedded in it is shown in Figure

3.21. As in the previous case, the green 2-handle makes sure this diagram represents S4.

We call Figure 3.21 a diagram of the pair (S4,W (3)). Therefore, we can attach a hula

hoop to such diagrams to realize the induced twin twist ΦW (i). Combining with Theorem

2.12 and Theorem 2.13, we have the following theorem.

Theorem 3.16. For any element in the subgroup M0 of π0Diff(S4) generated by half-

unknotted Montesinos twin twists, there exists a handle structure σ of S4 such that this

element is realized by a sequence of Kirby diagrams starting and ending with the same

diagram representing σ, connected by handle moves. The same is true for the subgroup B0

generated by half unknotted barbell diffeomorphisms.

Example 3.17. We now recall a barbell manifold embedded in S4 proposed by Budney–

Gabai as shown in Figure 3.22. To draw a Kirby diagram of it, it is helpful to think of it

as a pair (S4, E4), i.e. we consider the induced twin from this barbell built by pushing one

cuff along the bar and performing a finger move near the other cuff as discussed in Section

2.3. We start from a diagram that contains an unlink, which represents the connected

sum of two copies of S2×D2. Each unknot represents a 2-handle that gives rise to a copy

of the 2-sphere which consists of the obvious disk in the 0-handle and a 2-disk contained
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Figure 3.22: Conjecturally non-trivial barbell Byx in S4.

Figure 3.23: A Kirby diagram of the pair (S4,Byx) with a hula hoop attached.

in the 2-handle. To build the twin, we push a small sub-arc of an unknot along the bar

to make a finger move near the other, and lock it up by a dotted circle. Finally, add a

meridian 2-handle (drawn in red) to cancel everything. See Figure 3.23. To recover the

barbell, we take the obvious Whitney disk going over the dotted circle and resolve the

two intersection points. Finally, add a meridian 2-handle to cancel everything. See Figure

3.23.

To realize the twin twist along this twin (hence the corresponding barbell diffeomor-

phism), we observe that Figure 3.23 and the upper part of Figure 3.19 (with the hula hoop

removed) have a lot in common. In fact, if we remove the meridian 2-handle (drawn as

a small red circle) from Figure 3.23, then it becomes a manifold with boundary a 3-torus

just as E4. Therefore, we can attach a hula hoop as before (drawn in green in Figure 3.23)

and follow the same process.

We can also consider embedded barbells in S1 ×D3. We start by taking the simplest

diagram of S1 × D3, namely one 1-handle (two 2-spheres) put in the vertical direction.

Figure 3.24 is an example of the barbell used by Budney–Gabai that generates non-trivial
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Figure 3.24: Budney-Gabai’s bar-
bell in S1 ×D3.

Figure 3.25: A modified twin based
on Budney–Gabai’s barbell in S1 ×
D3.

diffeomorphisms of S1 × D3. We twist several times the bar along the S1 coordinate of

S1 × D3, i.e. we push it through the 1-handle of S1 × D3, (here we abuse our notation

and use a mixture of dotted circle notation and sphere notation). Again, we add a small

meridian to the dotted circle and when it cancels one easily recovers S1 ×D3. Similarly,

this barbell diffeomorphism can also be realized as before as a twin twist using a sequence

of handle moves.

To end this section, we describe a Montesinos twin for which we cannot determine

if it is originated from an embedded barbell. Figure 3.25 shows a twin where the two

transverse intersection points appear at the linking of the ‘long’ circle with the 2-handle

appearing as two half circles. It’s not obvious to the author if one can find a Whitney disk

for this pair of intersection points which would transfer this twin into a barbell manifold.



Chapter 4

Budney–Gabai’s W3 invariant and

computations

Budney–Gabai [3,4] defined a rational homotopy invariant called W3 on π0Diff(S1×D3, ∂)

and used it to detect isotopically non-trivial diffeomorphisms of S1 ×D3. In this chapter,

we recall their construction and then discuss some extensions of their calculations.

4.1 The Fulton-MacPherson compactification of config-

uration spaces and the mapping space model

In this section, we briefly introduce the Fulton-MacPherson compactification of configura-

tion spaces of manifolds, following [24] and [25]. We will need this notion in the definition

of the W3 invariant. However, we will mostly present the results and properties we need

and will omit proofs. In the end of this section, we introduce the mapping space model

due to D.Sinha in [25] about the space of properly embedded intervals with fixed endpoints

in a 4-manifold M . This will be important for the construction of the W3 invariant. For

readers who are already familiar with these notions, this section serves the purpose of

setting up our notations.

Given a manifold M embedded in some Euclidean space RN+1, we use Cn(M) to denote

the n-th ordered configuration space of M , i.e. the space of ordered, distinct n-tuples of

62
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points in M . We define the Fulton-MacPherson compactification of this configuration

space of M by Cn[M ] = Bl∆M
n, i.e. the blow-up along the fat diagonal (the subspace

in which at least two points coincide). We will now introduce the precise definition in a

manageable way. We set up some notations before introducing it.

• For m,n ≥ 1, let Cm(n) be the space of ordered m-tuples of distinct points in the

indexing set {1, 2, . . . , n}. Note that Cm(n) is empty if m > n.

• For (i, j) ∈ C2(n), let πij : Cn(M) → SN be the map that sends (xi) ∈Mn ⊂ (RN+1)n

to the unit vector in the direction of xi − xj.

• For (i, j, k) ∈ C3(n), let sijk : Cn(M) → [0,∞] be the map that sends (xi) to (|xi −

xj|/|xi − xk|).

• Let An[M ] be the product Mn × (SN)C2(n) × [0,∞]C3(n).

• Define αn : Cn(M) → An[M ] to be the product Inc×(πij)×(sijk) where Inc : Cn(M) →

Mn is the natural inclusion.

Then Cn[M ] is defined as the closure of the image of Cn(M) in An[M ]. We summarize

some of the important properties of Cn[M ] following the first few sections of [25].

• The homeomorphism type of Cn[M ] is independent of the embedding of M in RN+1.

• If M is compact, then Cn[M ] is compact.

• The inclusion Inc : Cn(M) → Mn factors through a surjective projection Cn[M ] →

Mn.

• An embedding f : M → N induces a map evn(f) : Cn[M ] → Cn[N ] extending the

natural induced map on Cn(M).

• Cn[M ] is a manifold with corners with Cn(M) as its interior, equipped with a pre-

ferred stratification structure.

• The inclusion Cn(M) → Cn[M ] is a homotopy equivalence.
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Example 4.1. For M = I, the space C2[I] is a union of two triangles. More generally,

Cn[I] is a disjoint union of n-simplices, having one component for each ordering of n points.

For us, a stratification of a space X is a collection of disjoint subspaces {Xc} called

strata, such that the intersection of the closures of any two strata is the closure of some

stratum. There is a preferred stratification structure of Cn[M ] that can be defined com-

binatorially in the following way.

Definition 4.2. Let Φn denote the category of rooted, connected trees, with n leaves

labelled by 1,. . . ,n, and with no bivalent internal vertices. Each tree admits a natural

orientation when a root vertex is fixed by defining the direction pointing away from the

root as positive. For T and T ′ ∈ Φn, there is a unique morphism between T and T ′

if they are isomorphic up to contraction of some non-leaf edges. Two leaves are called

root-joined if the unique paths to the root vertex intersect only at the root vertex.

Definition 4.3. Given a set S, an exclusion relation R is a subset of C3(S) satisfying

• if (x, y, z) ∈ R, then (y, x, z) ∈ R and (x, z, y) /∈ R;

• if (x, y, z) ∈ R and (w, x, y) ∈ R, then (w, x, z) ∈ R.

The collection of all exclusion relations of S is denoted by Ex(S).

Definition 4.4. A parenthesization of a set S is a collection of nested subsets of S with

each of them having cardinality greater than one.

There exists a map from Ex(n) of the indexing set {1, 2, . . . , n} to the collection of

parenthesizations of the same set. For R ∈ Ex(n), this is given by taking the following

sets.

• A∼i,¬k that contain all j such that (i, j, k) is in R and also i if such a j exists.

Definition 4.5. For a parenthesization P of {1, 2, . . . , n} given by a collection {Aα} of

nested subsets, there is a tree T (P ) ∈ Φn defined in the following way:

• Each Aα gives an internal vertex vα.
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• There is an edge between vα and vβ if Aα ⊂ Aβ but there are no proper inclusions

Aα ⊂ Aγ ⊂ Aβ.

• A root vertex with edges connecting it to all internal vertices corresponding to max-

imal Aα.

• Leaves (i.e. vertices without edges with positive orientation) with an edge connecting

the i-th leaf to either the vertex vα where Aα is the minimal set containing i, or to

the root vertex if no such Aα exists.

For x = (xi, uij, dijk) ∈ Cn[M ], we can define an exclusion relation R(x) ∈ Ex(n) by

letting (i, j, k) ∈ R(x) if dijk = 0. Then Definition 4.5 gives rise to a tree denoted by T (x).

For T ∈ Φn, let CT (M) denote the space of points x ∈ Cn[M ] such that T (x) = T and let

CT [M ] be its closure. This defines a stratification of Cn[M ] (see Section 3 of [25]).

We will also make use of another space C ′
k[M ], defined as the pullback of the k-fold

product of the unit tangent bundle of M to Ck[M ]. Intuitively, it contains points decorated

with tangent vectors. It is equipped with a natural stratification induced from the one on

Ck[M ]. The following diagram describes their relationship.

C ′
k[M ] (STM)k

Ck[M ] Mk

There is one more variant of Cn[M ] as intorduced in [3,4,25] that is involved in Budney–

Gabai’s invariants. Define Cn(M,∂) as the subspace of Cn+2(M) such that the first and last

points are fixed (and distinct) points x0 and x1 in the boundary ofM . The compactification

of Cn(M,∂), denoted by Cn[M,∂], is defined as the closure of the image of the map

Inc× (πij)× (sijk) : Cn+2(M) → An+2[M ]

restricting to the subdomain Cn(M,∂). Similarly, there is a space C ′
n[M,∂] defined as the

subspace of C ′
n+2[M ] that maps down to Cn[M,∂]. This will be the setup we are going to
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make use of in the coming sections (and chapters).

There is a stratification on Cn[M,∂], hence on C ′
n[M,∂] defined in a similar way as

in Definition 4.5 using a (full) subcategory Φ′
n of Φn. This subcategory contains trees

whose roots have valence at least 2 and such that each set of leaves over the same vertex is

consecutive for all non-root vertices, meaning that if the indices i and j are leaves over

the same vertex, then i < k < j implies that k is also a leaf over this vertex. Here, a leaf

is said to be over a vertex if this vertex is contained in the unique path from the leaf to

the root.

From now on, we will work with the linearly ordered component of C ′
n[I, ∂] for

which the order of the points in the configuration agrees with the order they occur in the

interval, and with all vectors pointing to the positive direction. We still use the same

notation C ′
n[I, ∂], but the reader should keep in mind that equivalent constructions can

be performed in other components as well.

Example 4.6. Consider C2[I, ∂] as the closure of the image of the map

Inc× (πij)× (Sijk) : C4[I] → A4[I]

restricting to C2(I, ∂) = {(0, x, y, 1) : 0 < x < y < 1} where we restrict to one component

only. This space can be parameterized in the following way:

• The interior contains points with 0 < x < y < 1.

• Three boundary faces 0 < x = y < 1, x = 0 and y = 1.

• Two extra faces denoted by x = y = 0 and x = y = 1.

Following the bijection F4, we list the largest subset in each of the corresponding paren-

thesizations:

• The interior corresponds to {1, 2, 3, 4}.

• The three (standard) boundary faces (with the vertices removed) correspond to

{2, 3}, {1, 2} and {3, 4}.
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Figure 4.1: The space C2[I, ∂] as the fourth Stasheff polytope with trees annotated.

• The two extra faces correspond to {1, 2, 3} and {2, 3, 4}.

• The vertex x = 0, y = 1 corresponds to two sets {1, 2} and {3, 4}.

It is parameterized by the fourth Stasheff polytope as shown in Figure 4.1. The

corresponding trees at different strata are also shown in Figure 4.1. In fact, the

(n+2)-th Stasheff polytopes also parameterize higher-dimensional compactifications

Cn[I, ∂]. Reader can refer to Theorem 4.19 of [25] for details.

Definition 4.7. Let x = (xi, vi) × (uij) × (sijk) ∈ C ′
T [M,∂] where vi ∈ Txi

M . Then x is

called aligned with respect to T if for all i and j that are not root-joined (thus we have

xi = xj), we have vi = vj and uij is the image of vi under the Jacobian of the embedding of

M in RN . The subspace of aligned points is called the aligned sub-stratum and is denoted

by Cα
T [M,∂].

Definition 4.8. A map f : C ′
n[I, ∂] → Cn[M,∂] that respects the substratification by

aligned points, meaning that Cα
T [I, ∂] gets mapped to Cα

T [M,∂], is called stratum-preserving

and aligned.

With the preparations so far, we can now state the mapping space model due

to D. Sinha in [25] that helps understanding of the space Emb(I,M) of properly em-

bedded intervals with fixed endpoints. For a compact manifold M , the embedding cal-
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Emb(I,M)
evk //

evk−1
((

TkEmb(I,M)

��

Tk−1Emb(I,M)

Figure 4.2: The embedding calculus tower.

culus tower of Goodwillie–Weiss (see [27]) provides an approximation of the space of

smooth embeddings of the interval in M as shown in Figure 4.2. The maps evk are

called the k-th evaluation maps. The space of aligned stratum-preserving maps is de-

noted by Map(C ′
n[I, ∂], C

′
n[M,∂]) and is weakly homotopy equivalent to the n-th element

TnEmb(I,M) in the tower of embedding calculus, as long as the dimension of M is 4 or

greater.

Furthermore, the composition of this (weak) homotopy equivalence with the k-th evalu-

ation map (which we still denote by evk) is given by sending f to the map (x1, x2, . . . , xn) 7→

(f(x1), . . . , f(xn), f
′(x1), . . . , f

′(xn)) with f ′(x1) = f ′(x2) = · · · = f ′(xn) = 1 since they

are unit-normalized. Note that we omit the tangent vectors in C ′
n[I, ∂] as they are all

positive.

4.2 Definitions and construction

In this section, we recall the construction of the W3 invariant defined by Budney–Gabai

in [3] and [4]. We will define a homomorphism

W3 : π0Diff(S
1 ×D3, ∂) → π2Emb(I, S1 ×D3; I0) → π5C

′
3[S

1 ×D3]⊗Q

as a composition of two maps.

We start by defining the first map called the scanning map

ss0 : π0Diff(S
1 ×D3, ∂) → π2Emb(I, S1 ×D3; I0).

The manifold S1 × D3 is naturally diffeomorphic to S1 × I × I × I by embedding D3
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in R3 as the standard cube [−1, 1]3. Pick a point s0 ∈ S1, and let I0 = s0 × I × 0 × 0

be our base point for Emb(I, S1 × D3; I0). For an element [Φ] ∈ π0Diff(S
1 × D3, ∂)

represented by a difeomorphism Φ of S1 × D3, we connect the end points of the images

Φ(s0× [−1, 1]×x×y) ⊂ S1× I× I× I ∼= S1×D3 with the endpoints of I0 = s0× I×0×0

by straight arcs in the boundary faces s0×0×I×I and s0×1×I×I, and by varying x and

y, and naturally translating each Φ(s0× [−1, 1]×x×y) so that its endpoints coincide with

the endpoints of I0, to obtain an element s([Φ]) ∈ π2Emb(I, S1 ×D3; I0). In other words,

we make use of two of the three intervals to get a double loop of embedded intervals. An

isotopy of Φ induces homotopies of the image Φ(s0×[−1, 1]×x×y) ⊂ S1×I×I×I ∼= S1×D3

relative to the boundary faces. Therefore, the map s is well-defined up to isotopy.

We now define the second map, which will be denoted by

ev3 : π2Emb(I, S1 ×D3; I0) → π5C
′
3[S

1 ×D3]⊗Q.

This will make use of the mapping space model and involves of the second and third stages

of the embedding calculus tower.

We start with analyzing the second stage. As discussed in the end of the previous

section, the k-th element of the embedding calculus tower TkEmb(I, S1 × D3) can be

modelled by stratum-preserving, aligned maps C ′
k+2[I, ∂] → C ′

k+2[S
1 × D3, ∂]. For [f ] ∈

π2Emb(I, S1 ×D3; I0) represented by a map

f : Sn → Emb(I, S1 ×D3; I0)

we have an induced aligned, stratum-preserving map:

ev2(f) : S
n × C ′

2[I, ∂] → C ′
2[S

1 ×D3, ∂].

