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Abstract

This thesis is concerned with determining the knot Floer homology and concordance in-

variants of pretzel knots, in particular three-strand pretzel knots. Knot Floer homology is

a package of knot invariants developed by Ozsváth and Szabó, and despite the invariants

being known for simple classes of knots — for example quasi-alternating, two-bridge and

L-space knots — there are still many simple families for which knot Floer homology and

the associated concordance invariants are not known.

Recent work by Ozsváth-Szabó in [49] developed a construction of an algebraic invariant

C(D) conjectured by them to be equal to a variant of knot Floer homology. This com-

plex C(D) is a bigraded, bifiltered chain complex whose filtered chain homotopy type is

an invariant of a knot [49]. Their construction — which has also been implemented in a

C++ program, see [47] — is a divide and conquer method which decomposes knot dia-

grams in a certain form into smaller pieces, to which algebraic objects are then associated.

These algebraic objects are themselves invariants (up to appropriate equivalence) of par-

tial knot diagrams, and are pieced together to form the full invariant. As with classical

knot Floer homology, one can study the homology of this complex C(D), or the homology

of subcomplexes and quotient complexes, which are also invariants of a knot.

Even more recent work of Ozsváth-Szabó in [48] confirms that this conjectured equivalence

between the theories holds. Hence, like the well-known grid homology of a knot [30,

35], this algebraic method provides a combinatorial construction of knot Floer homology

— or in this case some slightly modified version of classical knot Floer homology, like

that presented by Dai-Hom-Stroffregen-Truong in [4]. The benefit of such combinatorial

constructions is that they do not rely on computation of the counts of pseudo-holomorphic

representatives of Whitney disks in some high-dimensional space, unlike classical knot

Floer homology.
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The grid homology developed in [30,35] has the disadvantage that although one need not

calculate these counts — since by construction all Whitney disks considered in this theory

have a single pseudo-holomorphic representative — this is at the expense of computing the

homology of chain complexes with a very large number of generators (relative to crossing

number).

However, the algebraic invariant C(D) of Ozsváth-Szabó has the form of a chain complex

whose generators are in one-to-one correspondence with the Kauffman states of a knot

diagram. Kauffman states are decorated, oriented knot projections, and the bigrading

of the corresponding generators can be determined from the Kauffman states. Similarly,

classical knot Floer homology can also be calculated from a chain complex generated by

Kauffman states, as demonstrated in [37].

Adapting the work of Eftekhary in [5], the Kauffman states for a three-strand pretzel

knot P can be placed into three families, based upon the positions of the decorations on

each of the three strands. These families have grading information that is determined

by the positions of the decorations on each strand — see Table 2.1 and Table 2.2 for

explicit calculations of these gradings. Using the grading information associated to these

Kauffman states, one can restrict the possible differentials within the knot Floer chain

complex CFK∞(P ), as demonstrated by Lemma 2.10. Furthermore, the classification of

the Kauffman states into these three families with well-understood grading information

makes three-strand pretzel knots particularly amenable to study using the divide and

conquer construction of [49].

After an introduction to knot Floer homology and the current knowledge for pretzel knots

and links provided in Chapter 1, this thesis will present in Chapter 2 a definition of

Kauffman states, their grading information, and in particular the possible Kauffman states

for three-strand pretzel knots of the form P (2a,−2b− 1, 2c+ 1) and P (2a,−2b− 1,−2c−
1). Moreover, in Chapter 2, it will be demonstrated how the grading information of the

Kauffman states for these pretzel knots can be used to restrict the possible Maslov disks

between generators of the classical knot Floer homology. In so doing, one can read off

certain knot Floer homology groups directly from the combinatorial information, see for

example Lemma 2.7 and Lemma 2.9.

Chapter 3 defines many of the simpler concordance invariants extracted from classical knot

Floer homology, and in particular Section 3.3 describes how the concordance invariants
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of some families of pretzel knots can be bounded by using the sharper slice-Bennequin

inequality of [18, 19]. In particular, the family of three-strand pretzel knots described by

P (2a,−2b−1,−2c−1) for a, b, c ∈ N are quasipositive, and so have concordance invariants

ν and τ equal to their Seifert genus. Furthermore, one can place bounds upon the τ and ν-

invariants of the family P (2a,−2b−1, 2c+1) using the sharper slice-Bennequin inequality

and work of [18], and what is more, these bounds are strong enough to deremine these

concordance invariants the case of b ≥ c, as demonstrated by Lemma 3.19.

Before describing the construction of the algebraic invariant C(D) defined by Ozsváth-

Szabó, it is first necessary in Chapter 4 to define the algebraic objects used in the con-

struction: namely A∞-algebras, associated to every horizontal level of a knot diagram

in the required form; DA-bimodules, associated to every Morse event such as crossings,

maxima and minima; Type D structures, associated to upper knot diagrams; and A∞-

modules, associated to lower knot diagrams. In this chapter, the specific algebraic objects

used in the construction of C(D) are defined over the required differential graded algebras.

Furthermore, because all three-strand pretzel knots admit knot diagrams in a certain form

— see Figure 5.1 — a new A∞-module associated to the minima in these special knot

diagrams will be defined in Section 4.6.2. This new A∞-module greatly simplifies the cal-

culation of the invariant C(P (2a,−2b− 1, 2c+ 1)), allowing the inductive proofs presented

in Chapter 5 determining this invariant to be more closely motivated by the Heegaard

diagrams for this family of knots used by Eftekhary in [5].

Using the DA-bimodules defined by Ozsváth-Szabó in [49], and introduced in Chapter 4,

the Type D structure for upper knot diagrams of three-strand pretzel knots can be deter-

mined inductively. Under certain conditions, the tensor product between a DA-bimodule

and a Type D structure can be taken to yield another Type D structure. This process is

outlined in Section 4.5. Intuitively, since Type D structures are associated to upper knot

diagrams, and DA-bimodules to Morse events (such as crossings or maxima), attaching a

Morse event to an upper knot diagram yields another upper knot diagram.

The generators of Type D structures are in bijection with upper Kauffman states, and for

three-strand pretzel knots the upper Kauffman states can also be separated into distinct

families based upon the decorations on each strand. This separation of upper Kauffman

states into families allows one to determine the Type D structure after an arbitrary number

of crossings in each strand. In the proofs in Chapter 5, much use is made of both the trun-
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cation of the A∞-algebras explained in Chapter 4, and the diagrammatic representation

of Type D structures: see for example Figure 5.3.

For D a three-strand pretzel knot in the family P (2a,−2b − 1, 2c + 1), the structure of

C(D) — and the associated homology theories recently proven in [48] to be equivalent to

ĤFK(D) and HFK−(D) — will be determined in Chapter 6, relying on the inductive

computations of Chapter 5 and the construction of a new A∞-module associated to the

minima of a special knot diagram for these knots outlined in Section 4.6.2.

From these homology theories, the invariants ν and τ will be determined. These were

defined by Ozsváth-Szabó in [49], and although they are now proven to be equivalent to

the familiar concordance invariants ν and τ , they are themselves invariants of the local

equivalence class of the bigraded complex C(D). In Section 6.2.3 the invariants ν and τ are

demonstrated to also be additive under connected sum. This is as a corollary of the fact

that the complex C(D1#D2) satisfies the Künneth relation, see Proposition 6.16.

Theorem 6.6, determining the homology theory H(C−(D)), is also sufficient to determine

the infinite family of concordance invariants {ϕi}i∈N, introduced by Dai-Hom-Stroffregen-

Truong in [4]. This is a linearly independent family of concordance invariants, extracted

from what they call a reduced knot-like complex. Since the complex C(D) is equivalent to

the complex CFKR′(D), defined by [4], one could also simplify C(D) to a reduced knot like

complex. However, in the case of the three-strand pretzel knots P (2a,−2b−1, 2c+1), this

is not needed to compute the invariants {ϕi}i∈N, as demonstrated by Lemma 6.14.

Chapter 6 finishes by suggesting new areas where the techniques outlined within this

thesis might be employed, and open problems in the study of three-strand pretzel knots.

In particular, the remaining examples of three-strand pretzel knots whose slice genus

is not known will be discussed. The concordance invariants defined in Chapter 6 are

insufficient to answer these open questions; it is hoped, however, that since C(D) provides

more information that HFK−(D) and ĤFK(D), Theorem 6.1 determining C(P (2a,−2b−
1, 2c+ 1)) might prove useful for answering these questions in the future.

Figures within this thesis have been constructed by the author using the vector drawing

package [3]. Where these have been adapted from existing figures in other works, this has

been appropriately cited.
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Chapter 1

Overview of knots and knot Floer

homology

The primary object of study through this thesis will be links, embeddings of S1 t · · · t S1

into S3, and the invariants used to distinguish them. Knots are one-component links,

and are thus embeddings of S1 into S3. It will often be useful and convenient to present

these as subsets of S3 up to ambient isotopy in S3. Moreover, the distinction between

knots, and knot diagrams (their representation on the plane) will only be made when it is

explicitly needed. For expositional material on knots and knot diagrams, the author refers

the reader to [55].

1.1 Pretzel links

Pretzel links are a class of links that are amongst the most well-studied, having a sim-

ple presentation as a link diagram and many useful symmetries. A pretzel link L =

P (a1, a2, · · · , an) with ai ∈ Z\{0} admits a standard link diagram with ai half-twists at-

tached in the manner shown in Figure 1.1. The sign of ai denotes whether the twists on

the strand are positive half twists, or negative half-twists, see Figure 1.2.

Through rotation by 180 degrees, it is simple to see that there is an isotopy between

pretzel links P (a1, a2, · · · , an) and P (an, an−1, · · · , a1). Moreover, an isotopy exists be-

tween P (a1, a2, · · · , an) and P (an, a1, a2, · · · , an−1), and so the integers ai only determine

a diagram for a pretzel link up to cyclic permutation and reversing the order.

10
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Figure 1.1: An diagram of the two-component pretzel link P (3,−1, 4, 2)

Another useful symmetry is that the mirror of the link P (a1, a2, · · · , an), denoted by

P (a1, · · · , an) is isotopic to P (−a1,−a2, · · · ,−an). As a consequence, since the invariants

studied in this thesis react to mirroring in a known way, often only one of these pairs will

be considered.

Note, if all of the ai are of the same sign, the link is alternating. In fact, this condition is

necessary and sufficient when n ≥ 3, see for example [8]. Since pretzel links are a subset

of Montesinos links, for n ≥ 3 the standard pretzel link diagrams following Figure 1.1

are reduced Montesinos diagrams, which achieve their minimum crossing number by [22,

Thm. 10]. Moreover, it is easily demonstrated that the pretzel link P (a1, · · · , an) is a knot

if and only if there is at most one even coefficient ai when n is odd, and if and only if one

of the ai is even for even n.

Using Figure 1.1, since a3 and a4 are even, P (3,−1, 4, 2) can be seen to have more than

one component. Furthermore, this diagram is almost-alternating, that is a single crossing

change (to the negative half twist) would change this into an alternating diagram, with

all the coefficients ai being of the same sign.

A larger class of links than alternating links is that of quasi-alternating links, introduced

in [42, Def. 3.1]. Denote the class of quasi-alternating links as Q. Then, Q is the smallest

set of links such that

� The unknot belongs to Q.
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Positive half-twist Negative half-twist

Figure 1.2: The convention for positive and negative half twists in diagrams of pretzel

links. Note, that in an oriented pretzel link, the sign of the half twists does not necessarily

correspond to the sign of the oriented crossing.

� If L has a projection with a crossing c such that the 0 and 1 resolutions at c yield

links L0 and L1 with det(L) = det(L0) + det(L1), and L0, L1 ∈ Q, then L ∈ Q.

Note that all alternating links are contained within Q. Quasi-alternating pretzel links are

of particular interest because they are homologically thin with respect to both Khovanov

and knot Floer homology theories [31]. This means that the homology theory is supported

entirely in a single diagonal, and for quasi-alternating links this diagonal is determined by

the (classical) signature of the knot. In [8, Theorem. 1.4], Greene determines which of the

Montesinos links M (−e, ; (p1, 1), . . . , (pn, 1), (q1,−1), . . . , (qm,−1)) are quasi-alternating,

which when e = 0 specialises to determine the quasi-alternating pretzel links, stated here

in Theorem 1.1.

Theorem 1.1 The pretzel link P (p1, p2, · · · , pn,−q1, · · · ,−qm), with pi ≥ 2, qj ≥ 3 is

quasi-alternating if and only if one of the following holds.

1. n = 1, and p1 > min{q1, · · · , qm} or m ≤ 1.

2. m = 1, and q1 > min{p1, · · · , pn} or n ≤ 1.

The pretzel knots with three strands take one of the following forms: P (2a+1, 2b+1, 2c+1)

for a, b, c ∈ Z, or P (2a,−2b− 1,−2c− 1) and P (2a,−2b− 1, 2c+ 1), or the corresponding

mirrors, with a, b, c ∈ N.

In the first case, P (2a + 1, 2b + 1, 2c + 1), the knot Floer homology has been studied

in [41, Sec. 5]. As described above, when all of the coefficients have the same sign, the

knots are alternating, and hence are homologically thin. However, if b < 0 and a, c > 0,

the knots are non-alternating. The knot Floer homology of this family of pretzel knots

has been determined in [41, Sec. 5].

Theorem 1.2 [41, Theorem 1.3] For a, b, c ∈ N, the three strand pretzel knot K =
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P (2a+ 1,−2b− 1, 2c+ 1) has ĤFK(K, 1) isomorphic to

ĤFKd(K, 1) =


Zab+bc+b−ac(1) if b ≥ min(a, c)

Zb(b+1)
(1) ⊕ Z(b−a)(b−c)

(2) if b < min(a, c)

.

The proof of this theorem uses the long exact sequence in knot Floer homology associated

to the oriented skein relation presented in [39, Thm. 10.2]. In particular, for this family of

pretzel knots, resolving using the oriented Skein relation relates the knot Floer homology

of P (2a+ 1,−2b− 1, 2c+ 1) to the knot Floer homology of the torus link T2,2|a−b|, which

is well understood.

Note, if b > 0, and a, c < 0, one can mirror the knot to put it into the above form. This is

not an isotopy, but mirroring changes the knot Floer homology in a known way. Namely,

from [39], one has that

ĤFKd(K, i) ∼= ĤFK
−d

(K,−i).

One can then use the universal coefficient theorem to relate this cohomology group to

homology.

The remaining cases of pretzel knots have been considered by Eftekhary in [5], with the

‘hat’ version of knot Floer homology ĤFK calculated using Kauffman states. However, as

the author has determined, if the conjectural equivalence between the bordered invariant of

Ozsváth-Szabó and classical knot Floer homology holds, then ĤFK (P (2a,−2b− 1, 2c+ 1))

is more complicated than as presented in [5, Lem. 1, Thm. 1,2]. Using Theorem 6.3, ex-

amples of three strand pretzel knots can be presented that have ĤFK that disagrees

with the calculation in [5]. In particular, this can also be verified using the computer

implementation of [47], as described in Remark 6.4.