The space C2[I] is a truncated triangle (see Figure 4.1) with two vertices blown up into

two extra edges denoted by x = y = 0 and x = y = 1. On these faces, the map evk(f)

gives a constant interval which is the image of I0. Therefore, it is enough ignore the fixed
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first and last coordinates and view this map as a stratum-preserving, aligned map

f : Sn × C2[I] → C ′
2[S

1 ×D3].

In practice, as Budney–Gabai indicated in [3], it is often helpful to just think of C ′
k+2[M,∂]

as C ′
k[M ] but keep in mind that extra stratification information is encoded to make sure

the spaces have the correct homotopy types.

For a stratum-preserving, aligned map f : S1×C2[I] → C ′
2[S

1×D3], we will construct

a map

ev2(f) : S
3 → C ′

2[S
1 ×D3]

referred as the closure map of ev2(f). By the aligned and stratum-preserving property,

the restriction of f to each of the 3 edges t1 = t2, t1 = 0 and t2 = 1 has codomain

diffeomorphic to C ′
1[S

1 ×D3] which is diffeomorphic to S1 ×D3 × S3. In particular, such

a restriction gives a map S1 × C1[I] → S1 ×D3 × S3. For each x ∈ S1, gluing x × C1[I]

with I0 along the endpoints gives rise to an element in Ω1(S
3) (their endpoints coincide

because of the aligned and stratum-preserving property). Varying the value of x ∈ S1 and

doing the above at the same time leads to an element in π1Ω1(S
1 ×D3 × S3) ∼= π2S

3 = 0.

Therefore, these restrictions are null homotopic. Attaching null homotopies to f along the

edges gives rise to a map D3 → C ′
2[S

1 ×D3] which is constant on the boundary, i.e. this

is an element in π3C
′
2[S

1 × D3]. These null homotopies can be constructed through the

following Proposition mentioned in Ryan Budney’s talk at Glasgow [2].

Proposition 4.9. Let f : Sn×C2[I] → C ′
2[S

1×D3] be an aligned stratum-preserving map

with n ≥ 1. The restriction of f to the boundary facets of C2[I] is null homotopic.

Proof. For f : Sn × C2[I] → C ′
2[S

1 × D3], we lift it to the universal cover F : Sn ×

C2[I] → C ′
2[S

1 ×D3] ⊂ C ′
2[S

1 ×D3]. This map can be thought of as a map (p, t1, t2) →

(q1, q2, v1, v2) where p ∈ Sn, and v1 and v2 are the corresponding velocity vectors. The

points q1 and q2 are points in R×D3. Along the t1 = t2 facet, as t1 approaches t2, the ve-

locity vectors agree with the direction of the collision, as given by limt1→t2
q2−q1
t2−t1

. The map
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(q1, q2,
q2−q1
t2−t1

, q2−q1
t2−t1

) defines an extension to the entire triangle, and the restrictions to the

t1 = 0 and t2 = 1 facets can be straight-line homotoped to constant maps since they point

to convex spaces (actually half spaces). Similarly, as t1 approaches 0, the corresponding

vector is given by the formula limt1→0
f(t2+t1)−q2

t1
which also defines an extension to the

entire triangle. In addition, the restriction to the other two edges t1 = t2 and t2 = 0 can

be homotoped to the constant map by straight-line homotopies.

The null homotopy for the edges t1 = 0 and t2 = 1 can be constructed in a similar

manner. We give details for the t1 = 0 edge to illustrate this, and a null homotopy

for the t2 = 1 edge can be constructed using the same idea. The restriction of a map

f : Sn × C2[I] → C ′
2[S

1 ×D3] to the edge t1 = 0 is given by

(p, 0, t2) 7−→ (fp(0), fp(t2), limt1→0
fp(t1)− fp(0)

t1
, v2).

As before, we define an extension of it to the remaining part of the triangle:

(p, t1, t2) 7−→ (fp(t1), fp(t2),
fp(t1)− fp(0)

t1
, v2).

On the t1 = t2 edge, this map is given by:

(p, t2, t2) → (fp(t2), fp(r2),
fp(t1)− fp(0)

t1
, limt1→t2

fp(t1)− fp(t2)

t1 − t2
)

where the last coordinate is null homotopic by the null homotopy described in the last

paragraph. Now, observe that the vector fp(t1)−fp(0)

t1
is confined to a hemisphere for all

values of t1, and hence it is null homotopic through the straight line homotopy.

Therefore, we have constructed an element

ev2(f) : S
3 → C ′

2[S
1 ×D3].

which lives in π3C
′
2[S

1 ×D3]. This element is determined by ev2(f) up to choices of null
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homotopies. Then we have defined an invariant

ev2 : π2Emb(I, S1 ×D3; I0) → π3C
′
2[S

1 ×D3]/{some extra relations}

where the extra relations arise from the choices of null homotopies. One can refer to Section

3 of [3] for details about these relations (and we will discuss a more general situation in

Section 5.2 in the next Chapter).

Before we proceed with the third stage to define ev3, we state a lemma we need whose

proof can be found in Section 3 of [3]. Recall that the Whitehead product operation for

a topological space X is a graded quasi-Lie algebra structure on the homotopy groups of

X. For f ∈ πkX and g ∈ πlX

[f, g] : Sk+l−1 → Sk ∨ Sl → X

where the first map is given by the attaching map of the top cell of Sk×Sl and the second

map is the wedge f ∨ g. A basic example is X = S2 and f = g = Id ∈ π2S
2. The

Whitehead product is twice the Hopf map 2ν : S3 → S2.

Lemma 4.10. Consider the fibration F → Ck(S
1 ×D3) → Ck−1(S

1 ×D3). The fiber has

the homotopy type of a (k − 1)-times punctured S1 ×D3 which is homotopy equivalent to

S1 ∨k−1 S
3. It follows that the rational homotopy groups of Ck[S

1 ×D3] are generated by

the Whitehead products of the elements tl.ωij with relations

• [ωij, ωlm] = 0 if {i, j} ∩ {l,m} = ∅

• [ωij, ωjl] = [ωjl, ωli] = [ωli, ωij]

• tl.[f, g] = [tl.f, tl.g].

Here ωij is the element in π3Ck[S
1 × D3] ⊗ Q such that all points are fixed except the

j-th point orbits around the i-th point, and tl are generators of π1Ck[S
1 ×D3], for i, j, l ∈

{1, 2, . . . , k}.



CHAPTER 4. BUDNEY–GABAI’S W3 INVARIANT AND COMPUTATIONS 73

For k = 3, the 5th rational homotopy group of C ′
3[S

1 × D3] ≃ (S1) × S1 ∨ S3 ×

(S1 ∨ S3 ∨ S3) × (S3)3 is generated by the Whitehead products of pairs of elements in

{tql .ωij for all i, j, l ∈ {1, 2, 3}, q ∈ Z} where t1, t2, t3 are generators of the fundamental

group and ωij : S
3 → C3[S

1 × D3] with the j-th point orbits around the i-th point. They

satisfy the following relations:

• ωii = 0, ωij = ωji for i ̸= j

• tl.ωij = ωij for l /∈ {i, j}

• tj.ωij = t−1
i .ωij

• tp.[f, g] = [tp.f, tp.g] for all f, g ∈ π3C3[S
1 ×D3]

• [ωij, ωlm] = 0 if {i, j} ∩ {i,m} = ∅

• [ωij, ωjl] = [ωjl, ωli] = [ωli, ωij]

Note that the factors (S3)3 contribute zero since π5S3 ∼= Z/2.

For [f ] ∈ π2Emb(I, S1 × D3) such that ev2(f) : S2 × C2[I] → C ′
2[S

1 × D3] is null

homotopic, one can define a map

ev3(f) : D
5 → C ′

3[S
1 ×D3]

with ∂D5 being sent to a fixed point, by attaching null homotopies along the 4 boundary

facets of C3[I] to the map

ev3(f) : D
2 × C3[I] → C ′

3[S
1 ×D3].

More generally, for all [f ] ∈ π2Emb(I, S1×D3), the restrictions of ev3(f) to the boundary

facets (after being closed up by attaching null homotopies along the 3 boundary edges of

each facet as in the second stage) are torsion since π4C ′
2[S

1 × D3] = π4(S
1 × D3 × S1 ×
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D3 × S3 × (S3)2) is finite. This means that we can define an element

1

m
ev3(mf) : D

5 → C ′
3[S

1 ×D3]

in π5C ′
3[S

1×D3]⊗Q where m is the least common multiple of the orders of the restrictions

to the boundary facets.

As before, attaching null homotopies along the boundary facets involves choices. When

m = 1, we have defined a map

ev3 : π2Emb(I, S1 ×D3; I0) → π5C
′
3[S

1 ×D3]⊗Q/{additional relations},

with the following additional relations being satisfied in the codomain:

• [tα2 .ω23, t
β
2 .ω23] = 0

• [tα1 .ω12, t
β
1 .ω12] = 0

• tα−β
1 t−β

3 + tβ1 t
β−α
3 = tα1 t

α−β
3 + tβ−α

1 t−α
3

for all α, β ∈ Z. See [3] and [4] for details of these relations. Composing with the scanning

map s gives an invariant

W3 : π0Diff(S
1 ×D3, ∂) → π5C

′
3[S

1 ×D3]⊗Q/{additional relations}.

concluding our construction. We denote the above relations by R. In particular, we can

deduce the following proposition from these relations.

Proposition 4.11 (Proposition 3.4 in [3]). The group π5C ′
3[S

1 ×D3]⊗Q/R is generated

by [tα2 .ω12, t
β
2 .ω23] = tα1 t

β
3 [ω12, ω23] for α, β ∈ Z.

We will denote this codomain by Λ. The last relation

tα−β
1 t−β

3 + tβ1 t
β−α
3 = tα1 t

α−β
3 + tβ−α

1 t−α
3
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is called the Hexagon relation and will be very important in the calculations of W3 as

we shall see in later sections.

4.3 A generalization of the Pontryagin-Thom construc-

tion

In this section, we describe a generalization of the Pontryagin-Thom construction to the

setting of oriented, framed cobordism groups and the stable homotopy groups of wedge

product of spheres. Although it seems to be widely known, the author is not aware of a

well-written source of this construction. This will be needed in the calculations of the W3

invariant in later sections of Chapter 4 and Chapter 5.

We first briefly recall the usual Pontryagin-Thom construction. Let [M,N ] denote the

homotopy classes of maps between M and N and [M,N ]∗ denote the homotopy classes

of based maps. For N simply-connected, e.g. N is a sphere, the forgetful map [M,N ]∗ →

[M,N ] is a bijection. Let Ωfr
m−q:M denote the group of framed cobordism classes of framed

submanifolds of M of codimension q. Given a manifold M of dimension m, a map f : M →

Sq, and two regular values p0 and p1 in Sq, the submanifolds f−1(p0) and f−1(p1) are

framed bordant by transporting the framings along a path.

The Pontryagin-Thom collapse map is defined as follows: given a framed subman-

ifold Y of codimension q in M , we take a tubular neighbourhood U ∼= Y × Rq of it and

send everything outside of this disk bundle to a base point, and inside the disk bundle we

project to Rq and take the quotient of the disk bundle that sends the boundary to the base

point too. This gives a map from M to Sq that is well defined up to framed cobordism.

Theorem 4.12 (Pontryagin-Thom). Given an m-manifold M , there is an isomorphism

[M,Sq] → Ωfr
m−q:M given by taking the preimage of a regular value with the Pontrjagin-

Thom collapse as an inverse.

For M = Sm, by the Freudenthal suspension theorem, we can take the colimit of the
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following sequence:

πmS
q → πm+1S

q+1 → · · · →

where the maps are induced by the suspension maps, and the colimit is the n-th stable

homotopy group of spheres, denoted by πs
n, where n = m − q. Therefore, the theorem

implies a one to one correspondence between the stable homotopy groups of spheres and

the bordism group Ωfr
n of n-manifolds in R∞ with a trivilization of the tangent bundle.

The smash product in πs
n corresponds to the Cartesian product in Ωfr

n .

We now consider the case when N = S1 ∨ Sn and M = Sm.

Theorem 4.13. There is an isomorphism [Sm, S1∨Sn] ∼= Θfr
N . Here Θfr

N is the set of finite

collections of cobordism classes of disjoint framed codimension-n submanifolds in S1∨Sn.

The map is given by taking the preimage of a regular value in Sn ⊂ S1∨Sn and the preimage

of a regular value in S1 ⊂ S1 ∨ Sn where the former gives rise to disjoint codimension-

n submanifolds in Sm and the latter gives rise to disjoint codimension-1 spheres in Sm

separating the codimension-n submanifolds. Further, each codimension-n submanifold is

assigned an integer ak, called the degree that is given by the signed number of codimension-1

spheres that separate it from the others.

Proof. Let the wedge point of S1∨S3 be y0. Given a map f : Sm → S1∨Sn, we take a point

y1 in the circle S1 ⊂ S1∨Sn that is not y0. The preimage f−1(y1) is a union of codimension-

1 (closed) oriented submanifolds in Sm \ y0 which we denote by Mk, so f−1(S1 ∨ Sn \ y1)

is a copy of Sm with a finite number of codimension-1 oriented submanifolds removed.

Note that since we can locally homotope f such that the restriction to f−1(S1 ⊂ S1 ∨ S3)

becomes smooth, then any point in S1 other than y0 is a regular point by dimension

reasons. In addition, take any regular point y in Sn ⊂ S1 ∨Sn. The preimage is a disjoint

union of codimension-n submanifolds Nl in Sm \ f−1(y0).

The neighbourhood of each Mk gets mapped in the following way: take the disk bundle

of its framing Mk ×D1 ⊂Mk ×R and project to the R factor, and take the quotient that

sends the boundary of D1 to the base point to get a map between circles. The manifolds

Nl are separated by Mk in the following way: collapsing the neighbourhoods Mk×D1 into
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{pt} × D1 gives a quotient of Sm as a wedge of L long strings at y0 with the other end

of each long string connected with an m-dimensional sphere, and each long string consists

a sequence of at least 1 arcs such that the total number of arcs K is the total number

of Mk, and L is the total number of Nl. Furthermore, each Nl is contained in an Sm in

this space. We record the number of arcs each long string contains. See Figure 4.3 for

an example when m = 2. Note that all of the circles and spheres are oriented, and the

orientations are recorded by the numbers in the figure. This gives the forward direction.

Up to homotopies of f , different choices of regular values lead to framed cobordisms

between the corresponding preimages by choosing paths between these choices. Similar to

the original Pontryagin-Thom construction, a homotopy between two maps gives a framed

cobordism.

Conversely, given a collection of disjoint representatives Mk of codimension n framed

submanifolds of Sm, each of which is assigned a degree Lk, we can choose a (closed)

tubular neighbourhood Uk
∼= Mk × Dn for each of them and choose a bigger tubular U ′

k

neighbourhood for each such that they are still disjoint. Then define a map f ′ : Sm →

S1 ∨ Sn as follows. In the tubular neighbourhoods Mk ×Dn, f ′ first projects onto the Dn

part and then sends 0 ∈ Dn to the antipodal point y′0 of y0 in Sn ⊂ S1∨Sn. The remaining

part of IntDn (which is an annulus) is then mapped to Sn \ {y0, y′0} by the identity map

between the annuli. It follows that ∂Dn is mapped to y0. Furthermore, the remaining

part of the larger tubular neighbourhoods U ′
k \ Uk

∼= Mk × Sn−1 × I is projected to I and

then the end points of I are assigned to y0 with IntI wrapping around the circle part Lk

times. Finally, the rest of Sn is sent to y0. This gives the backward direction. One checks

that they are inverses of each other.

Remark. Alternatively, one can lift a map f : Sm → S1 ∨ Sn to the universal cover of

S1 ∨ Sn which is R ∨∞ Sn and perform the above computations by taking preimages of

points in the various lifted Sn.

In this case, we have πn(S1 ∨ Sn) ∼= Z[t, t−1]. This can be seen by passing to the

universal cover. One way of representing the generators is as follows: given a polynomial
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Figure 4.3: A representation of the element 2t5 + 3t2.

Figure 4.4: The backward map for M = S2.

h = a0 + a1t
k1 + · · · + amt

km , squash Sn into a sequence of m + 1 copies of Sn (labeled

by Sn
i ) connected by m copies of arcs (labeled by Iki), and map Sn

i ⊂ S1 ∨ Sn to Sn by

a degree ai map. Further, the arcs Iki are mapped to S1 ⊂ S1 ∨ Sn by a degree ki map

(with endpoints being sent to y0).