Both of these cases considered in [5] are non-alternating when a, b, c ≥ 1. They can be

quasi-alternating, precisely when the conditions of Theorem 1.1 are satisfied, but are not

always.

1.2 Classical knot Floer homology

Knot Floer homology is a family of homology theories providing invariants of unoriented

knots and links, originally outlined by Oszváth and Szabó in [39], and Rasmussen in

[53].
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This family consists of three ‘flavours’ of knot Floer homology associated to a knot K,

generalised to links in [43], taking the form of Z ⊕ Z-bigraded theories. These homology

theories have a chain complex generated by the same basis, but differing in the definition of

the differential and differing in the ring over which the chain complex is defined. The two

gradings associated to the chain complex (and homology theory) are the Maslov grading

and Alexander grading.

1.2.1 Heegaard diagrams and the knot Floer complex

As summarised by [29, Def. 3.1], a multi-pointed Heegaard diagram H = (Σ, α, β, w, z) for

a knot K is defined by the following.

� A closed surface Σ ⊂ S3 of genus g ≥ 0 splitting S3 into handlebodies U0 and U1.

Typically, one orients Σ as the boundary of U0.

� A collection α = {α1, · · · , αg+k−1} of pairwise disjoint, simple closed curves on Σ,

such that each αi bounds a properly embedded disk Dα
i in U0, and such that the

complement of these disks in U0 is a union of k balls. On Σ, by convention α-curves

are coloured red.

� A collection β = {β1, · · · , βg+k−1} with the same properties in the handlebody U1.

On Σ, by convention β-curves are coloured blue.

� Two collections of points on Σ, w = {w1, · · · , wk} and z = {z1, · · · , zk}, all disjoint

from each other and the α and β curves. Give the points wi a positive orientation,

and zj a negative orientation.

� The knot K is then the isotopy class of simple, closed curve formed by tracing a path

disjoint from the disks in each handlebody through the points w1, z1, w2, . . . , zk, w1

agreeing with the orientation.

In this thesis, Heegaard diagrams for knots are commonly doubly pointed, so one has

unique basepoints z and w. There are further admissibility conditions on Heegaard dia-

grams for knots, as described in [43, Sec. 3.1], and the reader is referred there for further

detail.

With a doubly pointed Heegaard diagram for a knot K, one can then form the generators

of the knot Floer complex CFK∞(K) as follows. Let Symg(Σ) denote the smooth, real
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2g-dimensional manifold

Symg(Σ) := Σg/Sg,

the g-fold product of Σ, quotiented out by the action of the symmetric group Sg.

The α and β curves then form two half-dimensional submanifolds Tα = α1 × · · · × αg and

Tβ = β1 × · · · × βg ⊂ Symg(Σ). Following [51], these tori are said to be real: fixing a

complex structure on Σ induces a complex structure on Symg(Σ), and in relation to this

complex structure the tori Tα and Tβ have tangent spaces containing no complex lines,

and so are totally real.

The intersection of the two submanifolds Tα and Tβ provides the basis for the modules in

knot Floer homology, namely: ĈFK(K), CFK−(K) and CFK∞(K).

Definition 1.3 Where F is a commutative ring, the module ĈFK(K) is defined as the

F-module freely generated by the intersection points Tα ∩ Tβ. Each of these intersection

points can be thought of as unordered g-tuples of points on Σ, with one point on each α

curve and each β curve.

These same intersection points also freely generate two more modules, CFK−(K) and

CFK∞(K), which for a doubly pointed Heegaard diagram are F[U ] and F[U,U−1] modules

respectively.

Unless otherwise specified, in this thesis F ∼= Z/2. It is also common to take F ∼= Z,

although this adds the complication of counting with sign, which is absent when F ∼=
Z/2.

An example of a suitable Heegaard diagram for the right-hand trefoil (the (2, 3)-torus

knot), is presented in Figure 1.3.

These generators admit a Maslov grading and an Alexander grading, M(x) and A(x)

respectively for x ∈ Tα ∩ Tβ. A relative bigrading is defined using Whitney disks between

intersection points.

From [40, Sec. 2.4], define the following for any Heegaard diagramH = (Σ, α, β, z, w).

Definition 1.4 For intersection points x, y ∈ Tα ∩ Tβ, denote by π2(x, y) the set of ho-

motopy classes of Whitney disks{
u : D2 → Symg(Σ)

∣∣∣∣ u(−i)=x, u(i)=yu(S1∩{Re<0})⊂Tβ
u(S1∩{Re>0})⊂Tα

}
.
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Such disks and are pseudo-holomorphic if they satisfy the non-linear Cauchy-Riemann

equations for a generic one-parameter family of almost-complex structures on Symg(Σ),

see [40, Sec. 3.2].

w

z

a

b

c

Figure 1.3: A Heegaard diagram for the right-hand trefoil. Note that Symg(Σ) ∼= Σ,

since this is a genus 1 Heegaard diagram. So, there are three generators for the knot Floer

complex, denoted a, b and c.

Define the space M(φ) as the moduli space of pseudo-holomorphic representatives of φ.

One can associate to this moduli space an integer µ(φ) known as the Maslov index. This

index is such that M(φ) is a smooth manifold of dimension µ(φ). Moreover, this index

is calculable in a combinatorial way following the work of [53, Sec. 9] and [23, Cor. 4.10],

through an examination of domains on the surface Σ associated to Whitney disks.

Definition 1.5 [40, Def. 2.13] Denote by D1, D2, . . . , Dm ⊂ Σ the closures of the regions

Σ\ (α ∪ β). A domain D(u) associated to Whitney disk u ∈ π2(x, y) is then

D(u) =

m∑
i=1

nzi(u)Di,

where zi ∈ int(Di), and nzi(φ) is the intersection number

#u−1
(
{zi} × Symg−1(Σ)

)
.

Remark 1.6 Every Whitney disk φ ∈ π2(x, y) determines a domain, i.e. the formal sum

of components of Σ\ (α ∪ β), but the interior of these domains does not uniquely deter-

mine the class φ ∈ π2(x, y). There are examples of formal sums of regions in Σ\ (α ∪ β)

that represent Whitney disks between different pairs of intersection points in Tα ∩ Tβ. In

Section 6.3.2, this will be discussed in greater depth in relation to punctured polygonal

domains, as defined by [9, Def. 6.4]. Figure 6.3 provides an example where the formal sum

of regions does not uniquely determine the corners of the domain.
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However, as discussed in [40, Sec. 3.5], Whitney disks between generators are uniquely de-

fined by their domains when one specifies the corners of the domain for Heegaard diagrams

of genus greater than one.

For a Whitney disk φ ∈ π2(x, y) with corresponding domain D(φ) ⊂ Σ, the corners of the

domain are points of intersection between α curves and β curves on Σ. These are points

on Σ, not elements of Tα ∩ Tβ ⊂ Symg(Σ). As described by [53, Sec. 9], for a formal

sum of regions in Σ, there are admissibility conditions on the multiplicities of the regions

incident with the α and β curves at a corner in order for this intersection point to be a

valid corner of a domain, see [53, Fig. 32].

The existence of an R-action onM(φ) by automorphisms of the disks fixing the endpoints

means that one can form a smooth, compact manifold M̂(φ) = M(φ)/R, which, when

µ(φ) = 1, means that M̂(φ) is a finite set of points. This action by R upon the moduli

space is most easily seen in terms of the cylindrical reinterpretation of [23], where Whitney

disks are now interpreted as strips R× [0, 1], with the action by R being translation.