Figure 4.3 and 4.4 give an example when m = n = 2. In this case everything can be

easily visualised. For n = 2, for such a map f , the preimage f−1(S1 ∨ Sn \ y1) is a copy

of S2 with n punctures. The preimage of any regular value in S2 gives m points in the

domain, each of which is separated from the rest by a circle. Conversely, given a collection

of points in S2 and corresponding indices, we take a disk around each of the points and

an annulus outside the disk. The resulting map is now easy to describe: the boundary

of disks are quotiented to the wedge point of S1 ∨ S2 and the annuli part (the dashed

part in Figure 4.4) is collapsed into an interval with endpoints being sent to y0 and the

interior naturally circles around S1. See Figure 4.4. Note that the paths in the domain S2

from the base point to each tubular neighbourhood are not necessary but just auxiliary:

everything outside of the tubular neighbourhoods get mapped to the wedge point y0.
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The above can be generalized to the case of (∨kS
1) ∨ (∨lS

n) by picking up a regular

point in each of the spheres (and circles) away from the wedge point and taking a preimage

to obtain collections of disjoint submanifolds up to the sloping point. In the following

sections, we will make use of the case when n = 3, k = 1, 2, 3 and l = 1, 2.

4.4 Computing the W3 invariant

In this section and Section 4.5, we discuss the strategy for computing the W3 invariant

W3 : π0Diff(S
1 ×D3, ∂) → π2Emb(I, S1 ×D3; I0) → Λ

Budney–Gabai proposed two different approaches in the calculations of the W3 invari-

ant of unknotted barbell diffeomorphisms of S1 ×D3. The first is to write the image of a

barbell diffeomorphism on the scanning map as a linear combination of certain fundamen-

tal classes they denote by G(p, q) in π2Emb(I, S1 × D3). Budney–Gabai (see Theorem

8.1 in [3]) provided a formula to calculate the invariant W3 of θk(v, w) (see Section 2.1)

using this approach. We will not discuss the first approach in this paper. The second

method, which is proposed in [4], is through intersection theory and the Pontryagin-Thom

construction. This approach is only completed in [4] for the calculations for the barbells

δk (see Theorem 3.1 in [4]), but not for other unknotted barbells in S1 ×D3. We aim to

complete the calculations for unknotted barbells in S1 ×D3 using this approach.

Our plan is outlined below. The scanning map ss0 depends on the choice of a fixed

point s0 ∈ S1. For a class [Φ] ∈ π0Diff(S
1 ×D3, ∂), the image ss0([Φ]) can be analyzed by

a case-by-case method by choosing a suitable representative Φ and looking at the image

Φ(s0 ×D3) in detail. For the scanning map, we will focus on its effects on the subgroup

generated by barbell diffeomorphisms of unknotted barbells in S1 × D3 introduced in

Section 2.1, this will be done in Section 4.5. For the second map

ev3 : π2Emb(I, S1 ×D3; I0) → Λ
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we will discuss a machinery that would potentially work for classes in π2Emb(I, S1×D3; I0)

other than the image of such barbell diffeomorphisms, though we will only go into the

calculations of barbell diffeomorphisms throughout. This will be in this section (Section

4.4).

In the rest of this section, we discuss ideas for calculating the map

ev3 : π2Emb(I, S1 ×D3; I0) → Λ.

For an element [f ] ∈ π2Emb(I, S1 × D3), we start by analyzing (the homotopy class

represented by) the map

ev2(f) : D
1 ×D1 × C2[I] → C2[S

1 ×D3] ≃ S1 × (S1 ∨ S3).

Budney–Gabai proposed a method of constructing cobordism classes of certain families of

disjoint, framed submanifolds that detect such maps as we shall disclose now. Let δ ∈ ∂D3

be a fixed unit direction. For i ∈ Z, we define the cohorizontal submanifold

tiCo21 = {(p1, p2) ∈ C2[R×D3] : ti.p2 − p1 = λδ for some λ > 0}.

This submanifold intersects the image of ti1.ω12 : S
3 → C2[S

1×D3] transversely at exactly

one point (cf. Lemma 4.10). Namely, suppose that we pick a representative of the lift

ti1.ω12 of ti1.ω12 to C2[R×D3] by shooting the first point from the base point say (0, 0) to

(i, 0) ∈ R×D3, and letting the second point loop around (0, 0), then the unique intersection

point between this image and tiCo21 is obtained by taking the halfline to the δ-direction

that starts from (i, 0). See Figure 4.5 for a 2-dimensional cartoon picture. The horizontal

rectangles in Figure 4.5 represent fundamental domains, and the solid red sphere (drawn

as a 2-sphere but aiming to represent a 3-sphere) loops around the point p1 and creates a

cohorizontal pair. The dotted red sphere represents the image of the second point under

the action of t6. The horizontal arrow represents the cohorizontal direction δ. Therefore,

we have the following.
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Figure 4.5: The cohorizontal submani-
fold t6Co21 in R×D3 detects t6.ω12.

Figure 4.6: The collinear submanifold
Col13,6 in R×D3 detects t3.ω12.

Lemma 4.14. The preimage of tiCo21 under the map ti1.ω12 : S
3 → C2[R × D3] is a

codimension-3 oriented submanifold, which in this case is a single point. For j ̸= i,

the preimage of tiCo21 under tj1.ω12 is empty. Therefore, we say that tiCo21 detects ti.ω12.

Thus, we can use cohorizontal submanifolds to detect the map f . In particular, we lift

it to C2[R×D3] and take the preimage of the cohorizontal submanifolds tiCo21 under this

lift. The preimage is given by a disjoint union of (signed) points for all i. Counting the

signed number of points gives the coefficient of tiCo21, and taking the sum gives [f ].

Next, we consider the third stage map ev3(f) ∈ Λ. By Proposition 4.11, such a class is

a linear combination of Whitehead brackets [tα2 .ω12, t
β
2 .ω23] = tα1 t

β
3 [ω12, ω23] with coefficients

being detected by the following two collections of collinear submanifolds:

Col1α,β = {(p1, p2, p3) ∈ C3[S1 ×D3] : (p2, t
α.p1, t

β.p3) lie on a straight line in R×D3 in order}

Col3α,β = {(p1, p2, p3) ∈ C3[S1 ×D3] : (tα.p1, t
β.p3, p2) lie on a straight line in R×D3 in order}.

See Figure 4.6 for a picture of Col1α,β with α = 3 and β = 6.
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The universal cover C3[S1 ×D3] can be interpreted as a subspace of C3[R×D3] in the

sense that it contains points of the latter space with disjoint Z-orbits (also see Figure 9 of

[3] for details).

Lemma 4.15. The two collections of collinear submanifolds Col1α,β and Col3α,β are disjoint.

If we consider tα2 .ω12 and tβ2 .ω23 as elements of π3C3[S
1×D3] by taking their images under

the inclusion maps C2[S
1 ×D3] → C3[S

1 ×D3] given by

Inc12 : (p1, p2) → (p1, p2, p0)

Inc23 : (p2, p3) → (p0, p2, p3)

for some p0 ∈ S1 × D3 which we can choose to be distinct to the other coordinates, then

the former collinear submanifold Col1α,β detects tα2 .ω12 and the latter collinear submanifold

Col3α,β detects tβ2 .ω23 in the sense that the (transverse) intersections between Col1α,β and

tα2 .ω12 (and Col3α,β and tβ2 .ω23) are exactly one point, and for α′ ̸= α and β′ ̸= β, the

(transverse) intersections between Col1α,β and tα′
2 .ω12 (and Col3α,β and tβ

′

2 .ω23) are zero.

In addition, the preimage of the pair (Col1α,β,Col
3
α,β) under (the lift of) the Whitehead

product [tα2 .ω12, t
β
2 .ω23] is a 2-dimensional Hopf link with linking number 1 in S5. Therefore,

we say that the pair (Col1α,β,Col
3
α,β) detects the Whitehead product [tα2 .ω12, t

β
2 .ω23].

Proof. The property of being disjoint follows directly from the orderings of the triples.

We show that the former collinear submanifold Col1α,β detects tα2 .ω12. The latter one

can be argued in a similar way.

By choosing an appropriate representative of tα2 .ω12, we can arrange its image to be

p1 × (γ ∨ S)× p0 where p1 is a fixed point in 0×D3 ⊂ R×D3, and γ is a null homotopic

path from a fixed point p2 ∈ 0 × D3 ⊂ R × D3 to a 3-sphere S that loops around

tα1 .p1 ∈ α × D3 ⊂ R × D3. Again, see Figure 4.6 for a picture of Col1α,β with α = 3 and

β = 6.

Now, we can deduce that the intersection between this image and the submanifold

Col1α,β consists of a unique point. Namely, tβ3 .p0 and tα1 .p1 determines a straight line which
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intersects S at a unique point.

To see the last statement, we recall that C3[S
1 ×D3] is homotopy equivalent to S1 ×

(S1 ∨ S3
12) × (S1 ∨ S3

13 ∨ S3
23). The elements ω12 and ω23 represent the homotopy classes

of the inclusion maps of the 3-spheres S3
12 and S3

23 respectively. The actions of tα2 and

tβ2 reflect the actions of the second and third circles in the wedge. Fixing a base point

appropriately, we can take the Whitehead product [tα2 .ω12, t
β
2 .ω23] by composing the wedge

map with the attaching map of the top cell of S3 × S3:

S5 → S3 ∨ S3 tα2 .ω12∨tβ2 .ω23−−−−−−−−→ C3[S
1 ×D3].

The preimage of the pair (Col1α,β,Col
3
α,β) under this composition is the same as the preim-

age of two points: say x1 in S3
12 and x2 in S3

23 that are distinct from the wedge points.

Since the attaching map

S5 ∼= ∂D6 ∼= ∂(D3 ×D3) ∼= ∂D3 ×D3 ∪D3 × ∂D3 → S3 ∨ S3

is given by (ψ1×ψ2∪ψ2×ψ1), where ψi is the attaching map of the 3-cell the i-th 3-sphere

and ψi is the corresponding characteristic map, one concludes that the preimage of the

two points x1 and x2 is a disjoint union of two 2-spheres with linking number 1.

The preimage of the pair (Col1α,β,Col
3
α,β) under (the lift of) ev3(f) is a disjoint union

of pairs of codimension 3 (thus dimension 2) oriented submanifolds in S5, and the linking

numbers of these pairs determines the coefficient of [tα2 .ω12, t
β
2 .ω23] in the linear combination

representing ev3(f).

To end this section, we state a lemma that helps us simplify calculations involving

collinear submanifolds by reducing the above linking number computation strategy to

linking number computations that only involve cohorizontal submanifolds.

Lemma 4.16 ([3]). Given a smooth map f : S5 → C3[S
1×D3], we can assume generically

that it has no cohorizontal triples. As before, we fix δ ∈ ∂D3. Define the cohorizontal
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manifold for k, j ∈ {1, 2, 3}

tiCokj = {(p1, p2, p3) ∈ C3[S
1 ×D3] : ti.pj − pk = λδ for some λ > 0}.

In other words, we allow one of the three coordinates to be free with the other two being

cohorizontal. Then the linking numbers of the preimage of the pair (Col1α,β,Col
3
α,β) under

the lift of f to the universal cover f : S5 → C3[S1 ×D3] are the same as the linking

numbers of the preimage of the pair (tαCo12 − tα−βCo13, tβ−αCo31 − tβCo32) under f for all

α, β ∈ Z.

This lemma allows one to perform the calculations at the third stage entirely by using

the idea of cohorizontal submanifolds rather than running into the difficulties of visualizing

collinear triples.

We will present some ideas behind the proof of this lemma in Section 5.2 in a more

general setting.

4.5 W3 invariant of unknotted barbells in S1 ×D3

As discussed in Chapter 2, unknotted barbells in S1 ×D3 are determined by elements of

the free group of three generators F3[νR, νB, t] where νR and νB are meridian circles of the

cuff spheres and t represents the circle factor. In fact, the operation of taking induced

barbells from elements of F3[νR, νB, t] factors through the quotient map

F3[νR, νB, t] → ⟨νB⟩\F3/⟨νR⟩

that kills words starting with powers of νB or ending with powers of νR, because if the

bar starts from a cuff sphere and immediately links this sphere, then these linkings can be

undone through an isotopy that drags this cuff away from the bar.

Recall from Section 2.1 the special classes of barbells defined by Budney–Gabai denoted

by θk(v, w), with k ∈ Z+, (v)i, (w)j ∈ Zk−1. These are specified by a positive integer k

and two vectors v and w ∈ Zk−1. Starting with two disjoint unknotted 2-spheres B and
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Figure 4.7: The embedded barbell δ′10 = θ10((0, . . . , 0, 1, 0), (0, . . . , 0, 1, 0)).

R (one in blue and one in red) embedded in S1 ×D3, we need to specify a bar connecting

them. The positive number k indicates the number of times the bar wraps around the

circle direction going from R to B. Each entry of the two vectors indicates the signed

number of times each vertical strand of the bar wraps around the two spheres (refer to

Figures 2.5 and 4.7 for examples). In this section, we study the W3 invariants for barbells

θk(v, w), using the ideas described in the previous section, and describe their properties.

We also provide a method for calculating W3 for general unknotted barbells in S1 ×D3.

As in Chapter 2, we denote the induced barbell diffeomorphism from an embedded

barbell B by ΦB. However, when there is no ambiguity, we sometimes do not distinguish

B and ΦB.

We first state an important calculation done by Budney–Gabai in [3].

Theorem 4.17 (Section 3 and Figure 10 of [4]). The W3 invariants of barbell diffeomor-

phisms induced from

δk = θk((0, . . . , 1, 0), (0, . . . , 0, 1))

for k ≥ 4 are nonzero and linearly independent. Therefore, the induced barbell diffeomor-

phisms Φδk from δk are isotopically nontrivial and linearly independent for k ≥ 4.
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Figure 4.8: The type 1 intersection for point 1.

Let δ′k denote the barbell in S1×D3 whose defining vectors are v = w = (0, 0, . . . , 0, 1, 0)

(cf. Chapter 2.1), i.e.

δ′k := θk((0, 0, . . . , 0, 1, 0), (0, 0, . . . , 0, 1, 0)).

See Figure 4.7 (which is a repetition of Figure 2.5 for the case k = 10, with more annota-

tions which we will explain below). We calculate the W3 invariant for this barbell.

The first step is analyzing the image ss0([Φδ′k
]) under the scanning map ss0 , where

Φδ′k
is the induced barbell diffeomorphism from δ′k. We will need a trick from [4]. By

assumption, δ′k intersects the 3-ball {s0} × D3 transversely at the bar at k − 1 isolated

points but not at the cuff spheres. At each of the k − 1 intersection points on the bar,

following the approach in [3, 4] (in particular, see Proposition 6.3 of [3] and Proposition

2.2 of [4]), we twist the corresponding embedded k − 1 arcs (drawn as short arcs in the

horizontal plane in Figure 4.7) controlled by the two parameter families (blue and red)

artificially into the shape shown in Figure 4.8 (ignoring the colored arcs on sides of the

colored boxes for now). Virtually, there are five strands in Figure 4.8, two in the blue box,

two in the red box, and one in the middle.

Lemma 4.18. ([3, 4]) The barbell diffeomorphism Φδ′k
is isotopic to a diffeomorphism
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whose restriction to the 3-ball {s0} ×D3 has the following effects on each twisted arc (as

in Figure 4.8) from each of the k − 1 intersection points: it grabs the two strands in the

blue box on the left side, following the bar (as the dotted blue arrow indicated in Figure 4.7

for the first interval) until getting to the blue cuff, loops around the blue cuff sphere and

comes back, and at the same time, grabs the two strands in the red box on the right side,

following the bar (as the dotted red arrow indicated in Figure 4.7 for the first interval)

until getting to the red cuff, loops around the red cuff sphere and comes back.

Therefore, up to translating the endpoints to coincide with the endpoints I0 as discussed

in the definition of ss0 in Section 4.2, the image ss0([Φδ′k
]) is given by a sum denoted by

[δ′k]1 + [δ′k]2 + · · ·+ [δ′k]k−1

of k− 1 2-parameter families of embedded intervals, each of which is given by twisting one

of the k − 1 arcs to the shape of Figure 4.8, following the above description, and finally

untwisting.

We now use Lemma 4.18 to detect the second stage map

ev2(ss0([Φδ′k
])) = ev2(ss0([Φδ′k

]1) + · · ·+ ev2(ss0([Φδ′k
]k−1).

Each term ev2(ss0([Φδ′k
]i), i = 1, 2, . . . , k − 1 is a map

D1 ×D1 × C2[I] → C2[S
1 ×D3]

and we will apply Lemma 4.14 to each of these separately. Suppose that we fix the direction

pointing horizontally to the left side being our choice of the cohorizontal direction δ, then

the points contained in the cohorizontal submanifolds

tiCo21 = {(p1, p2) ∈ C2[S1 ×D3] : ti.p2 − p1 = λδ for λ > 0}

happen near the the cuffs when the strands of the bar inside the blue and red boxes (see
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Figure 4.9: The type 2 intersection for
points 2 to k − 2.

Figure 4.10: The type 3 intersection for
point k − 1.

Figure 4.8) get dragged to the farthest point respectively, i.e. looping around the blue and

red cuffs in Figure 4.7. At these moments, the vertical strands inside the red and blue

boxes create cohorizontal pairs.

In fact, if we assume that the bar links each of the two cuff spheres for only once, and

assume that starting from B, it links the red cuff R first, then the blue cuff B, then k− 1

intersection points are classified into 3 types, fitting in the following lemma.

Lemma 4.19. Let ei be the vector whose only non-zero entry is the i-th entry and is 1.

Assume that a barbell θk(ei, ej) in S1 ×D3, k ≥ 1 with i+ j ≥ k is isotoped to a position

such that the cuff spheres are disjoint from {s0} ×D3 ⊂ S1 ×D3 for some point s0 ∈ S1,

and the bar intersects {s0}×D3 at k−1 points transversely, then these intersection points

are classified into three types, based on the patterns of the cohorizontal pairs shown in

Figures 4.8, 4.9 and 4.10. The colored arcs on the sides of the blue and red boxes indicate

intersections with the spanning disks of the two cuff spheres, i.e. the natural 3-balls they

bound. Furthermore, the barbell θk(ei, ej) produces (k − i − 1) type 1 intersection points,

(−k + j + i+ 1) type 2 intersection points and (k − j − 1) type 3 intersection points.

Proof. For an intersection point (that is contained in an interval in {s0} × D3) arising

from θk(ei, ej), the corresponding barbell diffeomorphism creates intersections between

this interval and the spanning disks of the two unknotted cuff spheres, i.e. the natural
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3-ball they bound in S1 × D3. Since i + j ≥ k, the blue sphere is on the left of the red

sphere, meaning that the nearest intersections that appear on the sphere of one colour are

always of the other colour. In fact, one can check point by point that there are only three

possible patterns of such intersections as shown in Figures 4.8, 4.9 and 4.10.

Since the nonzero coordinate of the first vector ei is at the i-th position, it follows

that the blue cuff links the i-th vertical strand, counting from right to left. This indicates

that counting from the left to right, the first (k − i − 1) intersection points are of type

1. Similarly, the last (k − j − 1) intersection points are of type 3 since ej indicates that

the red cuff links the j-th vertical strand, counting from right to left. The remaining

(k− 1)− (k− i− 1)− (k− j − 1) = (−k+ j + i+ 1) intersection points in the middle are

of type 2.

We now analyze point 1 of δ′k = θk((0, . . . , 0, 1, 0), (0, . . . , 0, 1, 0)) = θk(ek−2, ek−2) which

is a type 1 point. The two blue and two red arcs in Figure 4.8 happen at the moment

when the farthest point is reached for both red and blue cuff spheres. We parameterize

the interval by [0, 13]. The two sets of strands contained in the red and blue boxes are

looping around the red and blue circles, and each creates 8 cohorizontal points (so 16 in

total). In this type 1 case, there are no arcs on the red box side because the strands do not

cross the spanning disks of the cuff spheres along the way of reaching the farthest point

at the red cuff sphere.

The next lemma describes cohorizontal points arising from this type 1 intersection

point.

Lemma 4.20. The preimage of the cohorizontal points arising from the first intersection

point of δ′k are as shown in Figure 4.11. The square on the left hand side is parameterized

by [0, 1] × [0, 1], and the axes of the triangle picture are parameterized by [0, 13]. The

cohorizontal points appearing at the centre of the square are listed below.
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Figure 4.11: The preimage of the cohorizontal manifolds for the second stage map D1 ×
D1 × C2[I] → C2[S

1 ×D3].

(1,3) (3,7) (2,4) (2,10)

(1,5) (5,7) (4,6) (6,10)

(1,9) (7,9) (4,8) (8,10)

(1,11) (7,11) (4,12) (10,12).

Proof. Figure 4.11 is a Budney–Gabai style picture as Figures 12 and 13 of [4] but we

interpret it in a slightly different way. In the square, there is a cross of two intervals, one

in blue and one in red. Cohorizontal points only appear in these two intervals. The two

axes of the square are annotated as red and blue, meaning the former one controls the

two strands in the red box, and the latter one controls the two strands in the blue box, in

Figure 4.8.

At the center of the square they intersect. This point corresponds to the moment when

both of the two sets of strands contained in the red and blue boxes are at the farthest

position, looping around the two cuff spheres. At this point, both of the red and blue dots

in the triangle picture are present, corresponding to the double points mentioned in the

paragraph before this lemma.

When fixing the blue coordinate at 0.5 and freely moving the red coordinate, i.e. on

the blue interval in the square, the blue cohorizontal points in the triangle picture stay.
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The 4 pairs of red cohorizontal points

{(1, 3), (1, 5)}, {(1, 9), (1, 11)}, {(3, 7), (5, 7)}, {(7, 9), (7, 11)}

gradually come together as we approache the two end points of the blue interval, tracing

out a circle for each pair. This is shown as intervals connecting each pair in the triangle

picture. After passing these two endpoints, no cohorizontal points are present. To see

this, imagine that we fix the two strands that come from the blue box, keeping them at

the farthest position, and move the two strands in the red box back to the initial position,

then when these two strands cross the vertical strand that the red cuff R links, the 4 pairs

of red cohorizontal points merge together in pairs, and then disappear.

Similarly, varying the blue coordinate along the red interval traces out 4 circles of blue

cohorizontal points corresponding to the pairs

{(2, 4), (2, 10)}, {(4, 6), (4, 8)}, {(6, 10), (8, 10)}, {(4, 12), (10, 12)}.

Pulling back the orientations of the normal bundles of the cohorizontal submanifolds

tiCo21 (codimension 3) along ev2(ss0([Φδ′k
]1)) gives orientations to the 8 circles. Now observe

that this disjoint union of unlinked codimension 3 (1-dimensional) oriented submanifolds

in D4 is null-cobordant. This implies that the second stage map ev2(ss0([Φδ′k
]1)) is null

homotopic.

Next, we move forward to detect the third stage map

ev3(ss0([Φδ′k
]1)) : D

1 ×D1 × C3[I] → C ′
3[S

1 ×D3]

as an element in π5C ′
3[S

1 ×D3]. By Lemma 4.16, we need to understand the preimage of

the following pair:

(tαCo12 − tα−βCo13, t
β−αCo31 − tβCo32).
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for each α, β ∈ Z. As defined in Lemma 4.16, for each of the cohorizontal submanifolds in

the above pair, one of the three coordinates is free to move with the remaining two being

cohorizontal (remember that we assume no cohorizontal triples as in Lemma 4.16). This

implies that each cohorizontal submanifold will only appear on two of the three facets of

C3[I].

In fact, these are represented by a disjoint union of 2-spheres embedded in D1 ×D1 ×

C3[I]. We draw C3[I] as a tetrahedron with coordinates t1, t2 and t3. We follow the

convention in [4] and draw a tetrahedron as a triangle with the t2 coordinate pointing

out of the page. We omit the square D1 × D1 in our pictures as it will stay the same

as the square in Figure 4.11. As outlined in Example 3.6 of [3], the third stage pictures

are obtained from the second stage pictures by connecting the cohorizontal points in the

preimage of the same cohorizontal submanifold at the same position on the two facets

that are involved, by an interior arc, and closing the tetrahedron by attaching the null

homotopies to the facets. The interior arc corresponds to varying the free coordinate (cf.

Lemma 4.16).

Again, following the convention in [4], we draw the preimage in pairs with different

colours (that may produce non-trivial linking numbers) as in Figures 4.12, 4.13, 4.14,

4.15, 4.16 and 4.17. These pictures show cohorizontal points at the centre of the square,

i.e. when we are at the point (0, 0) ∈ D1 ×D1. Along the boundary facets, we attach null

homotopies of the second stage map with the convention that we close the red spheres first

and the blue spheres afterwards. In our pictures, this gives rise to a collection of circles,

and when we vary in the two directions of D1×D1, these circles traces out a disjoint union

of 2-spheres. One can refer to the construction of Figures 16 and 17 of [4] for comparison.

Following the approach in [4], we pull back the orientation of the normal bundles

of the cohorizontal submanifolds (codimension 3) to give orientations to the 2-spheres

(codimension 3). We now apply Lemma 4.16. For (the preimage of) each cohorizontal

submanifold in the pair

(tαCo12 − tα−βCo13, t
β−αCo31 − tβCo32),
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the power of t is determined by the number of times one needs to travel (along the bar)

along the circle direction of S1 × D3 from one point of a cohorizontal pair to the other.

We then read off the linking numbers from Figures 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17

and take the sum to get the following polynomial:

ev3(ss0([Φδ′k
]1)) = −tk−2

1 tk−2
3 − tk−2

1 tk−2
3 + t2−k

1 t03 + t01t
2−k
3 .

For example, in Figure 4.12, there is only one linking pair (drawn in the middle of the

picture). It takes k − 2 times along the circle factor to go from the blue cuff sphere,

along the bar, to where the cohorizontal pairs occur near the blue cuff (for k = 10, this

is near strand 8, counting from right to left on the top in Figure 4.7). Thus we have

α = k − 2. Similarly, we have β − α = 2− k. This implies that β = 0, so this picture

contributes ±t2−k
1 t03 with the sign being determined by the orientations of this linking

pair. To determine the orientations, note that the null-homotopy denoted by the blue arc

attached to the t2 = t3 facet is determined by the pair of cohorizontal points (4, 6) and

(4, 8) which admit negative and a positive normal bundle orientations respectively, with

reference to the pull-back orientation of the normal bundle of tαCo12 in C3[S
1 × D3] and

with the direction pointing horizontally to the left side being our choice of the cohorizontal

direction δ, and thus is oriented by the direction pointing from (4, 6) to (4, 8). Similarly,

the red arc representing a null-homotopy attached to the same t2 = t3 facet is oriented by

pointing from (3, 7) to (5, 7), leading to a positive linking. Therefore, Figure 4.7 gives rise

to the monomial t2−k
1 t03. The contributions from the remaining figures can be calculated

in this manner as well in the same way.

To finish the calculation of W3([Φδ′k
]), we need to calculate the contributions from the

remaining k − 3 type 2 intersection points and the last type 3 intersection point. We will

explain that this essentially follows from the following result by [4] (in particular, page 26

of [4]).

Lemma 4.21. ([4]) The barbell δk = θk(ek−1, ek−2) with k ≥ 4 has one type 3 intersection
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Figure 4.12: (tαCo12,tβ−αCo31), con-
tributes t2−k

1 t03.
Figure 4.13: (tαCo12,tβ−αCo31), con-
tributes 0.

Figure 4.14: (tα−βCo13,tβCo
3
2), contributes

t01t
2−k
3 . Figure 4.15: (tα−βCo13,tβCo

3
2), contributes 0.
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Figure 4.16: (tαCo12,tβCo
3
2), contributes

−tk−2
1 tk−2

3 .
Figure 4.17: (tαCo12,tβCo

3
2), contributes

−tk−2
1 tk−2

3 .

point that contributes

−t2−k
1 t1−k

3 − t2−k
1 t1−k

3 − t2−k
1 t13 + t1−k

1 t−1
3 + tk−1

1 t13 + t11t
k−1
3 + t−1

1 t1−k
3 − t11t

2−k
3

and k − 2 type 2 intersection points, each of which contributes

t−1
1 t1−k

3 + t1−k
1 t−1

3 − t2−k
1 t13 − t11t

2−k
3 .

Lemma 4.21 concerns the barbell δk (see Figure 4.18) which has no type 1 but only

type 2 and type 3 intersection points. Although δk and δ′k are different barbells, by Lemma

4.19, the type 2 intersection points of both barbells can be calculated following the same

process, but with modifications to the exponents of t1 and t3 terms based on the number

of times one needs to travel (along the bar) along the circle direction of S1 ×D3 from one

point of a cohorizontal pair to the other, as mentioned before. For example, in the top left

picture of Figure 16 of [4], the linking number of the preimage of the pair (tαCo12,tβ−αCo31)

was calculated. We can use the same picture to calculate the same linking number for δ′k

instead of δk by changing the exponents of t by changing 1−k to 2−k, and k−1 to k−2,

leading to −t2−k
1 t03 rather than −t2−k

1 t13 in [4].

Therefore, using Figures 16 and 17 of [4], we can calculateW3 of δ′k in full. In particular,
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Figure 4.18: The embedded barbell δ10.

one can verify that the k−3 type 2 intersection points contribute 0 (more to discuss below

in Lemma 4.23) and the last intersection point contributes:

t01t
k−2
3 + tk−2

1 t03 − t2−k
1 t2−k

3 − t2−k
1 t2−k

3 .

Again, changes to the t powers need to be made to the formulas in [4] based on the number

of times a cohorizontal point needs to travel (along the bar) along the circle direction to

get to the cuff sphere with the same colour (with signs accounted by the pulled back

orientations as in [4]). Taking the sum of the above two polynomials and applying the

Hexagon relation twice, we deduce that W3(δ
′
k) = 0 for k ≥ 3.

Proposition 4.22. For k ≥ 3, we have

W3(δ
′
k) = −tk−2

1 tk−2
3 − tk−2

1 tk−2
3 + t2−k

1 t03 + t01t
2−k
3 + t01t

k−2
3 + tk−2

1 t03 − t2−k
1 t2−k

3 − t2−k
1 t2−k

3

= −(tk−2
1 tk−2

3 + tk−2
1 tk−2

3 )− (t2−k
1 t2−k

3 + t2−k
1 t2−k

3 ) + (t2−k
1 t03 + t01t

k−2
3 ) + (t01t

2−k
3 ++tk−2

1 t03)

= 0

by applying the Hexagon relation (see the discussion before Proposition 4.11).

More generally, by Lemma 4.19, we can write down a generalised formula for calculating
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the W3 invariant of any θk(ei, ej) with i + j ≥ k since the shapes of the triangle and

tetrahedron pictures we presented (together with Figures 16 and 17 presented in Section

3 of [4]) remain unchanged. For θk(ei, ej) with 1 ≤ i ≤ j ≤ k − 1 and k ≥ 3, if we use

the convention that ei controls the position of the red cuff and ej controls the position

of the blue cuff, then the exponents α, β, α − β, β − α of t in each of the cohorizontal

submanifolds in the pair

(tαCo12 − tα−βCo13, t
β−αCo31 − tβCo32),

can be described in terms of i and j (via colour constituents as proposed on p.26 of [4]):

±i for the red constituent part and ±j for the blue constituent part.

Therefore, we have the following theorem.

Theorem 4.23. For k ≥ 3, the polynomial we obtain from a type 1 intersection from

θk(ei, ej) with i+ j ≥ k is

−tj1ti3 − ti1t
j
3 + t−i

1 t
j−i
3 + tj−i

1 t−i
3 .

Based on Budney–Gabai’s calculations, we also have the formula for a type 2 intersection

point:

−t−j
1 ti−j

3 + t−i
1 t

j−i
3 + tj−i

1 t−i
3 − ti−j

1 t−j
3

and for a type 3 intersection point:

−t−j
1 t−i

3 − t−i
1 t

−j
3 − t−j

1 ti−j
3 + t−i

1 t
j−i
3 + ti1t

i−j
3 + ti−j

1 ti3 + tj−i
1 t−i

3 − ti−j
1 t−j

3 .

Combining Lemma 4.19 and Theorem 4.23 allows us to write down the W3 invariant

for any θk(ei, ej) with k ≥ 3 and i + j ≥ k. For example, one can verify that when

i = j = k − 1,

W3(Φδ′k
) = W3(Φθk(ek−1,ek−1)) = 0

using Theorem 4.23.
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We mentioned in the beginning of Section 4.4 that Budney–Gabai discovered an alter-

native method of calculating the W3 invariant for θk(ei, ej) for all possible i and j in [3].

In particular, they produced a formula for θk(ei, ej) in terms of their fundamental classes

G(p, q) ∈ π2Emb(I, S1 ×D3):

[θk(ei, ej)] = (k − i− 1)(D(−j, i)−D(i− j,−i))

+ (k − j − 1)(D(i,−j)−D(i− j, j)) + (i+ j + 1− k)D(i,−j)

for k ≥ 4 where D(i, j) = −G(j,−i)+G(−j, i)−G(i,−j)+G(−i, j), and they calculated

that W3(G(i, j)) = ti−j
1 t−j

3 . See Example 3.6 of [3]. One can verify that for i+ j ≥ k, our

formula in Theorem 4.23 coincides with their formula. For example,

W3(D(−j, i)−D(i− j,−i))

= (−ti−j
1 t−j

3 + tj−i
1 tj3 − ti−j

1 ti3 + tj−i
1 t−i

3 )− (−t−j
1 ti−j

3 + tj1t
j−i
3 − t−j

1 t−i
3 + tj1t

i
3)

= ti1t
j
3 − t−j

1 t−i
3 + t−i

1 t
j−i
3 + ti−j

1 tj3

= −tj1ti3 − ti1t
j
3 + t−i

1 t
j−i
3 + tj−i

1 t−i
3

by the Hexagon relation (cf. the end of Section 4.2) which indicates that the two formulae

for a type 1 intersection point coincide.