For each φ ∈ π2(x, y), each basepoint v ∈ w∪z has a corresponding codimension 2 manifold

Rv = {v} × Symg−1(Σ) ⊂ Symg(Σ). One can then define nv(φ) ∈ Z as the intersection

number between φ (more formally the image of φ) and Rv.

Then, relative Maslov and Alexander gradings are defined as follows.

Definition 1.7 For x, y ∈ Tα ∩ Tβ, with φ ∈ π2(x, y):

M(x)−M(y) = µ(φ)− 2nw(φ),

M(Ukx) = M(x)− 2k, k ∈ Z,

A(x)−A(y) = nz(φ)− nw(φ),

A(Ukx) = A(x)− k, k ∈ Z.

This relative bigrading can further be fixed to an absolute grading, but first it is useful to

introduce the differential maps.
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Definition 1.8 For x ∈ Tα ∩ Tβ, define the differentials

∂̂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

nz(φ)=0=nw(φ)

(
#M̂(φ)

)
· y,

∂−x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1
nz(φ)=0

(
#M̂(φ)

)
· Unw(φ)y,

∂∞x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

(
#M̂(φ)

)
· Unw(φ) · y.

Then, ĈFK(K), CFK−(K) and CFK∞(K) are respectively the bigraded F-module, F[U ]-

module and F[U,U−1]-module generated by the points Tα ∩ Tβ, and one defines ĤFK(K),

HFK−(K) and HFK∞(K) as the respective homology theories.

These complexes, up to filtered chain homotopy equivalence, are invariants of knots, not

merely the Heegaard diagram associated to a knot.

Theorem 1.9 [39, Thm. 3.1] For K an oriented knot in S3, the filtered chain homotopy

type of the complex CFK∞(K) is a topological invariant of the knot. Moreover, the associ-

ated homology groups ĤFK(K) and HFK−(K) associated to subcomplexes of CFK∞(K)

are topological invariants of the knot.

The key element in the proof of this statement is demonstrating that two admissible

Heegaard diagrams for the same knot can be related by a sequence of moves, namely

stabilisation of the Heegaard diagram, destabilisation, isotopies of the α and β curves,

and handleslides. For three-manifolds, this is a classical result of Reidemeister and Singer,

but in [39, Sec. 3.2] Ozsváth and Szabó prove that each of these moves on a Heegaard

diagram for a knot does not change the filtered chain homotopy type of the complex, so

yielding the result.

1.2.2 Bifiltration of the full knot Floer complex

The full knot Floer complex CFK∞(K) can be thought of as a Z⊕Z-filtered complex over

F, following [39, Sec. 3.1]. Then, elements of CFK∞ are triples [x, i, j] with x ∈ Tα ∩ Tβ,

i, j ∈ Z. These generators are then representable on an (i, j) grid as points, see Figure 1.4.

Furthermore, one defines the action of U such that U · [x, i, j] = [x, i− 1, j − 1].
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The triple [x, i, j] then corresponds to generator U−ix, where x is has Alexander grading

j. This gives a useful diagram for the complex, with the complex lying in the (i, j) plane.

The differential is then defined as

∂∞([x, i, j]) =
∑

y∈Tα∩Tβ
φ∈π2(x,y)
µ(φ)=1

(
#M̂(φ)

)
[y, i− nw(φ), j − nz(φ)].

An example of this calculation is presented in Figure 1.4 for the Heegaard diagram in

Figure 1.3.

i = 0

a

b

c

Ua

Ub

Uc

U 2a

U 2b

U 2c

U−1b

U−1c

U−1a

Figure 1.4: The full knot Floer complex for the right hand trefoil pictured in Figure 1.3.

Note that there are two bigons in the genus 1 Heegaard diagram, one containing the base-

point w, and the other z. Each of these corresponds to a Whitney disk: φ ∈ π2(b, c) with

nz(φ) = 1, and the other ψ ∈ π2(b, a), with nw(ψ) = 1.

The Z ⊕ Z-filtration of the complex is then given by the coordinates, i.e. there exists

a filtration F : (Tα ∩ Tβ) × Z ⊕ Z → Z ⊕ Z defined as [x, i, j] 7→ (i, j). As described

by [39, Sec. 3.1], this allows the definition of subcomplexes since the differential is non-

increasing in both i and j, and a partial ordering can be placed on the filtration by defining

(i, j) ≤ (i′, j′) when i ≤ i′ and j ≤ j′.

1.2.3 Subcomplexes and absolute gradings

As summarised by [13, Sec. 2.2], placing conditions upon i and j allows one to extract

from this interpretation for CFK∞(K) the other complexes CFK−(K) and ĈFK(K),

and associated concordance invariants.
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Define the subcomplex C{i = 0} := {[x, 0, j]}x∈Tα∩Tβ , with the differential only counting

those φ with nw(φ) = 0, whose homology is isomorphic to ĤF (S3). This last group is

the hat version of the Heegaard Floer homology for the 3-manifold S3, as defined in [39].

This homology group has only a single generator, which is by convention in grading zero.

The corresponding generator in H∗ (C{i = 0}) is given a Maslov grading of 0, making the

relative grading into an absolute grading.

Then, the relative Alexander grading is made absolute by the fact that the Alexander

grading of ĤFK(K) is symmetric about 0, and as stated by [53], the filtered Euler char-

acteristic of ĤFK(K) is equal to the Alexander polynomial ∆K(t).

In fact, ĈFK(K) is equal to the complex C{i = 0}, equipped with the differential

∂̂([x, 0, j]) =
∑

y∈π2(x,y)
µ(φ)=1

nz(φ)=0=nw(φ)

#
(
M̂(φ)

)
· [y, 0, j].

This can be thought of as setting all vertical and horizontal arrows to 0, so only those

that are between generators with the same (i, j) coordinates contribute non-trivially to

the differential. Using Figure 1.4, one thus has that

ĤFKd(T2,3, s) =



F if (d, s) = (0, 1)

F if (d, s) = (−1, 0)

F if (d, s) = (−2,−1)

0 otherwise.

One can also define (CFK−(K), ∂−) as the complex
⊕

s∈ZC ({i ≤ 0, j = s}), equipped

with the differential

∂−([x, i, j]) =
∑

y∈π2(x,y)
µ(φ)=1
nz(φ)=0

#
(
M̂(φ)

)
· [y, i− nw(φ), j].

Each of the flavours of knot Floer homology then decomposes into graded parts, for exam-

ple HFK−(K) =
⊕

d,sHFK
−
d (K, s). Here d is the Maslov grading, and s is the Alexander

grading.
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1.3 Zemke’s reformulation

In [60, 62], Zemke provided a reformulation of the full knot Floer complex in terms of an

R-module, where R = F[U,U−1, V, V −1]. The two settings, i.e. the classical knot Floer

homology defined in [39, 53], and the setting presented in [60] are equivalent, as proved

in [60, Sec. 8]. They both take the form of complexes equipped with a Z ⊕ Z-bigrading,

and a Z⊕ Z-filtration, and one can translate between the two formulations.

TheR-module complex is of particular interest in this thesis because the bordered invariant

presented by Ozsváth-Szabó in [49], and concordance invariants defined by [4] are both

adapted from this formulation. The cut-and-paste methods of [47, 49] are central to the

determination of invariants for three-strand pretzel knots presented in this thesis, hence

Zemke’s formulation is the most convenient to use.