Remark. So far we have calculated W3 of θk(ei, ej) with i+ j ≥ k. To deal with θk(ei, ej)

with j ≤ k− 1− i (see Figure 4.19) using the method we discussed in this Chapter, there

are three more types of intersection points that need to be considered. These are barbells

such that there is no “overlap” between the two cuff spheres. In Figure 4.19, if we use

the same scanning disk as before, then points on the left of the red cuff (including the

one just below it) belong to type 4, points on the right of the blue cuff (including the one

just below it) belong to type 6, and points in between the two cuff spheres belong to type

5. The scanning pictures of these are shown in Figure 4.20. Computing these types will

improve Lemma 4.19 and Theorem 4.23. We may return to this point in future research.

We now discuss some properties of W3(θk(v, w)). The following lemma is partly a
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Figure 4.19: θk(ei, ej) with i+ j < k.

Figure 4.20: The extra three points of intersection points for θk(ei, ej) with i+ j < k.
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restatement of Corollary 7.18 in [3] (which is phrased in terms of certain fundamental

classes G(p, q) in π2Emb(I, S1 ×D3) mentioned above) but in a different context and can

be checked using Theorem 4.23 together with the Hexagon relation.

Lemma 4.24. For k > 0, and suppose i+ j ≥ k, we have

W3(θk(ei, ej)) = −W3(θk(ej, ei)).

Proof. By Theorem 4.23, we have

W3(θk(ei, ej)) =

(k − i− 1)(−tj1ti3 − ti1t
j
3 + t−i

1 t
j−i
3 + tj−i

1 t−i
3 )+

(−k + j + i− 1)(−t−j
1 ti−j

3 + t−i
1 t

j−i
3 + tj−i

1 t−i
3 − ti−j

1 t−j
3 )+

(k − j − 1)(−t−j
1 t−i

3 − t−i
1 t

−j
3 − t−j

1 ti−j
3 + t−i

1 t
j−i
3 + ti1t

i−j
3 + ti−j

1 ti3 + tj−i
1 t−i

3 − ti−j
1 t−j

3 )

coming from the three types of intersection points. Note that the contribution of a type

2 intersection point is itself anti-symmetric. We show that the contributions of type 1

intersection points of W3(θk(ei, ej)) cancel with the contributions of type 3 intersection

points of W3(θk(ej, ei)):

(k − i− 1)(−tj1ti3 − ti1t
j
3 + t−i

1 t
j−i
3 + tj−i

1 t−i
3 )+

(k − i− 1)(−t−i
1 t

−j
3 − t−j

1 t−i
3 − t−i

1 t
j−i
3 + t−j

1 ti−j
3 + tj1t

j−i
3 + tj−i

1 tj3 + ti−j
1 t−j

3 − tj−i
1 t−i

3 )

= (k − i− 1)(−(t−i
1 t

−j
3 + tj1t

i
3)− (t−j

1 t−i
3 + ti1t

j
3) + (t−j

1 ti−j
3 + tj−i

1 tj3) + (tj1t
j−i
3 + ti−j

1 t−j
3 ))

= (k − i− 1)(−(t−i
1 t

−j
3 + tj1t

i
3)− (ri−j

1 t−j
3 + tj1t

j−i
3 ) + (t−j

1 ti−j
3 + tj−i

1 tj3) + (tj1t
j−i
3 + ti−j

1 t−j
3 ))

= 0.

Similarly, the contributions of type 3 intersection points of W3(θk(ei, ej)) cancels with the

contributions of type 1 intersection points of W3(θk(ej, ei)).

Remark. In fact, there is a direct way of proving Lemma 4.24 for all 1 ≤ i, j ≤ k − 1.

We shrink θk(ei, ej) such that it is embedded in a smaller (4-dimensional) solid torus in
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Figure 4.21: Anti-symmetric relation of θk(ei, ej).

S1×D3. Let ψ denote the rotation of this smaller solid torus in S1×D3 by π. See Figure

4.21 for a 3-dimensional picture. Now if we conjugate Φθk(ei,ej) by ψ, the claim is we get

Φ−1
θk(ej ,ei)

. In other words, we have

ψΦ−1
θk(ej ,ei)

ψ−1 = Φθk(ei,ej).

To see this, note that the image ψ(θk(ei, ej)) is equal to θk(ej, ei) with the role of the two

cuff spheres switched, and this switch corresponds to taking the inverse of the induced

barbell diffeomorphism. But now since π0Diff(S1 × D3, ∂) is abelian, we get exactly the

antisymmetric relation we want.

The following lemma is a key observation for calculating the W3 invariant of θk(v, w).

Lemma 4.25. The W3 invariant of θk(v, w) satisfies

W3(θk(v, w)) = ΣviwjW3(θk(ei, ej))

Proof. The idea is that we can analyze each set of cohorizontal points that arises from

one of the possible pairs of vertical strands (one going through the red cuff and one going

through the blue cuff) separately and take the sum. We now elaborate on this.

By isotoping θk(v, w) if necessary, we saw that the W3 invariant is determined by the



CHAPTER 4. BUDNEY–GABAI’S W3 INVARIANT AND COMPUTATIONS 102

k − 1 intersections of the bar with the 3-ball s0 ×D3. First, note that

W3(θk(aei, ej)) = aW3(θk(ei, ej))

for a ∈ Z where a indicates that the blue cuff B wraps around the i-th strand a times,

counting from right to left. This is because θk(aei, ej) produces a parallel copies of the 8

cohorizontal spheres, counting with a sign rather than only 8 cohorizontal spheres, near

the blue cuff sphere for θk(ei, ej). Similarly, we have

W3(θk(ei, bej)) = bW3(θk(ei, ej)).

Next, if for 1 ≤ i, j ≤ k, we let eij be the vector with all entries 0 except the i-th and

j-th place being 1, then we have

W3(θk(eij, el)) = W3(θk(ei, el)) +W3(θk(ej, el)).

To see this, we observe that for each of the k − 1 intersection points, θk(eij, el) has blue

cohorizontal points near both the i-th strand and the j-th strand, counting from right to

left. Each of these two sets of cohorizontal points pairs with the red cohorizontal points

(near the l-th strand, counting from left to right) separately, precisely leading to the

cohorizontal points of θk(ei, el) and θk(ej, el). Similarly, we have

W3(θk(el, eij)) = W3(θk(el, ei)) +W3(θk(el, ej)).

More generally, we observe that

W3(θk(aei + bej, cek + del) = acW3(ei, ek) + adW3(ei, el) + bcW3(ej, ek) + bdW3(ej, el).

for a, b, c, d ∈ Z since the cohorizontal points that arise from this barbell can be analysed

separately in pairs in a similar way, leading to above combination. Now, the theorem

follows from the combination of the above.
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Essentially, Budney–Gabai proved the same result in a slightly different context (by

directly homotoping ss0(θk(v, w)) into a sum of their fundamental classes). See Theorem

8.1 of [3]. In the proof of Lemma 4.25, we break up the W3 invariant of θk(v, w) into a

sum of the W3 of a set of “sub-barbells” θk(ei, ej) (where i = j is allowed), each of which

gives a parallel copy of a set of tetrahedron pictures.

More generally, any unknotted barbell in S1×D3 represented by a word in ⟨νR⟩\F3/⟨νB⟩

can be calculated in a very similar way. We first observe the following lemma.

Lemma 4.26. Let B be an unknotted barbell in S1 ×D3 represented by an element

νi1B t
j1νk1R · · · νinB t

jnνknR

in ⟨νR⟩\F3/⟨νB⟩, where n ∈ Z. Define |B| = j1+ · · ·+ jn, i.e. it is the total signed number

of times the bar of B loops around the circle factor of S1 × D3. Then W3(B) is equal to

the sum ∑
i,j,α,β

ciαkβW3(Biαkβ)

of W3 invariants of a finite sequence of “sub-barbells” Biαkβ with α, β ∈ {1, 2, . . . , n}, and

coefficients ciαkβ . Each Biαkβ is an unknotted barbell satisfies the condition that the bar

links each of the two cuff spheres only once positively, and is represented by a word in the

form

tj1tj2 . . . tjα−1ναBt
α . . . tβνβR . . . t

jn

when α ≤ β, and in the form

tj1tj2 . . . tjβνβRt
β+1 . . . tα−1ναB . . . t

jn

when α > β. Also, |Biαkβ | = |B| for all α, β. Further, the coefficients satisfies

ciαkβ = iαkβ.

Proof. The idea is the same as the proof of Lemma 4.25. We first break the information
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Figure 4.22: The barbell manifold t−1νRνB
3νR

−3t−6νRνB
2.

of cohorizontal points from B into barbells in the form of

· · · tj1 · νiαB t
jα · · · νkβR · · · tjn ,

i.e. barbells that keep only a single power of νB and a single power of νR but keep all powers

of t. Each such barbell leads to triangle and tetrahedron diagrams that contain a piece of

information of cohorizontal points of B. Next, we further observe that the exponents iα

and kβ have the effects of contributing to parallel copies of cohorizontal points of

· · · tj1 · ν1Btjα · · · ν1R · · · tjn

leading to coefficients ciαkβ = iαkβ.

Example 4.27. Take the barbell represented by the word t−1νRνB
3νR

−3t−6νRνB
2 as in

Figure 4.22. Note that |t−1νRνB
3νR

−3t6νRνB
2| = −7. Scanning through a chosen D3 as

in Figure 4.22 gives rise to 7 intersection points that can be analyzed separately. For

example, at the first intersection point a (counting from left to right), we can similarly

draw its intersection with the spanning disks of the cuff spheres as in Figure 4.23.
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Figure 4.23: The intersection between the arc through point a and the spanning disks of
the cuff spheres.

In this case, one takes all possible pairs of two symmetric red arcs with two symmetric

blue arcs, and every such pair leads to exactly the same pattern of linking number dia-

grams. The W3 invariant of t−1νRνB
3νR

−3t−6νRνB
2 is the sum of all these possible pairs

at each intersection point of the bar with the scanning disk D3. In particular, the above

barbell can be factored into the following sub-barbells:

• 3t−1νRνBt
−6

• 2t−1νRt
−6νB

• 9t−1νBν
−1
R t−6

• 6t−1ν−1
R t−6νB

• 3t−1νBt
−6νR

• 2t−7νRνB.

For example, Figure 4.24 shows the barbell t−1νRνBt
−6. In fact, this barbell is isotopic

to the barbell θ7(e6, e1) by dragging the blue cuff B in Figure 4.24 downwards along

the bar to the t negative direction for one time. Therefore, its W3 invariant can be

calculated using Theorem 4.23. Further, one can verify, by drawing pictures, that except
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Figure 4.24: The barbell θk(e7,−e1).

Figure 4.25: The barbell t−7νRνB.

for t−7νRνB, each of the above sub-barbells can be identified with some θk(±ei,±ej) for

some i, j ∈ {1, . . . , 7}, and k ≤ 8. In particular, we have

W3(t
−1νRνB

3νR
−3t−6νRνB

2) =

3W3(θ8(e6, e7)) + 2W3(θ8(e6, e7)) + 9W3(θ8(−e7, e1))+

6W3(θ8(−e6, e7) + 3W3(θ8(e1, e1)) + 2W3(t
−7νRνB),

in which all terms can be easily calculated using Theorem 4.23 except W3(t
−7νRνB) (See

Figure 4.25).

The barbell t−7νRνB is not isotopic to a θk(v, w). However, we can calculate its W3
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invariant fairly easily by observing that its bar intersects s0 × D3 at 7 points and all of

these 7 points give rise to tetrahedron pictures with the same shape as a type 3 intersection

point shown in Figure 4.10. In particular, we can make use of Figure 17 of [4] together

with the strategy we have been discussing throughout this section to obtain a slightly

variant formula as in Theorem 4.23. Namely, we take the formula for type 3 points in

Theorem 4.23, and plug in i = j = 7.

Remark. For a barbell represented by a word

· · · tj1 · ν1Btjα · · · ν1R · · · tjn

such that at least one of j1, . . . , jn is positive, one can calculate its W3 invariant by framing

a variation of Theorem 4.23 following essentially the same strategy we have been discussing

in this section and then to calculate the W3 of a barbell represented by any random word.

However, we do not have time to finish these discussions in this thesis and may return to

this in the future.

We end this section (and chapter) with a discussion of the question of which barbells

give rise to linearly independent barbell diffeomorphisms. First, note that π0Diff(S1 ×

D3, ∂) is abelian. This can be seen by noting that we can shrink the supports of any two

diffeomorphisms to two smaller 4-dimensional solid tori to make them commute. Therefore,

it makes sense to talk about linear independence of diffeomorphisms (up to isotopy) in

this group. Budney–Gabai (using Lemma 4.21) proved that

W3(δk) = W3(θk(ek−1, ek−2))

for k ≥ 4 are linearly independent. Thus δk = θk(ek−1, ek−2) for k ≥ 4 are linearly

independent diffeomorphisms of S1 ×D3.

For k ≥ 6, we can apply Theorem 4.23 to calculate W3(θk(ek−1, ek−3)). By setting all

terms tp1t
q
3 = 0 of W3(θk(ek−1, ek−3)) except when p− q = k − 1, we get

−(k − 1)t21t
3−k
3
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which is nonzero. Furthermore, if a finite combination of θn(en−1, en−3), for 1 ≤ n ≤ k,

(i.e. k is the largest n)

a6θ6(e5, e3) + a7θ7(e6, e4) + · · ·+ akθk(ek−1, ek−3) = 0

equals 0, then setting all terms tp1t
q
3 except when p − q = k − 1 kills θn(en−1, en−3) with

n < k. This implies that the coefficient ak before θk(ek−1, ek−3) is 0. Therefore, we deduce

that the set {θk(ek−1, ek−3)}k≥6 is linearly independent. Furthermore, by Corollary 8.2 of

[3], the same argument applied to δk = θk(ek−1, ek−2) gives rise to

−(k − 1)t11t
2−k
3 ̸= 0

which implies that the set {δk, θk(ek−1, ek−3)}k≥6} is linearly independent.

By applying Theorem 4.23 again to W3(θk(ek−1, ek−m)) for k > m + 1, and following

the same argument above, namely by setting all terms tp1t
q
3 in W3(θk(ek−1, ek−m)) to zero

except when p− q = k − 1, one deduces that the set of barbells

{θk(ek−1, ek−m)}m∈{3,...,[(k−1)/2]−1},k≥2m−1

is linearly independent. Here [(k− 1)/2] denotes the integer part of (k− 1)/2. Therefore,

we have the following theorem.

Theorem 4.28. The elements θk(ek−1, ek−3) for k ≥ 6 of π0Diff(S1 ×D3, ∂) are linearly

independent. Further, these elements are linearly independent to

δk = θk(ek−1, ek−2) = θk((0, . . . , 0, 1), (0, . . . , 0, 1, 0))

for k ≥ 4.

More generally, there exist linearly independent elements θk(ek−1, ek−m) of π0Diff(S1×

D3, ∂) for m ∈ {3, 4, . . . , [(k− 1)/2]− 1} with k ≥ 2m− 1. Here [(k− 1)/2] is the integer

part of (k − 1)/2.
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We can also consider θk(ek−2, ek−m) with k ≥ 4, m ∈ {3, 4, . . . , k − 2, k − 1} and

k −m > 2, and apply Theorem 4.23. Setting all terms of W3(θk(ek−2, ek−m)) in the form

of tp1t
q
3 to zero except when p− q = k − 2 gives rise to

−(k − 2)tm−2
1 tm−k

3

which is non-zero if k −m ̸= m − 2, i.e. 2m ̸= k + 2. By the Hexagon relation together

with Theorem 4.23,

W3(θk(ek−2, ek−m) + θk(ek−2, em−2)) = 0

in this quotient. It follows that for a fixed k ≥ 4, there are (k− 3)/2 linearly independent

terms for k odd and (k − 2)/2 linearly independent terms for k even.

For example, when k = 10, the linearly independent terms we get are

θ10(e8, e7), θ10(e8, e6), θ10(e8, e5), θ10(e8, e4).

Question 4.29. More generally, for a fixed α, β ≥ 1, m > α and n > β, one can ask if

the barbells θk1(ek1−α, ek1−m) and θk2(ek2−β, ek2−n) are linearly independent.

One possible approach is to set all terms tp1t
q
3 to zero except when p− q equals to m−α

or n − β. If we assume n − β ̸= α − m or k1 − α or k1 − m, and m − α ̸= k2 − β or

k2 − n, then we get two polynomials −(k1 − α)tm−α
1 tm−k1

3 and −(k2 − β)tn−β
1 tn−k2

3 which

are linearly dependent if and only if m − α = k2 − n and m − k1 = β − n. If α = β, the

above conditions imply that k1 = k2 and m + n = k1 + α. Similarly, if k1 = k2, then the

above conditions imply that α = β and m+ n = k1 + α.