Definition 1.10 [4, 62] For a doubly pointed Heegaard diagram H = (Σ, α, β, z, w)

associated to a knot K as defined in [39, Def. 2.2], define CFKR(K) to be the R =

F[U,U−1, V, V −1] module freely generated by the intersection points Tα ∩ Tβ.

The complex CFKR(K) admits two integer valued gradings, grU and grV that have the

following relative grading formula for φ ∈ π2(x, y).

grU (x)− grU (y) = µ(φ)− 2nw(φ)

grV (x)− grV (y) = µ(φ)− 2nz(φ)

grU (Ux) = grU (x)− 2

grV (V y) = grV (y)− 2.

The differential in the complex CFKR(K) is then

∂(x) =
∑

y∈π2(x,y)
µ(φ)=1

#
(
M̂(φ)

)
· Unw(φ)V nz(φ)y.

The grading grU is known as the homological or Maslov grading, and one can check using

Definition 1.7 that this satisfies the same relative grading formula as the Maslov grading

as presented in [39]. However grV is not equal to the familiar Alexander grading, but it

can be recovered.

A(x)−A(y) = nz(φ)− nw(φ)

=
1

2
((grU (x)− grU (y))− (grV (x)− grV (y))) .
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These gradings can be lifted to absolute gradings, as is proved in [60, Sec. 5.5]. Moreover,

as proven by in [60, Sec. 8], the Ozsváth-Szabó and Zemke formulations are equivalent,

which is demonstrated by showing that the absolute gradings agree in the two formulations,

since both complexes have the same basis and same relative gradings.

It is worth noting the effect of the differential upon the bigrading, as it is not the same as

the classical knot Floer setting, which leaves the Alexander grading unchanged.

grU (∂(x)) = grU (x)− 1

grV (∂(x)) = grV (x)− 1.

In the complex CFK∞(K) in the Ozsváth-Szabó setting, one has an action on the complex

of multiplication by U . This drops the Alexander grading by 1, and the Maslov grading by

2. This has an analogous action in CFKR(K), which is multiplication by UV . So, taking

this product corresponds to multiplication by U in the Ozsváth-Szabó setting.

Furthermore, as stated in [62, Def. 2.1], there is a filtration Gi,j , defined as the subset of

the complex CFKR(K) generated by elements UmV n ·x for x ∈ Tα∩Tβ and m ≥ i, n ≥ j.
So, both the Zemke formulation and Ozsváth-Szabó formulation are Z⊕ Z-bifiltered and

bigraded.

This filtration is demonstrated in Figure 1.5, which exhibits Zemke’s reformulation of the

knot Floer homology for the Heegaard diagram of the right hand trefoil in Figure 1.3.

One key difference in diagrammatic representations of these two formulations is that the

grU -grading and grV -grading cannot be read off from the bifiltered diagram in the Zemke

setting, whereas one can read off the Alexander grading of states in the diagram for the

complex in the classical setting, see Figure 1.4.

Remark 1.11 It is not immediately apparent that the complex is indeed a knot invariant,

and also that the differential squares to zero. However, both of these are true. In a

generalisation to the link setting, it was proven in [61, Prop. 3.5] and [60, Prop. 2.1] that

if a link L has two admissible Heegaard diagrams H and H′, then there is a filtered, R-

equivariant chain homotopy equivalence between the associated complexes CFKR(H) and

CFKR(H′). Together with [39, Prop. 3.5, Thm. 3.1], this equivalence between Heeagaard

diagrams is enough to prove that the complex is a knot invariant.

Although the generalisation of the complex to links does not have ∂2 = 0, as demonstrated
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a

b

c

V a

V b

V c

Ua

Ub

Uc

UV a

UV b

UV c

U−1a

U−1b

U−1c

U−1V a

U−1V b

U−1V c

V −1a

V −1b

V −1c

U 0

V 0

Figure 1.5: Diagrammatic representation of the complex CFKR(T2,3), from the Heegaard

diagram represented in Figure 1.3. Note, the green arrows represent ∂U , and the red ∂V ,

as introduced in Section 1.4.1. The product UV in this setting moves the generators down

and left in the filtration, as multiplying by U does in the Ozsváth-Szabó setting.

by [59, Lem. 2.1] in the case of doubly pointed Heegaard diagrams for knots, or indeed

2n-pointed diagrams for links, ∂2 is equal to 0, and so CFKR(K) is a chain complex.

As noted by [4], useful properties of the full knot Floer complex CFK∞(K) are echoed in

Zemke’s setting.

Remark 1.12 � There is a filtered, R-equivariant, chain homotopy equivalence be-

tween the complexes CFKR(K#J) and CFKR(K)⊗CFKR(J), see [62, Thm. 1.1].

� There is a filtered, R-equivariant, chain homotopy equivalence between the com-

plexes CFKR(−K) and CFKR(K)∗, where ∗ denotes the dual complex, see [62,

Lem 2.17, 2.18].
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1.3.1 Local equivalence

There is a notion of equivalence of complexes CFKR(K) which is useful in the definition

of the concordance invariants in [62] and [4]. This is local equivalence.

Definition 1.13 [4, Def. 2.4] Two (grU , grV )-bigraded complexes C1 and C2, both R-

modules, are defined to be locally equivalent if there are filtered, grading-preserving, R-

equivariant chain maps f : C1 → C2 and g : C1 → C2 such f and g induce isomorphisms

on homology.

This also has a refinement to a setting over a different ring: R′ = F[U, V ]/(UV ). This

is the setting used by Dai et al in [4] to define concordance invariants from Zemke’s

reformulation. The properties in Remark 1.12 also hold when one uses the ring R′ in

place of R. Define the complex CFKR′(K) in the same way as CFKR(K) is defined in

Definition 1.3, except now taking UV = 0.

As remarked above, multiplication by UV in CFKR(K) corresponds directly with multi-

plication by U in the CFK∞(K) setting. The differential in CFKR′(K) now has coeffi-

cients determined by counting pseudo-holomorphic representatives of those Maslov index

one disks in the Heegaard digram passing over at most one of the basepoints.

The advantage of this is twofold. Firstly, by keeping track of less information, the cal-

culation of the complex and associated invariants is easier: as evidenced by the utilisa-

tion of R′ in the algorithmic construction of [47]. Secondly, as noted by [4, Thm. 1.3]

and [11, Prop. 4.1], the local equivalence classes of complexes in this ring R′ admit a

total ordering. As proved in [4], the notion of local equivalence classes of CFKR′(K) are

identical to the ε-equivalence classes defined in [11], and using the total order available on

the equivalence classes allows one to prove linear independence results in the topological

concordance group.

Remark 1.14 It is important to note the distinction between the knot-like complexes de-

fined as local equivalence classes of CFKR′(K) by [4] and the chain complex defined by

Ozsváth-Szabó in [49].

The first construction is a modification of Zemke’s reformulation of classical knot Floer ho-

mology, and so the differential maps in the complex necessarily count pseudo-holomorphic

representatives of Whitney disks. The advantage is that the properties of knot Floer ho-

mology pass to the new perspective, so invariants of local equivalence classes of CFKR′(K)
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are concordance invariants of the knot.

Because the setting in [47,49] is purely the association of an algebraic invariant to a knot,

when the invariant C(D) was first constructed there was only a conjectural equivalence

between this bordered invariant and the classical knot Floer setting. Hence, invariants

determined from equivalence classes of the bordered invariant C(D) defined in [49] were

not necessarily concordance invariants, as one could not utilise information on behaviour

under connect sums and mirror reflection from knot Floer homology.