We plan to return to this topic in the future.



Chapter 5

W3 invariant for π0Diff(♮mS1 ×D3)

This chapter is motivated by and is part of an ongoing but unfinished project whose aim is

to find isotopically non-trivial splitting 3-spheres of the 2-dimensional unlink in S4. In this

chapter, we give ideas for defining a version of the W3 invariant for π0Diff(♮mS1×D3) with

m ≥ 2 where ♮mS1×D3 denotes the boundary connected sum of m copies of S1×D3. We

will then focus on the m = 2 case, and study the mapping class group π0Diff(♮2S1 ×D3).

Finally, in Section 5.4 we describe the unfinished part about how the above might be

applied, potentially leading to an infinite sequence of knotted splitting 3-spheres of the

unlink in S4.

5.1 CAT(0)-cubical complexes

In this section, we review the notion of CAT(0)-cubical complexes that will be needed in

later sections. Most of the material can be found in [23].

We start with a brief motivation. Recall from Lemma 4.15 that W3 can be calculated

using a special class of submanifolds of the universal cover of C3[S
1×D3]. In this chapter,

we will calculate a version of W3 for π0Diff(♮mS1 × D3), for m ≥ 2, using a similar

method and a special class of submanifolds of the universal cover of C3[♮mS
1×D3], called

the co-geodesic submanifolds (cf. Definition 5.12) whose definitions depend on the

unique existence of geodesics. In particular, we need the fact that the universal cover of

110
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C3[♮mS
1 ×D3] is a uniquely geodesic space. We shall achieve this by giving it a CAT(0)

cubical complex structure (cf. Theorem 5.6 and Lemma 5.8).

Let Cn = [0, 1]n denote the n-dimensional cube. The (codimension 1) faces of Cn

are given by Fi,ϵ = {x = (x1, . . . , xn) ∈ Cn : xi = ϵ} for ϵ = 1 or 0. Lower-dimensional

faces are obtained by intersections of the codimension 1 faces. We equip cubes with the

restricted Euclidean metric.

Definition 5.1. Let C be a set of cubes and S a set of isometries between faces of the cubes

called gluing maps such that no cube is glued to itself, and there are at most two distinct

gluings between any two distinct cubes. Then such a pair defines a space
⋃

C∈C C/ ∼

where ∼ is the equivalence relation induced by the gluing maps. This is called a cubical

complex.

Definition 5.2. Let X be a cubical complex and x, y ∈ X. A string Σ from x to y is a

sequence of points x = x0, x1, . . . , xm = y such that each pair of consecutive points xi and

xi+1 in the sequence is contained in a single cube Ci. The length L(Σ) of a string Σ is

given by the sum
∑

i dCi
(xi, xi+1) where dCi

is the Euclidean metric on Ci. If X is string

connected, meaning that any two points are connected by a string of intervals, then we

equip it with the polyhedric metric:

d(x, y) = inf{L(Σ) : Σ is a string from x to y}.

The polyhedric metric can be equivalently defined as

d(x, y) = inf{l(γ) : γ is a rectifiable curve in X from x to y}.

where a rectifiable curve γ : [0, 1] → X means a curve with finite length

l(γ) := sup0=t0≤···≤tn=1

n−1∑
i=1

d(γ(ti), γ(ti+1))

Definition 5.3. A cubical complex is finite dimensional if there is an upper bound on

the dimension of cubes.
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Proposition 5.4. Finite-dimensional cubical complexes are complete geodesic spaces.

Definition 5.5. The link of a vertex v of a cubical complex X is the induced simplicial

complex obtained from X by taking the space S(v, ϵ) = {x ∈ X : d(x, v) = ϵ} for a small

ϵ ≥ 0. A link is called flag if there are no empty simplices, i.e. whenever the 1-skeleton of

a simplex exists, so does the entire simplex (i.e. the higher dimensional faces all exist).

The next theorem will be crucial for us:

Theorem 5.6. A cubical complex X is CAT(0) if and only if it is simply-connected and

all links are flag.

This is called Gromov’s link condition due to Gromov. In particular, this implies

that such cubical complexes are uniquely geodesic spaces.

Both Proposition 5.4 and Theorem 5.6 can be found in Section 3 of [23].

5.2 Definitions and construction

In this section, we extend the construction in Section 4.2 to ♮mS1 ×D3 for m ≥ 2.

Let n ≥ 1. Since the fibration

Cn(♮mS
1 ×D3) → Cn−1(♮mS

1 ×D3)

admits a section (see for example Section 4 of [7]), we see that the homotopy groups of

the ordered configuration space Cn(♮mS
1×D3) are isomorphic to the homotopy groups of

the product X0 × X1 × · · · × Xn−1 with Xi being ♮mS1 × D3 with i punctures. In other

words, we can understand the homotopy groups of Cn(♮mS
1 ×D3) by understanding the

homotopy groups of

(∨mS
1)× (∨mS

1 ∨ S3)× (∨mS
1 ∨ S3 ∨ S3)× · · · × (∨mS

1 ∨n−1 S
3).

The fundamental group π1Cn(♮mS
1×D3) is thus generated by nm generators (t1)i, (t2)i, . . . (tn)i

for i = 1, 2, . . . ,m. The third rational homotopy group π3Cn(♮mS
1×D3)⊗Q is generated
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by elements of the form of (tl)i.ωjk where i = 1, 2, . . . ,m and l, j, k ∈ {1, 2, . . . , n} with

the following relations:

• ωij = ωji

• ωii = 0

• (tl)i.ωjk = ωjk if l /∈ {j, k}

• (tj)i.ωjk = (tk)
−1
i .ωjk.

Again, as in Chapter 4, ωij denotes the element with all points fixed except the j-th point

orbiting around the i-th point. The fifth rational homotopy group π5Cn(♮mS
1×D3)⊗Q is

generated by the Whitehead products of the above elements satisfying the following extra

relations:

• [ωij, ωlm] = 0 if {i, j} ∩ {l,m} = ∅

• [ωij, ωjl] = [ωjl, ωli] = [ωli, ωij]

• (tl)i.[f, g] = [(tl)i.f, (tl)i.g].

In the following, we set up preparations for the construction and definition of an

invariant

(W3)m : π0Diff(♮mS
1 ×D3, ∂) → π2Emb(I, ♮mS

1 ×D3; I0) → π5C
′
3[♮mS

1 ×D3]⊗Q/R

where I0 is a chosen properly embedded interval which we will elaborate on shortly, and

R represents some relations that will be discovered in this section. As in Chapter 4,

this will be defined as a composition of two maps, namely the scanning map s, which

depends on a choice of a properly embedded 3-ball in ♮mS
1 ×D3, and a map defined on

π2Emb(I, ♮mS
1 × D3; I0) that relies on the mapping space model ([25]) as discussed in

Section 4.1.

Opposite to what we did in Section 4.2, this time we start with the second map. For

f ∈ π1Emb(I, ♮mS
1 ×D3; I0), following the same strategy as in Section 4.2, we first define
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a map

(ev2)m(f) : S
1 × C2[I] → C ′

2[♮mS
1 ×D3].

whose domain can be closed into a 3-sphere. By applying D. Sinha’s mapping space model

[25] as discussed in the end of Section 4.1, in the same way as it was applied in Section

4.2, we have the second evaluation

ev2(f) : S
1 × C2[I] → C ′

2[♮mS
1 ×D3].

Its restriction to the three boundary facets of C2[I], which we denote by x1 = 0, x2 = 1 and

x1 = x2, are null homotopic since the codomain for each of these sub-strata is homotopy

equivalent to (S1 ∨ S1)× S3 with

π2(S
1 ∨ S1)× S3 = π1Ω((S

1 ∨ S1)× S3) = 0.

By attaching null homotopies along these boundary facets, one obtains a map

(ev2)m(f) : S
3 → C ′

2[♮mS
1 ×D3].

Lemma 5.7. For f ∈ π1Emb(I, ♮mS
1 × D3; I0), (ev2)m(f) defines an element in the

homotopy group π3C ′
2[♮mS

1×D3]⊗Q ∼= Z[t±1 , t±2 . . . , t±m]⊕Z2 modulo the following relations:

• (0,1,0) for x1 = 0 facet

• (1,1,1) for the x1 = x2 facet

• (0,0,1) for the x2 = 1 facet,

where the first coordinate represents the Laurent polynomials part and the remaining two

coordinates represent the Z2 part, which represents the degrees of the two velocity vectors.

Proof. These relations are obtained from the inclusions of the edges. The first relation

comes from the inclusion map C ′
1[I]

∼= {x1 = 0} × S3 → C ′
2[I] of the x1 = 0 edge sending
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Figure 5.1: The fundamental domain of the universal cover of S1 ×D3♮S1 ×D3.

((0, x2), 1) → (0, x2, 1, 0). Therefore, the induced map

π3C
′
1[♮mS

1 ×D3] ∼= Z → π3C
′
2[♮mS

1 ×D3] ∼= Z[t±1 , t±2 . . . , t±m]⊕ Z2

is given by 1 → (0, 1, 0). The third relation is obtained in exactly the same way, but with

an induced map 1 → (0, 0, 1). The second relation comes from the inclusion of the edge

x1 = x2 sending ((x1, x1), 1) to (x1, t
0
1t

0
2.x1, 1, 1).

Therefore, we have defined a homomorphism

(ev2)m : π1Emb(I, ♮mS
1 ×D3) → Z[t±1 , t±2 . . . , t±m]/⟨1⟩.

This map will guide the way of our construction of (W3)m below.

Next, to define the third stage map

(ev3)m : π2Emb(I, ♮mS
1 ×D3) → π5C

′
3[♮mS

1 ×D3]⊗Q/R,

we first take a look at the universal cover of ♮mS1 × D3. This space can be described

as follows. Take a 2-dimensional disk, remove m disjoint sub-disks from it and cut along

a disjoint union of homotopically trivial (relative to the boundary) arcs connecting each

of the sub-disks to the boundary of the big disk. See Figure 5.1 for the case m = 2.

This gives us a fundamental domain. We then build a space Tm by gluing infinitely many

fundamental domains together along their cut edges (drawn in red in Figure 5.1). The

(4-dimensional) universal cover Tm × I × I is obtained by taking product with I2. We

call the space Um : Tm × I ⊂ Tm × I2 the universal tree. We will focus on the case where
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Figure 5.2: The links of the universal cover T2 × I × I.

m = 2.

Lemma 5.8. The space T2× I× I admits a natural cubical complex structure (cf. Section

5.1) which contains 5 4-dimensional cubes in each fundamental domain. Furthermore, all

links of this cubical complex are flag. Thus, it is a uniquely geodesic metric space whose

geodesics are concatenations of straight intervals.

Proof. One can verify that each link of T2× I× I is a union of three ordered tetrahedrons,

say (T1, T2, T3) with Ti is being glued to Ti+1 along a common face, for i = 1, 2. This space

satisfies the condition of Definition 5.5. See Figure 5.2 for a 3-dimensional picture with a

typical link drawn in blue. It is a union of three triangles with two consecutive triangles

glued along a common edge. One can observe that the links of all the vertices in this

picture are isomorphic.

The second paragraph follows from Proposition 5.4 and Theorem 5.6.

Remark. In fact, one can go further and prove that Lemma 5.8 is true for all m ≥ 2,

meaning that the space Tm×I×I admits a natural cubical complex structure (cf. Section

5.1), which contains 3m − 1 4-dimensional cubes in each fundamental domain, and the

links of all vertices are isomorphic to a union of m+1 tetrahedrons with consecutive ones

being glued along a common face. These are all flag links.
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We can also view T2 × I × I as a Riemannian manifold with corners. Locally, the

Riemannian metric is given by the induced Euclidean metric in each fundamental domain.

Now we come back to our construction of (ev3)m. Let [f ] ∈ π2Emb(I, ♮mS
1 ×D3; I0),

we need to define a map

(ev3)m(f) : D
1 ×D1 × C ′

3[I] → C ′
3[♮mS

1 ×D3].

Lemma 5.9. For f : D1×D1×I → ♮mS
1×D3 representing [f ] ∈ π2Emb(I, ♮mS

1×D3; I0),

the restriction of the second evaluation

ev2(f) : D
1 ×D1 × C2[I] → C ′

2[♮mS
1 ×D3]

to the boundary facets of C2[I] is null homotopic.

Proof. We use the same ideas from the proof of Proposition 4.9. We describe a null-

homotopy along the x1 = x2 facet, and the other two facets are similar.

As in the S1 × D3 case, along the x1 = x2 facet, as x1 approaches x2, the velocity

vectors agree with the direction of the collision. Along this facet of C2[I], we lift the

restriction of f to it to the universal cover C ′
2[♮mS

1 ×D3] and observe that this map is

given by the derivative on the facet x1 = x2 (cf. discussion in the end of Section 4.1).

There is an extension of this derivative to the entire triangle as follows. For p ∈ S2 and

x1, x2 ∈ C2[I], we only need to specify one tangent vector. There is a unique geodesic

connecting q1 = fp(x1) and q2 = fp(x2). This geodesic is given by a concatenation of

intervals. Take the initial arc of the concatenation and define the direction vector (after

scaling it a unit vector) determined by this arc to be our extension. In particular, such a

map can be thought of as a map

S2 × C2[I] → C ′
2[♮mS

1 ×D3] : (p, x1, x2) → (q1, q2, v)

where p ∈ S2, qi = f(xi) for i = 1, 2, and v is the tangent vector we just described.

Now, the same argument applied in Proposition 4.9 works equally well here. Namely, if
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we choose some I0 = {pt} × I × 0 ⊂ Tm × I2, then the restriction of this extension to the

other two edges x1 = 0 and x2 = 1 can be homotoped to I0 since these vectors point to

one side of a 3-sphere (one of the “vertical” directions I0).

Similarly, one can construct null homotopies that can be attached along the other two

facets x1 = 0 and x2 = 1 facets, just as in Proposition 4.9.

Note that we could have used the argument in the proof above for defining (ev2).

Now, we consider the third evaluation

(ev3(f))m : S2 × C3[I] → C ′
3[♮mS

1 ×D3].

By Lemma 5.9, the restriction to the four facets of C3[I] can be homotoped to elements in

π4C
′
3[♮mS

1 ×D3] ∼= π4(∨mS
1)× (∨mS

1 ∨ S3)× (∨mS
1 ∨ S3 ∨ S3)× (S3)3.

Since π4S3 ∼= Z/2, these restrictions are torsion. Therefore, following the same strategy

of Section 4.2, we can perform the construction of (ev3)m rationally. If the order of the

restriction to a boundary facet is o, then the restriction of the map ev3(of) to the boundary

facets is null homotopic. So we define

1

o
(ev3)m(of) := S5 → C ′

3[♮mS
1 ×D3].

by attaching null homotopies along the 4 boundary facets. It remains to argue that this

is a rational homotopy invariant up to choices of these null homotopies. This is done by

exploring inclusions of the boundary facets

C2[I] → C3[I]

and the induced maps

π5C
′
2[♮mS

1 ×D3] → π5C
′
3[♮mS

1 ×D3]
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on π5. This is summarized in the following lemma.

Lemma 5.10. By analyzing the second homotopy groups of X0 × X1 × X2 ∼ (∨mS
1) ×

(∨mS
1∨S3)× (∨mS

1∨S3∨S3), we can deduce that the homotopy group π5C ′
3(♮mS

1×D3)

is isomorphic to the following quotient group of a free group

⟨(t1)±i , (t2)±i ⟩/⟨ν((t1)i) = ν−1((t2)i), (t1)i(t2)j = (t1)j(t2)i ∀i, j and ∀ν((t)1, (t)2, . . . , (t)m)⟩

mod torsion where i, j = 1, 2, . . . ,m. A polynomial (t1)αi (t2)
β
j represents the Whitehead

bracket [(t1)
α
i (t2)

β
j .ω12, ω12]. Here we will use the notation ⟨(t)i⟩ to denote the free group

with m generators

⟨(t)1, (t)2, . . . , (t)m⟩

and similarly the notations ⟨(t1)i⟩ and ⟨(t2)i⟩ for the corresponding free groups with m

generators. Also, ν((t)1, . . . , (t)m) denotes an element in ⟨(t)1, (t)2, . . . , (t)m⟩ and similarly

ν((t1)1, . . . , (t1)m) and ν((t2)1, . . . , (t2)m) denote elements in the groups ⟨(t1)i⟩ and ⟨(t2)i⟩

respectively.

For each of the four facets x1 = 0, x1 = x2, x2 = x3, x3 = 1 of the tetrahedron C3[I],

attaching a null homotopy (modulo torsion) S2 ×C2[I]× I → C2[♮mS
1 ×D3]′ gives rise to

the following relations, respectively.

1. For the x1 = 0 facet, the generators (t1)
α
i .ω12 are mapped to (t2)

α
i .ω23 by the in-

duced map on homotopy groups of the inclusion map, thus one obtains the relations

[(t2)
α
i .ω23, (t2)

β
j .ω23] for all α, β ∈ Z. More generally, the elements ν((t1)i).ω12 are

mapped to ν((t2)i).ω23, leading to the relations [ν((t2)i).ω23, µ((t2)i).ω23] for µ, ν ∈

⟨(t2)i⟩.

2. For the x1 = x2 facet, the inclusion doubles the first coordinate (x1, x2) → (x1, δx1, x2)

where δx1 is a small perturbation in the direction of the corresponding velocity vector.

The induced map on homotopy groups maps ω12 to ω13 + ω23, (t1)i to (t1)i(t2)i and

fixes (t2)i leading to the relations [(t1)
α
i .ω13 + (t2)

α
i .ω23, (t1)

β
j .ω13 + (t2)

β
j ω23]. More

generally, ν((t1)i) are mapped to ν((t1t2)i), leading to the relations [ν((t1t2)i)(ω13 +
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ω23), µ((t1t2)i)(ω13 + ω23)] for µ, ν ∈ ⟨(t)i⟩.

3. For the x2 = x3 facet, the inclusion map doubles the second coordinate thus the

induced map sends ω12 to ω12 + ω13, (t2)i to (t2)i(t3)i and fixes (t1)i leading to

the relations [(t1)
α
i .ω12 + (t1)

α
i ω13, (t1)

β
j .ω12 + (t1)

β
j ω13]. More generally, ν((t1)i) are

mapped to ν((t1)i), leading to the relations [ν((t1)i)(ω13 + ω12), µ((t1)i)(ω13 + ω12)]

for µ, ν ∈ ⟨(t1)i⟩.

4. For the x3 = 1 facet, the inclusion map fixes x1 and x2 and maps x3 to (1, 0).

Therefore, similarly to the x1 = 0 facet, leading to the relations [(t1)
α
i .ω12, (t1)

β
j .ω12].

More generally, the relations [ν((t1)i).ω12, µ((t1)i).ω12] are satisfied for µ, ν ∈ ⟨(t1)i⟩.

The relations 1 and 4 kill the relevant brackets that only involve ω23 and ω12 respec-

tively. Thus the relations from 2 are simplified to

[ν((t1t2)i).ω13, µ((t1t2)i).ω23]+

[ν((t1t2)i).ω23, µ((t1t2)i).ω13]+

[ν((t1t2)i).ω13, µ((t1t2)i).ω13]

and relations from 3 are simplified to

[ν((t1)i).ω12, µ((t1)i).ω13]+

[ν((t1)i).ω13, µ((t1)i).ω12]+

[ν((t1)i).ω13, µ((t1)i).ω13].

Now, observe that [ν((t1t2)i).ω13, µ((t1t2)i).ω13] = [ν((t1)i).ω13, µ((t1)i).ω13] since t2 acts

trivially on ω13. Therefore, we can merge relations 2 and 3 into one relation in the following
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way. Relations 2 give rise to

[ν((t1t2)i).ω13, µ((t1t2)i).ω23]+

[ν((t1t2)i).ω23, µ((t1t2)i).ω13] =

ν((t1)i)µ
−1((t1)i)µ

−1((t3)i).[ω13, ω23] + µ((t1)i)ν
−1((t1)i)ν

−1((t3)i).[ω23, ω13] =

(−ν((t1)i)µ−1((t1)i)µ
−1((t3)i) + µ((t1)i)ν

−1((t1)i)ν
−1((t3)i)).[ω12, ω23],

and relations 3 give rise to

[ν((t1)i).ω12, µ((t1)i).ω13]+

[ν((t1)i).ω13, µ((t1)i).ω12] =

ν((t1)i)ν((t3)i)µ
−1((t3)i).[ω12, ω13] + µ((t1)i)µ((t3)i)ν

−1((t3)i)[ω13, ω12] =

(−ν((t1)i)ν((t3)i)µ−1((t3)i) + µ((t1)i)µ((t3)i)ν
−1((t3)i))[ω12, ω23].

Therefore, we get the following relation as an analogue of Budney–Gabai’s Hexagon

relation as discussed in the end of Section 4.2.

Theorem 5.11. The rational homotopy group π5C
′
3(♮mS

1 × D3) ⊗ Q is generated by

(t1)i, (t3)i, i = 1, 2, . . . ,m with the following relation satisfied.

− ν((t1)i)µ
−1((t1)i)µ

−1((t3)i) + µ((t1)i)ν
−1((t1)i)ν

−1((t3)i) =

− ν((t1)i)ν((t3)i)µ
−1((t3)i) + µ((t1)i)µ((t3)i)ν

−1((t3)i).

After a change of variable and rearrangements of the equation, we can write the relation

in the following way:

ν((t1)i)µ((t3)i) + µ−1((t1)i)ν
−1((t3)i) = ν−1((t1)i)µ((t3)i)ν

−1((t3)i) + ν((t1)i)µ
−1((t1)i)ν((t3)i).
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Therefore, we have now defined a map

(ev3)m : π2Emb(I, ♮mS
1 ×D3) → Λm = π5C

′
3[♮mS

1 ×D3]⊗Q/R

where R stands for the relations described in Lemma 5.10.

Recall that our mission is to define an invariant

(W3)m : π0Diff(♮mS
1 ×D3, ∂) → π2Emb(I, ♮mS

1 ×D3; I0) → Λm

as a composition of two maps. We have just finished defining the second map. We now

turn to define the first map, namely the scanning map s. As in Section 4.2, it is only

defined up to a choice of a properly embedded 3-ball in ♮mS
1 × D3. In particular, let

Ds ⊂ ♮mS
1 ×D3 be a properly embedded 3-disk called the scanning disk. We choose our

base point interval I0 = 0×0×[−1, 1] ⊂ Ds
∼= [−1, 1]×[−1, 1]×[−1, 1]. (In Section 5.3, we

will discuss such choices for m = 2). An element [Φ] ∈ π0Diff(♮mS
1×D3, ∂) represented by

a diffeomorphism Φ maps the intervals u, v×[−1, 1] ⊂ Ds, u, v ∈ [−1, 1] to a two-parameter

family of properly embedded intervals, leading to an element in π2Emb(I, ♮mS
1 ×D3; I0)

in the same way as discussed in the beginning of Section 4.2.

Therefore, we have defined an invariant (W3)m. We remark that if we set m = 1 and

choose Ds to be a disk {pt} × D3 ⊂ S1 × D3, then the discussion so far in this section

recovers the W3 defined in Chapter 4.

We end this section with a discussion of ideas for calculation of (W3)m. One can refer

to Section 4.4 for comparison. Fix a base point (x0, 0) ∈ Um × R = Tm × I × R where

Um is the universal tree. For a word ν in the free group generated by (t1)i, (t2)i, (t3)i with

i = 1, 2 . . .m (cf. the beginning of this section), we define the cohorizontal submanifold

ν.Co21 = {(p1, p2) ∈ C2(♮mS1 ×D3) : p2 and ν.p1 coincide on Tm,

and p2 − ν.p1 = λ(x0, 0, 1) for some λ > 0}.
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Note that the subtraction makes sense since it is only about the I × R part. This sub-

manifold ν.Co21 detects the element ν.ω12 as it intersects the image of ν.ω12 at exactly one

point, and does not intersect ν ′.ω12 if ν ̸= ν ′.

To detect elements in π5C3[♮mS
1 ×D3]⊗Q as Whitehead products of elements in the

form of ν.ω12 and µ.ω23 with ν and µ being words in the free group generated by the

3m generators (t1)i, (t2)i and (t3)i for i = 1, 2, . . . ,m, we make use of the language of

co-geodesic submanifolds as a generalisation of Budney–Gabai’s collinear submanifolds

(cf. Section 4.4). In the universal cover Tm × I2 of ♮mS1 × D3, straight lines are not

natural choices anymore as we are not working in a convex space. However, as discussed

in Section 5.1, Tm × I2 is a simply-connected cubical complex with all links being flag,

hence a uniquely geodesic space by Theorem 5.6, with geodesics given by concatenations

of intervals (polylines). Thus, we can define submanifolds:

Definition 5.12. The co-geodesic submanifolds are defined as follows:

Cogν,µ
1 = {(p1, p2, p3) ∈ Tm × I2 : ν.p1 lies on the geodesic determined by µ.p3 and p2}.

Cogν,µ
3 = {(p1, p2, p3) ∈ Tm × I2 : µ.p3 lies on the geodesic determined by ν.p1 and p2}.

where ν and µ are words in the free group generated by the 3m generators (t1)i, (t2)i and

(t3)i for i = 1, 2, . . . ,m.

The former submanifold intersects µ.ω12 algebraically once, and the latter submanifold

intersects ν.ω23 once. Thus the pair (Cogν,µ
1,Cogν,µ

3) detects the element µν[ω12, ω23] in

the sense that the preimage of this pair under µν[ω12, ω23] is a standard linking pair in

S5 (cf. Section 4.4), and the preimage of the same pair under µ′ν ′[ω12, ω23] is empty if

µν[ω12, ω23] ̸= µ′ν ′[ω12, ω23]. For any element in π5C3[♮mS
1×D3]⊗Q, we can write it as a

linear combination of [ω12, ω23] with coefficients given by words in the free group with 3m

generators, and the linking number of the preimage of the pair

(Cogν,µ
1,Cogν,µ

3)
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determines the coefficients.

To calculate these linking numbers, we use a trick similar to Budney–Gabai’s argument

as in Lemma 3.4 of [4] (see also Lemma 4.16). Recall that Tm is the universal cover of a

regular neighbourhood of a wedge of m circles in R2. (cf. Figure 5.1 and the discussion

around it.).

Embed Tm× I2 in Tm× I ×R and consider the function Pλ : Tm× I ×R → Tm× I ×R

defined by

Pλ(p1, p2, p3, p4) = (p1, p2, p3, p4 + λd(p1, p2, p3)
2)

where λ > 0 is positive and d(p1, p2, p3) is the distance from the point (p1, p2, p3) to x0.

This 1-parameter family of diffeomorphisms sends polylines to parabolas that get steeper

as λ increases. As λ goes to infinity, the polylines will be broken into steep segments of

parabolas. It follows that the linking number of the preimage of (Cogν,µ
1,Cogν,µ

3) can

be calculated by the pair (µCo12 − µν−1Co13, νµ
−1Co31 − νCo32)(cf. Lemma 4.16). Here the

cohorizontal submanifolds Coji are defined in the same manner as before with point i and j

being cohorizontal but the one remaining coordinate being allowed to change freely. This

will allow us to calculate the W3 invariant for embedded barbells in ♮mS1 ×D3 for m ≥ 2

using cohorizontal submanifolds.

5.3 The mapping class group of S1 ×D3♮S1 ×D3

In this section, we use the invariant

(W3)2 : π0Diff(S
1 ×D3♮S1 ×D3, ∂) → Λ2

to study the mapping class group of S1 × D3♮S1 × D3 by looking at some embedded

barbells. From now on, we fix m = 2. In this case, we simplify our notation and denote

the generators of π1C3(S
1×D3♮S1×D3) by t1, t2, t3, u1, u2 and u3. We consider embedded

unknotted barbell in S1 × D3♮S1 × D3. For an unknotted barbell B, without loss of

generality, we may assume that both of the cuffs B and R (blue and red) are contained in
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Figure 5.3: The barbell θt5,u4,u1 .

the first factor of our boundary sum.

We consider a barbell θt5,u4,u1 shown in Figure 5.3. It is specified by three words

(ν, µ, γ) = (t5, u4, u1) in the free group of two generators t and u, representing the two

circle factors of S1×D3♮S1×D3. We fix our convention that ν represents the path followed

by the subarc of the bar that starts from the red cuff and ends just before intersecting

the spanning disk of the blue cuff, µ represents the path followed by the subarc of the bar

between the spanning disks of the blue cuff and the red cuff, and finally γ represents the

path followed by the subarc from the spanning disk of the red cuff to the blue cuff. The

cylinder in the middle of Figure 5.3 indicates the “neck” of the boundary connected-sum.

Recall from the last section that to define (W3)2, we need to choose a scanning disk

properly embedded in S1 ×D3♮S1 ×D3. There is a natural choice ∆ in the middle of the

boundary connected sum neck, drawn in Figure 5.3. By assumption, the cuff spheres of

θt5,u4,u1 is disjoint from ∆. The barbell diffeomorphism Φθt5,u4,u1
makes ∆ = I × I × I into

an element in π2Emb(I, S1 ×D3♮S1 ×D3) via the scanning map.

In Figure 5.3, there are four intersection points between the bar and ∆, denoted by

a, b, c and d. Follwing the same strategy as in Chapter 4, we will analyze each of these
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Figure 5.4: The type 2 intersection for b
and c.

Figure 5.5: The type 3 intersection for a
and d.

separately. In this case, these points are divided into two types, namely b and c are

called type 2, and a and d are called type 3. These names come from the fact that they

actually coincide with the definition of type 2 and type 3 intersections in Lemma 4.19. If

we fix the direction pointing out of the page as our cohorizontal direction, then Figure

5.4 and Figure 5.5 illustrate the scanning pictures for the intersection points b, c and a,

d respectively. In fact, they are just repetitions of Figures 4.9 and 4.10. It follows that

the shapes of the triangle and tetrahedron pictures we get, which describe the preimage

of the cohorizontal submanifolds w.Co21 for w ∈ ⟨t, u⟩, are identical to the previous cases

for embedded barbells in S1 ×D3. Namely, Figures 16 and 17 in [4] can be used for our

calculations. Notice that the point d actually produces a reflection of Figure 5.4 as d

reaches the blue cuff by going left (unlike a which reaches the blue cuff by going left).

The similar phenomenon is true for b and c. However, this does not affect the linking

number calculations and does not introduce sign differences, since it changes the pullback

orientations of all (preimage of) the cohorizontal submanifolds at once.

As before, we break up the calculation of the linking numbers of the preimage of

(µCo12 − µν−1Co13, νµ
−1Co31 − νCo32)

(cf. the end of Section 5.2) into the two colors, blue and red. Observe that the bar links
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each cuff sphere only once. For the blue cuff sphere, the cohorizontal points occur when

the bar goes through the blue cuff, and it takes u5 to travel from this position back to the

blue cuff. For the red cuff, this path is specified by u−4t−5.

For intersection points b and c, we calculate the linking numbers as follows:

1. lk(µCo12, νµ
−1Co31) = −u−4

1 t−5
1 u13t

−5
3

2. lk(µCo12, νµ
−1Co31) = u−5

1 t53u
−1
3

3. -lk(µCo12, νCo
3
2) = 0

4. -lk(µCo12, νCo
3
2) = 0

5. lk(µν−1Co13, νCo
3
2) = t51u

−1
1 u−5

3

6. lk(µν−1Co13, νCo
3
2) = −u11t−5

1 u−4
3 t−5

3 .

Similarly, for the intersection point a and d, the linking numbers are:

1. lk(µCo12, νµ
−1Co31) = −u−4

1 t−5
1 u13t

−5
3

2. lk(µCo12, νµ
−1Co31) = u−5

1 t53u
−1
3 + u51u

−4
3 t−5

3 u53

3. -lk(µCo12, νCo
3
2) = −u−4

1 t−5
1 u−5

3

4. -lk(µCo12, νCo
3
2) = −u−5

1 u−4
3 t−5

3

5. lk(µν−1Co13, νCo
3
2) = t51u

−1
1 u−5

3 + u−4
1 t−5

1 u51u
5
3

6. lk(µν−1Co13, νCo
3
2) = −u11t−5

1 u−4
3 t−5

3 .

Similarly to the calculations in Section 4.5, the powers of u1, u3, t1 and t3 are de-

termined by how many times one needs to travel along each of the two circle factors to

get from one point of a co-horizontal pair to the other. For example, lk(µCo12, νµ−1Co31)

is obtained from the top left picture of Figure 16 of [4], where we have µ = u−4t−5 and

νµ−1 = u5, leading to ν = u1t−5, thus we have lk(µCo12, νµ
−1Co31) = −u−4

1 t−5
1 u13t

−5
3 where
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the minus sign reflects that the linking pair in this case has a negative orientation with

reference to the standard orientation of D1 ×D1 × C3[I].

By taking the sum, we get the following theorem.

Theorem 5.13. The (W3)2 invariant of the barbell θt5,u4,u1 is given by

2(−u−4
1 t−5

1 u13t
−5
3 + u−5

1 t53u
−1
3 + t51u

−1
1 u−5

3 − u11t
−5
1 u−4

3 t−5
3 ) + 2(−u−4

1 t−5
1 u13t

−5
3 + u−5

1 t53u
−1
3 +

u51u
−4
3 t−5

3 u53 − u−4
1 t−5

1 u−5
3 − u−5

1 u−4
3 t−5

3 + t51u
−1
1 u−5

3 + u−4
1 t−5

1 u51u
5
3 − u11t

−5
1 u−4

3 t−5
3 ).