The recent proof of this conjectural equivalence in [48] does demonstrate that invariants

of local equivalence classes of complexes C(D) are also invariants of the local equivalence

classes of the corresponding complexes CFKR′(D), and so are invariants of concordance

classes. One can still examine the effect of taking connect sums of knots in the alge-

braic invariant of Ozsváth-Szabó without using this equivalence, as will be discussed in

Section 6.2.3.

1.4 Knot-like complexes

As introduced by [4] using their modification of Zemke’s reformulation of knot Floer ho-

mology, one can undertake the abstract study of (grU , grV )-bigraded complexes over the

ring R′. From these complexes, one can extract numerical invariants of the local equiv-

alence class of complex without reference to the fact that these complexes arise from a

knot.

Definition 1.15 For C a (grU , grV )-graded chain complex over R′ ∼= F[U, V ]/UV , a V -

nontorsion tower is said to be a generator of F[V ] in H∗(C/U), and a U -nontorsion tower

is said to be a generator of F[U ] in H∗(C/V ).

Definition 1.16 [4, Def. 3.1] C is defined to be a knot-like complex if C is a free, finitely

generated bigraded chain complex over R′, such that

1. The differential ∂ of the chain complex affects the bigrading by (−1,−1).

2. H∗(C/U) has a single V -nontorsion tower lying in grU = 0.

3. H∗(C/V ) has a single U -nontorsion tower lying in grV = 0.

The U and V -tower classes defined above will be important in the determination of local

equivalence for knot-like complexes. This is defined slightly differently than for the local
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equivalence classes of CFKR′(K) in Definition 1.13, as C1 and C2 knot-like complexes are

defined to be locally equivalent if there are maps f : C1 → C2 and g : C2 → C1 that are

absolutely U -graded, relatively V -gradedR′-equivariant chain maps that are isomorphisms

on H∗(Ci/U)/V−torsion.

In fact, it is proven in [4, Lemma 6.9] that two locally equivalent knot-like complexes do

in fact have absolutely graded isomorphisms between their homologies, but the original

notion introduced is weaker.

Remark 1.17 The complex CFKR(T2,3) shown in Figure 1.5 has the differential ∂U

marked in green, and ∂V marked in red. Modding out by UV would not modify the axes

of the diagram, as these would not contain UV -product terms. Then, the corresponding

complex CFKR′ would be a knot-like complex, with grU (a) = 0 as a V -nontorsion tower,

and grV (c) = 0 as a U -nontorsion tower.

1.4.1 Reduced knot-like complexes

In the construction of concordance invariants in knot Floer homology, it is convenient

to treat the horizontal differential (non-decreasing in U) or vertical differential (non-

decreasing in V ) separately. More specifically, constructions like [14, Sec. 2.2] make use

of the fact that one can find equivalent complexes that are ‘vertically’ or ‘horizontally’

simplified. A similar notion exists for knot-like complexes, that of reduced knot-like com-

plexes and standard complexes, and much use is made of this in the determination of the

family of concordance invariants in [4].

Definition 1.18 [4, Def. 3.7] Recall, a knot-like complex is a freely-generated chain com-

plex over R′. Let {xi} be an R′-basis for the knot-like complex C.

C is said to be a reduced knot-like complex if for every xi, one has that

∂(xi) =
∑
j 6=i

Pj(U, V )xj ,

where each polynomial Pj(U, V ) is either zero, or a polynomial in either U or V of degree

≥ 1 with no constant term.

Hence, as no constant term appears in each Pj(U, V ), the differential ∂ can be subdivided

into ∂ = ∂U + ∂V , where ∂U and ∂V have image with polynomials in U or V respectively.

By definition all reduced knot-like complexes are knot-like complexes. Every non-zero



CHAPTER 1. OVERVIEW OF KNOTS AND KNOT FLOER HOMOLOGY 27

differential has an image with polynomial terms in U or V with strictly positive powers,

and so in the Z ⊕ Z-filtered picture no arrow representing the differential remains at the

same coordinate. With the reformulation of ∂̂ in Zemke’s setting, a reduced knot-like

complex is thus generated by elements that all lie in ker(∂̂), and since ∂U and ∂V decrease

either the horizontal or vertical coordinate, no generator lies in im(∂̂). Consequently,

generators of a reduced knot-like complex are in bijective correspondence with generators

of ĤFK(K).

Using a similar construction to that of horizontally and vertically simplified bases in clas-

sical knot Floer homlogy presented in [12], one has the following lemma. This is of use in

the definition of the concordance invariants {ϕj}j∈N, introduced in Section 6.2.2.

Lemma 1.19 [4, Lemma 3.8] Every knot-like complex C is locally equivalent to a reduced

knot-like complex C ′.

The proof of the above lemma presents an algorithm for the determination of a locally

equivalent reduced knot-like complex, based upon the fact that for a basis element x of C

such that ∂(x) contains a term xi without a U or V polynomial, then one can construct a

split short exact sequence

0→ 〈x, ∂(x)〉 → C → C ′ → 0,

such that the projection p : C → C ′ and section s : C ′ → C are isomorphisms on homology,

since 〈x, ∂(x)〉 is by construction acyclic. These maps then provide a local equivalence

between C and C ′, a knot-like complex with at least one fewer generator not satisfying

the conditions of a reduced knot-like complex. Proceeding in this manner yields a locally

equivalent reduced knot-like complex.

There is, however, no guarantee that the algorithm presented in [4, Lemma 3.8] yields a

unique result, nor whether the generators of the reduced knot-like complex C ′ correspond

to single generators of C. Generators of C ′ can be the sum of generators of C, and so if the

generators of C are in correspondence with Kauffman states (introduced in Chapter 2),

one can lose this correspondence when working with a locally equivalent reduced knot-like

complex.



Chapter 2

Kauffman states and three strand

pretzel knots

In order to define the knot Floer complex associated to a knot, it is necessary to specify

a Heegaard diagram (Σ, α, β, z, w), and the intersection points Tα ∩ Tβ.

The choice of Heegaard diagram does not alter the filtered chain homotopy type of the

knot Floer complex, as noted in Theorem 1.2.1. But, certain choices of Heegaard diagram

can ease the computation of the knot Floer homology. In some fortunate cases it is possible

to choose a Heegaard diagram for which the counts of pseudo-holomorphic representatives

of Whitney disks is relatively simple.

As demonstrated by [35], using an arc-presentation of a knot one can use ‘grid diagrams’

to define a genus one Heegaard diagram for any knot. Grid diagrams are computationally

useful, because they are constructed in such a way that not only can Whitney disks with

Maslov index equal to 1 be read off combinatorially from the diagram — see [30] — but

also that these disks have a known count of pseudo-holomorphic representatives. However,

this comes at the cost of drastically increasing the number of intersection points in the

Heegaard diagram, yielding a more unwieldy complex.

Another method for producing the knot Floer complex for a knot comes from thickening

a projection of the knot to form a genus (c+ 1) Heegaard diagram, where c is the number

of crossings in a knot diagram. This process was originally introduced in [36], and the

generating intersection points Tα∩Tβ are in bijective correspondence with Kauffman states

28
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of the diagram.

2.1 Ozsváth-Szabó’s definition of Kauffman states

The use of Kauffman states in the calculation of knot Floer homology started with Ozsváth

and Szabó’s paper [36]. Kauffman states were originally introduced by Kauffman in [16,

Ch. 2], and from these states the Alexander polynomial of a knot is calculable. Indeed,

in [17] it is proven that the Kauffman states model for knot Floer homology introduced

by [36] directly categorifies the Alexander polynomial in the setting of [16].