Furthermore, by letting all terms be zero except the terms with the exponent of t1 minus

the exponent of u3 being 10, we get

4t51u
−1
1 u−5

3 ̸= 0

which survives from the Hexagon relations (cf. Theorem 5.11).

More generally, we can calculate the (W3)2 of barbells θtq ,u4,u1 for q = 5, 6, 7, . . . in

exactly the same way as above, getting

Theorem 5.14. The (W3)2 invariant of the barbell θtq ,u4,u1 for q = 5, 6, 7, . . . is given by

2(−u−4
1 t−q

1 u13t
−q
3 + u−5

1 tq3u
−1
3 + tq1u

−1
1 u−5

3 − u11t
−q
1 u−4

3 t−q
3 )+

2(−u−4
1 t−q

1 u13t
−q
3 + u−5

1 tq3u
−1
3 + u51u

−4
3 t−q

3 u53

− u−4
1 t−q

1 u−5
3 − u−5

1 u−4
3 t−q

3 + tq1u
−1
1 u−5

3 + u−4
1 t−q

1 u51u
5
3 − u11t

−q
1 u−4

3 t−q
3 ).

Furthermore, these barbells are linearly independent.

Proof. The formula itself can be obtained in the same way we have outlined for θt5,u4,u1

above. The second statement follows by quotienting all terms except those with the

property that the exponent of t1 minus the exponent of u3 being q + 5. Namely, for a

linear combination

a1θt5,u4,u1 + a2θt6,u4,u1 + a3θt7,u4,u1 + · · ·+ anθtn+4,u4,u1 = 0,
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when all terms except those with the exponent of t1 minus the power of u3 being n + 9

are declared to be zero, θtl,u4,u1 vanishes for l ≤ n + 8 which implies an = 0. Repeating

this argument with n replaced by 1, 2, . . . , n− 1 implies that all coefficients are zero.

Let Φ ∈ Diff(S1 ×D3♮S1 ×D3, ∂) such that Φ(∆, ∂) = (∆, ∂). Then we can isotope Φ

such that it fixes ∆ pointwise which implies that W3([Φ]) = 0. Therefore, we have obtained

an infinite sequence of knotted 3-balls Φθ
tl,u4,u1

(∆) in S1×D3♮S1×D3 for l ≥ 5. This also

shows that the elements [Φθ
tl,u4,u1

] do not come from π0Diff(S
1×D3, ∂)×π0Diff(S1×D3, ∂)

since the former group fixes ∆. So, combining with Theorem 5.14, we have the following

theorem.

Theorem 5.15. The group π0Diff(S
1 × D3♮S1 × D3, ∂)/

∏
2 π0Diff(S

1 × D3, ∂) has an

infinitely generated subgroup. Moreover, there exist infinitely many properly embedded

separating 3-balls in S1×D3♮S1×D3 with common boundary that are not isotopic relative

to the boundary.

5.4 Motivation and outlook

In this section, we describe a question that motivates the entire Chapter 5, and explain a

possible approach to tackle it. The author plans to carry on the research described below

during his time as a postdoc in the future.

Let L = L1 ∪L2 denote the standard 2-dimensional unlink in S4. A splitting sphere

for L is an embedded S3 ↪→ S4 such that L1 and L2 lie in different components of S4 \S3.

Hughes-Kim-Miller ([15]) proposed the following question:

Question 5.16. Do there exist non-isotopic splitting spheres of the unlink in the 4-sphere?

The complement of a neighbourhood of the unlink in S4 is diffeomorphic to the internal

connected-sum S1×D3#S1×D3 which motivates us to study π0Diff(S1×D3#S1×D3, ∂).

In particular, the above question is equivalent to the existence of non-isotopic separating

3-spheres in S1 × D3#S1 × D3. In the remaining part of this section, we outline an

approach to this question that utilizes the previous sections of this chapter.
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Figure 5.6: The relationship between S1 ×D3♮S1 ×D3 and S1 ×D3#S1 ×D3.

Let X = S1×D3♮S1×D3 and let Y = S1×D3#S1×D3. Figure 5.6 is meant to indicate

their relationship (with a 3-dimensional picture). Let u be a properly embedded arc in Y

as depicted in Figure 5.6. Then X is obtained from Y by drilling out a neighbourhood of u.

Conversely, recall from the last section the scanning 3-ball ∆ in the neck of the boundary

connected sum of X. We observe that attaching a 3-handle along a neighbourhood of the

boundary of ∆ gives Y , and the union of ∆ with the core of the 3-handle is a separating

3-sphere ∆. In Figure 5.6, the green part is meant to represented this attachment, but is

drawn as a 3-dimensional 2-handle since it is one dimension lower.

We denote the component of the space of properly embedded arcs in S1×D3#S1×D3

that contains u by

Emb(I, S1 ×D3#S1 ×D3;u).

We consider the following fibration

Diff(S1×D3♮S1×D3, ∂) → Diff(S1×D3#S1×D3, ∂) → Emb(I×D3, S1×D3#S1×D3;u×D3).

The last few terms of the induced long exact sequence of homotopy groups are as follows:

· · · → π1Emb(I×D3, Y ) → π0Diff(X, ∂) → π0Diff(Y, ∂) → π0Emb(I×D3, Y ;u×D3) → 0,

where the first map is given by isotopy extension and the second map is given by extending
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0 π1Emb(I ×D3, Y ) π0Diff(X) π0Diff(Y ) π0Emb(I ×D3, Y )

0 Λ2 π0Emb(D3, X) π0Emb(S3, Y ) 0

ϕ(ker(r))

p

(W3)2◦s◦p

e

s

r

ϕ

(W3)2

i

W ′
3

Figure 5.7: Definition of W ′
3.

diffeomorphisms of X to Y using the identity map.

The situation is summarized in the above diagram. Here we view the (W3)2 invariant

as an invariant defined on π0Emb(D3, X). We drop ∂ in the diagram to save space, but

all mapping class groups in the diagram are boundary-fixing. The group Λ2 in the left

corner denotes the codomain of the (W3)2 invariant. The object π0Emb(D3, X) denotes

isotopy classes of embedded separating 3-balls in X whose boundaries coincide with ∂∆.

The group π0Emb(S3, Y ) is the space of separating 3-spheres in Y and the map i is given

by the 3-handle attachment, making a separating 3-ball into a separating 3-sphere. The

maps s and ϕ are given by applying diffeomorphisms of X and Y respectively to ∆ and

the 3-sphere ∆ = (∆ ∪ 3-handle) in X and Y .

There is an induced W ′
3-invariant defined on ϕ(ker(r)) as follows. For an embedded

3-sphere S in ϕ(ker(r)), we bring it back to π0Diff(X, ∂) and follow (W3)2 ◦ s. To see this

is well-defined, suppose S ′ ∈ ϕ(ker(r)) is isotopic to S, then we have ϕ−1(S), ϕ−1(S ′) ∈

π0Diff(Y, ∂) represented by two diffeomorphisms of Y that fix S and S ′ respectively. By

the isotopy extension theorem, these two diffeomorphisms are isotopic, and in particular,

they can be isotoped such that ϕ−1(S)(∆) = ϕ−1(S ′)(∆). So if we take their preimage

along e, we get two diffeomorphisms that have the same impact on ∆, which implies that

they get evaluated to the same element in Λ2 by (W3)2 ◦ s.

For [Φ] ∈ π0Diff(Y, ∂), if the composition W ′
3 ◦ϕ([Φ]) ̸= 0, then Φ is not isotopic to the

identity. If we can show that the composition

(W3)2 ◦ s ◦ p = 0,
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then the non-trivial diffeomorphisms θt5,u4,u1 , θt6,u4,u1 , . . . we constructed in the previous

section would give rise to non-isotopic separating 3-spheres. The below is an outline of

what we plan to do to prove this.

The map Emb(I×D3, Y ) → Emb(I, Y ) given by restricting to I×{0} is a fibration with

fiber homotopy equivalent to the free loop space of SO(3). Thus, it suffices to understand

the space π1Emb(I,X). To understand its image under p, we use the results in [16] which

provide an isomorphism from Z[π1X \ 1]/daxu(π3X) to the group π1Emb(I,X) which

depends on the arc u. Here Z[π1X \ 1] is viewed as solely a group and we forget about the

ring structure. In fact, for any oriented, smooth 4-manifold X, there is a central group

extension

1 → Z[π1X \ 1]/daxu(π3X) → π1(Emb(I,X), u) → π2X → 1

where daxu denotes the dax invariant:

daxu : π3X → Z[π1X \ 1].

For a ∈ π3X, daxu(a) is defined by picking a 2-parameter family of immersions repre-

senting a, which can be viewed as a self-homotopy of the constant loop at u, and analyze

the double-points. In other words, choose a map F : S2 → Imm(I,X;u) such that the

composition with the concatenation map with u−1 gives a. The latter space denotes the

space of immersed intervals with the same endpoints as u. There is a natural inclusion

map Emb(I,X;u) ↪→ Imm(I,X;u). The map F : I2 × I → I2 × X defined by (t, θ) →

(t, F (t)(θ)) can be perturbed to an immersion with only (finitely many) isolated trans-

verse double points. For each double point (ti, xi) with xi = F (ti)(θ−) = F (ti)(θ+) where

θ− < θ+, define a double point loop gxi
as the concatenation F (ti)|[−1,θ−] · F (ti)−1|[−1,θ+].

Then daxu(a) : =
∑
ϵxi
gxi

∈ Z[π1X] where ϵxi
is the local orientation of F obtained by

comparing the orientations of tangent bundles to the image of the derivatives of F with

the tangent space of I2 ×X. See [16] for details.

Let π1(X, ∂X) be the set of homotopy classes of maps k : I1 → X with endpoints

k(−1) = x− and k(1) ∈ ∂X. The following theorem from [16] describes daxu in terms of
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the equivariant intersection pairing

λ : π3X × π1(X, ∂X) → Z[π1X \ 1].

Note that π1(X, ∂X) admits a π1X-action by precomposition.

Theorem 5.17. (See Theorem A and Corollary B in [16]) For a fixed u ∈ π1(X, ∂X) and

for a ∈ π3X and g ∈ π1X, the following is true:

• daxu(a) = daxu−(a) + λ(a, u)

• daxu−(ga) = gdaxu−(a)ḡ − λ(ga, g) + λ(g, ga).

Here u− : I → X is an embedding of an arc with endpoints u−(−1) = x− and u−(1) =

x′− where x′− is a point close to x− such that u− is isotopic relative to the endpoints into

∂X, and daxu− is defined in the same way as daxu with a different base point.

We now briefly recall the definition of the equivariant intersection pairing λ and re-

fer the readers to [16]. For a ∈ π3X represented by A : S3 → X and k ∈ π1(X, ∂X)

represented by k : (I, ∂I) → (X, ∂X), we can assume that they intersect transversely in

the interior of X. For each intersection point y, there is a double point loop λy(A, k) =

λy(A)·λy(k)−1 where λy(A) and λy(k)−1 are paths from x− to y along A and k respectively.

Define

λ(a, k) =
∑

y∈(A∩X)\{x−}

ϵy(A, k)[λy(A, k)]/[1],

where the sign ϵy(A, k) is given by the local orientation at y. One verifies that λ is linear

in the first coordinate and λ(a, gk) = λ(a, g) + λ(a, k)ḡ for g ∈ π1X, k ∈ π1(X, ∂X) and

a ∈ π3X. Note that the quotient by [1] means that we forget the term at 1 ∈ π1X.

However, for us, the situation is simplified when X = S1 × D3#S1 × D3. We have

π3X ∼= Z[t±, v±] that is generated by the action of π1X ∼= Z∗Z = ⟨v⟩∗⟨t⟩ on the connected-

sum sphere S. Further, π2X = 0 thus we have an isomorphism Z[π1X \ 1]/daxu(π3X) →

π1(Emb(I,X), u). Figure 5.8 depicts the 3-dimensional analogous representation of the

connected-sum 2-sphere by a loop of arcs. Note that here we use v rather than u to avoid

confusions with the arcs u and u−.
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Figure 5.8: Representation of the connected-sum sphere S by a loop of embedded intervals.

Using Theorem 5.17, we can work out the image of λ which is given by 2Z[t±1, v±1 \ 1]

as follows. For a representative of 1 ∈ π3X, say the connected-sum sphere, there is no

intersection between it and u (see Figure 5.6. For a representative a of a polynomial, for

example tivjtk ∈ π3X, λ(a, u) gives back tivjtk. Further, if we choose u− to be an arc

with both endpoints in the same boundary component of X = S1 × D3#S1 × D3, then

daxu−(t
ivjtk) = tivjtk, since we can choose a representative with a single double point

that produces the same polynomial. It follows that π1Emb(I,X) is isomorphic to

Z[t±1, v±1 \ 1]/2Z[t±1, v±1 \ 1] ∼= (2N+ 1)[t±1, v±1 \ 1].

An element here is described by picking a small sub-arc of the base point (see Figure 5.6)

for the base point arc u, pushing it along a path which corresponds to this element, and

spinning around the base point arc, and finally coming back. This process is defined as

spinning in Definition 4.1 of [3]. It is also described in [16].

The image p(π1Emb(I,X)) can be described by barbell diffeomorphisms specified by

words in the free group of two generators together with a positive integer that records the

number of times the bar of the barbell goes through the neck of the boundary connected

sum. Figure 5.9 is an example of an element in π1Emb(I,X) that corresponds to t3v3t2

(see also Figure 2.15 as an example of a corresponding twin twist represented in this

manner), where a subarc of u spins around the loop t3v3t2 and links itself. This creates

a double-point whose resolution gives rise to a 1-parameter family of embedded arcs. It

folows that the isotopy extension leads to a diffeomorphism supported in a neighbourhood
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Figure 5.9: The element t3v3t2 in
π1Emb(I,X).

Figure 5.10: The embedded barbell in-
duced by t3v3t2 in π1Emb(I,X).

Figure 5.11: The induced barbell by
t3v3t2 dragged to a standard position.

Figure 5.12: The barbell B(t3u3t2) in-
duced by t3v3t2 in standard position in
Y .

diffeomorphic to a model barbell manifold. Figure 5.10 depicts this initial barbell manifold

induced from the double point resolution. Figure 5.11 is the result of an isotopy that puts

both cuff spheres in a standard position and Figure 5.12 is obtained by drilling out a

neighbourhood of u to get back to Y .

The image p(π1Emb(I,X)) is generated by such barbells. Here we do not need to

specify the meridians of the cuff spheres, because every horizontal strand (as a sub-arc of

the bar) that passes through the entire boundary connected sum neck is required to pass

through both cuff spheres as well.

The (W3)2 invariant of B(t3v3t2) can be calculated with the same strategy as in Section

5.3. We scan through ∆ which is in the neck of the boundary sum on the right-hand side

of the blue cuff. By the same argument used in the proof of Lemma 4.25, we can argue
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Figure 5.13: The barbell B(e2, e2).

that

W3(B(t3v3t2)) =
2∑
i,j

W3(B2(ei, ej))

where B2(ei, ej) denotes the barbell such that the red cuff loops around the i-th strand

counting from the bottom to the top on the left-hand side and the blue cuff loops around

the j-th strand counting from the top to the bottom on the right-hand side. Here the

subscript 2 indicates the number of changes from a t power to an u power or from an u

power to a t power. Figure 5.13 shows the barbell B2(e2, e2).

The next step would be trying to prove the following conjecture, which is a generali-

sation of Lemma 4.24.

Conjecture 5.18. Let w ∈ ⟨t, v⟩, and let #(w) be the number of changes from a t- power

to an u-power and vice versa. Then the the bar of the barbell B((w))(ei, ej) has #(w)

intersections with ∆, and we have

(W3)2(B(w)(ei, ej)) = −(W3)2(B(w)(ej, ei)).

If this conjecture is true, then it would imply that for a barbell in the image p(π1Emb(I,X))

that is represented by a word w, the (W3)2 invariant of it vanishes since the “sub-barbells”

B(w)(ei, ej) come in pairs with their (W3)2 cancel each other. In particular, this conjec-
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ture would imply that (W3)2(p(π1Emb(I,X))) = 0, which will then imply that the barbells

θt5,v4,v1 , θt6,v4,v1 , . . . in S1 ×D3♮S1 ×D3 (viewing as embedded in S1 ×D3#S1 ×D3) we

discussed in the last section do not lie in the image p(π1Emb(I,X)), therefore lead to

non-trivial diffeomorphisms of S1 ×D3#S1 ×D3 and knotted separating 3-spheres.

Conjecture 5.19. The mapping class group of S1×D3#S1×D3 has an infinitely gener-

ated subgroup generated by the induced barbell diffeomorphisms from θt5,v4,v1, θt6,v4,v1, . . . .

Further, there exist infinitely many non-isotopic separating 3-spheres in S1×D3#S1×D3.
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