An early application of the Kauffman state model in [36] is the determination that the

knot Floer homology of an alternating knot K has ĤFKs+σ
2
(K, s) ∼= F|as| [36, Thm. 1.3].

Here σ is the signature of the knot, and as is the coefficient of the Alexander polynomial

in degree s.

Definition 2.1 [36, Def. 1.1] For a knot K, consider the 4-valent graph G from projection

of this knot into the plane z = 0. This cuts the plane into regions. Choose two regions

separated by a single edge of the graph G. Denote these regions by A and B, and mark

this edge. Note, this edge corresponds to an arc in a knot diagram of K, and this is a

decorated projection for the knot K.

Then, each vertex of the graph has 4 quadrants, each of which is a corner of some region

of the graph G. Assign a decoration in one of the quadrants by each vertex, such that no

decoration is present in regions A or B, and such that each region other than A and B

has only a single marked corner.

Such a decorated diagram is a Kauffman state for the knot K. In place of 4-valent graphs

G, one can consider the corresponding picture in the original knot diagram. The 4-valent

graph G can then be yielded by joining the arcs at each crossing. An example can be seen

in Figure 2.1. The Kauffman state for a knot diagram should have a marked point on one

arc, a decoration quadrant at each crossing, and every region (excepting A and B) should

contain exactly one decoration.

To summarise, a Kauffman state for a knot is a decorated knot projection associated to

a diagram for the knot. From this collection of Kauffman states — namely the different

ways to decorate this knot projection — one can extract information like the Alexander

polynomial for the knot. If one takes a different projection for the knot, for example one
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from a different, isotopic knot diagram, the projection has similarly defined Kauffman

states from which the same information about the knot can be drawn. However, this is a

different collection of Kauffman states, and there need not be a bijection between the two

sets of states.

Ozsváth and Szabó associate two integer values to each Kauffman state, determined

through the total of local contributions across all crossings in a knot diagram. To each

crossing c in a knot diagram, half-integer values M(c) and A(c) can be assigned, based

upon which quadrant is occupied by the marked point of that crossing, following Fig-

ure 2.2.

Definition 2.2 Using the gradings depicted in Figure 2.2, let C(K) be the crossings in a

knot diagram of K. Then, define the Maslov grading of a Kauffman state x as

M(x) :=
∑

c∈C(K)

M(c),

and the Alexander grading of a Kauffman state x as

A(x) :=
∑

c∈C(K)

A(c).

A

B

Figure 2.1: A Kauffman state for the oriented figure 8 knot is shown here. Note, the

regions A and B neighbour the marked arc, and all conditions for Kauffman states are

satisfied.

Then, Ozsváth and Szabó prove the following theorem, detailing the correspondence be-

tween Kauffman states and the knot Floer complex.
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Theorem 2.3 [36, Thm. 1.2] For K a knot in S3, choose a decorated projection for K.

Then there is a Heegaard diagram H = (Σ, α, β, z, w) for K such that ĈFK(K) is freely

generated by Kauffman states, and there is equality between the Maslov and Alexander

indices of Kauffman states, and the Maslov and Alexander gradings of Tα ∩ Tβ.

Local Maslov contributions

Local Alexander contributions

−1 +1

−1
2

−1
2

+1
2

+1
2

Figure 2.2: The contributions to M and A at each crossing, as defined by [36, Figs. 2,3].

A Heegaard diagram can be associated to a knot diagram as follows. Take the boundary

of a tubular neighbourhood of the graph G, which for a knot diagram with c crossings is

a (c + 1) genus surface, Σ. Add an α corresponding to the boundary of each region in

the decorated projection, excepting B. At the marked point of the decorated projection,

place a meridional curve β0, and the two basepoints either side of this curve. Place the

remaining β curves corresponding to the crossing of the knot diagram. This is detailed

more fully in [36, Sec. 2.2], but should be clear from Example 2.4.

Example 2.4 Consider the three crossing unknot, with two positive crossings and one

negative crossing. With a marked edge as in Figure 2.3, there are three possible Kauffman

states, denoted a, b and c.

A Kauffman state marks each crossing in a knot diagram with a point. In the Heegaard

diagram this marked point corresponds to the choice of an intersection point between an α-

curve and β-curve at the tubular neighbourhood of this crossing. This choice then dictates

that no other points may be put on these curves, just as marking a point at a crossing forces

that there are no other marked points in that region, or at that crossing. See Figure 2.4 for

generators in the Heegaard diagram associated to two of the Kauffman states in Figure 2.3.
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Also, note that at the distinguished edge, there is only one α curve intersecting the β curve

in the tubular neighbourhood of this edge. Hence, all generators of Tα ∩ Tβ ⊂ Symc+1(Σ)

have this intersection point as part of the unordered (c+ 1)-tuple.

a b c

Figure 2.3: The three possible Kauffman states associated to a knot diagram for an

unknot with three crossings. Using Figure 2.2, the bigrading (M,A) of state a is (0, 0), the

bigrading of b is (1, 1), and the bigrading of c is (0, 1).

The equivalence in the grading information is then proved by Ozsváth-Szabó using an

action relating two Kauffman states called transpositions, and how these correspond to

domains, defined earlier in Definition 1.5.

2.1.1 An observation on this model and the grading information

When trying to compute knot Floer homology using this model, there is a slight nuance

that should be noted. The algorithm given in [36, Sec. 2.2] associating a Heegaard dia-

gram to a decorated knot projection is detailed in the position of the α and β curves, as

exemplified in Figures 2.3 and 2.4.

Using the gradings for Kauffman states in Definition 2.2, one has that the bigradings of

the states shown in Figure 2.3 are M(a) = 0, A(a) = 0; M(b) = 1, A(b) = 1; M(c) = 0,

A(c) = 1.

From the definition of a Whitney disk given in Definition 1.4, the rectangular domain D(φ)

highlighted in Figure 2.4 might thus be thought of as corresponding to a Whitney disk

φ ∈ π2(c, b). Since Whitney disks map the interior of the disk D2 ⊂ C to the corresponding

region in Symg(Σ), and S1 ∩ {Re < 0} to Tβ. Hence, the domain seems to represent a

Whitney disk from c to b.

A helpful way to think of this is using [40, Lem. 3.6]. The disk φ ∈ π2(x, y) is described
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z

w

Figure 2.4: A Heegaard diagram constructed using the algorithm of [36, Sec. 2.2] for the

three crossing unknot in Figure 2.3. Shown are the generators of ĈFK(U) corresponding

to the Kauffman states c (solid disk) and b (open disk).

by a domain D(φ), and the spaces S1 ∩ {Re < 0} ⊂ D2 and S1 ∩ {Re > 0} ⊂ D2 are

carried by φ to a path in Symg(Σ) with preimage in Σ×g of g arcs in the β and α curves

respectively. The arcs start at corners of the domain corresponding to the intersection

point x and terminate at corners for intersection point y. Travelling along one of these β

arcs from an x-corner to a y-corner should keep the interior of the domain on the right.

Hence, the domain pictured in Figure 2.4 is seemingly one representing a Whitney disk

from c to b.

The Maslov index and pseudo-holomorphic count of the Whitney disk φ is then calculable

using a result of [53]. A domain is said to be polygonal if it is an embedded disk in Σ with

only acute corners, following [23,53].

Lemma 2.5 [53, Lemma. 9.11] If D(φ), the domain of a homotopy class φ ∈ π2(x, y),

is a polygonal domain, then µ(φ) = 1, and #M̂(φ) = ±1.

Applying this lemma, one has that µ(φ) = 1, nz(φ) = 0 = nw(φ). Using the relative

grading information in Definition 1.7, one should have that M(c) −M(b) = 1 − 0 = 1.

But, using Ozsváth-Szabó’s gradings from Figure 2.2, M(c)−M(b) = 0− 1 = −1.
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Consequently, one might thus deduce that there is either an inconsistency with the grading

information provided by Definition 2.2, or in the construction of the Heegaard diagram

from a knot projection, since this is a Heegaard diagram shows a Maslov index 1 domain

that should contribute to the differential ∂̂.

In fact, this is not the case, and the description of Heegaard diagrams for knots arising from

Kauffman states does not lead to an inconsistency. The definition of a Heegaard diagram

for a knot as presented in Section 1.2.1 and [36, Sec. 2.2], specifies that the closed surface

Σ be oriented as the boundary of U0, the handlebody in which each α-curve bounds a

properly embedded disk. Looking at Figure 2.4, this would mean that the handlebody U0

is the one including the point at infinity.

Thus, the appropriate way to orient the surface Σ is as the boundary of this surface,

rather than as one might think as the boundary of the thickened up knot projection. This

offers a rectification of the seeming inconsistency, as departing from the corner of b in Σ

along the blue β-curve, the interior of the disk is kept on the right of the observer, and

hence the domain D(φ) shown corresponds to φ ∈ π2(b, c), as required by the grading

information1.

This further makes sense of the seeming inconsistency in the paper introducing the use of

Kauffman states by Ozsváth-Szabó, namely in [36, Lem. 2.3 and Fig. 5]. In said figure,

copied in Figure 2.5 the Heegaard diagram for the (partial) knot diagram is constructed

as described, and a rectangular domain between the two generators. The dark circles

represent the generator x, and the light represent the generator y. For the domain shown to

represent a Whitney disk φ ∈ π2(x, y), one must use the somewhat unintuitive orientation

described above.

2.2 Kauffman states for three strand pretzel knots

As noted in Section 1.1, the three-strand pretzel knots that do not have well-understood

knot Floer homology fall into one of two categories, P (2a,−2b−1,−2c−1) or P (2a,−2b−
1, 2c + 1) where a, b, c ∈ N, since the knot Floer homology of three-strand pretzel knots

with all odd coefficients has already been studied in [41].

1The author extends his thanks to Dr. Owens for discussions on clarifying this matter, who extends his

own thanks to Matthew Hedden.
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Figure 2.5: A copy of [36, Fig. 5] demonstrating the seeming inconcistency between the

Kauffman states for a knot diagram and the associated Heegaard diagram for the knot.

The shaded region is the support of a class φ ∈ π2(x, y), where y is the solid black dot, and

x the white dot. As in the construction of [36], the β curves are around each crossing.

Following the definitions of [32], the family of three strand pretzel knots P (2a,−2b −
1,−2c− 1), with a, b, c,∈ N, the knots are all negative.

Definition 2.6 [32, Def. 2.1] An oriented knot K is defined to be positive if it admits an

oriented knot diagram with only positive crossings, as in Figure 2.6. Likewise, if it admits

a diagram with only negative crossings, it is defined to be negative.

From Section 1.1, one thus has that the knots P (−2a, 2b + 1, 2c + 1) are positive (as

the mirrors of a negative knot). Positive knots, and the slightly more general family

of quasipositive knots have well-understood concordance invariants and 4-genus g4, with

corresponding results stated in Section 3.3.

Kauffman states are particularly useful in the study of the knot Floer homology of three

strand pretzel knots (and the bordered invariant of Ozsváth-Szabó [49]) because the rigid

structure of the Kauffman states means the generators are well understood, and moreover

lend themselves to inductive arguments.

Because the algebraic construction of [49] places the distinguished edge at the global
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Oriented positive Oriented negative

Figure 2.6: The classification of crossings as positive or negative in an oriented knot

diagram.

minimum, Figures 2.7 and 2.8 describe the possible types of Kauffman states for the

pretzel knots P (−2c−1,−2b−1, 2a) ∼= P (2a,−2b−1,−2c−1) and P (2c+1,−2b−1, 2a) ∼=
P (2a,−2b−1, 2c+1) respectively, slightly changing the notation of [5]. Using Definition 2.2,

the bigradings of the Kauffman states are displayed in Tables 2.1 and 2.2, using the

indicated orientations.

A21 B21 C32

Figure 2.7: The three types of Kauffman states for the pretzel knots P (−2c − 1,−2b −
1, 2a), shown here with a = b = c = 1. The indices dictate the position of the marked

points in the interior regions, read from left to right. The left hand set of half-twists are

those described by the coefficient −2c− 1, the middle are those described by −2b− 1, and

the right by 2a.

The grading information displayed in Tables 2.1 and 2.2 can enable one to determine

topological information about the knot and the knot Floer homology, using the definitions

above, and properties of knot Floer homology.

First, it is simple to see that in each of the cases, the knot Floer homology is contained in

at most two diagonals. Define the ∆-grading as ∆ = M −A, then since the differential in

ĈFK(K) drops M by 1 and keeps A constant, ∆(∂̂(x)) = ∆(x)− 1.
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A12 B21 C13

Figure 2.8: The three types of Kauffman states for the pretzel knots P (2a,−2b−1, 2c+1),

shown here with a = b = c = 1. The indices dictate the position of the marked points in

the interior regions, read from left to right.

For the knots P (2a,−2b− 1,−2c− 1), the homology has possible support in the diagonals

∆ ∈ {c+ b, c+ b+ 1}. Furthermore, the only generators in the c+ b diagonal must be Cij

states. Using the restrictions on i, j, and k, one has that

c− b ≤A(Ajk) ≤ b+ c+ 1

−b− c− 1 ≤A(Bik) ≤ c− b

−b− c ≤A(Cij) ≤ b+ c.

By the fact that the only states in the maximal Alexander grading b+ c+1 are Ajk states,

and that these are in the least ∆-grading, they cannot be in the image of ∂̂, since this

would require Cij states in the same Alexander grading (a contradiction). Furthermore,

they must be in the kernel of ∂̂, since ∂̂ drops ∆-grading by 1, yet there are no states in

∆-grading c+ b− 1. Consequently, one has the following.

Lemma 2.7 For K = P (2a,−2b− 1,−2c− 1), with a, b, c ∈ N, the ĤFK(K) has

ĤFK(K, b+ c+ 1) ∼= Fa(2b+2c+2),

with no non-trivial homology groups in higher Alexander gradings.

Proof The only states in the maximal Alexander grading are A2b+1,odd, of which there are

a examples. Using the above observations on the ∆-grading then gives the results.

Lemma 2.7 then provides more information about the knots using results from knot

Floer homology. From [38, Thm. 1.2], the Seifert genus g3 of a knot K is determined
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State Maslov Alexander

Ajk j + ε(k) + 2c j + ε(k) + c− b− 1

Bik −i+ ε(k) + 2c+ 1 −i+ ε(k) + c− b
Cij −i+ j + 2c −i+ j + c− b

Table 2.1: Table giving the Maslov and Alexander gradings of the Kauffman states dis-

played in Figure 2.7 for the knot P (2a,−2b − 1,−2c − 1). Here, ε(t) = t mod (2), and

1 ≤ i ≤ 2c+ 1, 1 ≤ j ≤ 2b+ 1, 1 ≤ k ≤ 2a.

State Maslov Alexander

Ajk j + ε(k)− 2c− 2 j + ε(k)− b− c− 2

Bik i+ ε(k)− 2c− 1 i+ ε(k)− b− c− 2

Cij i+ j − 2c− 2 i+ j − b− c− 2

Table 2.2: Table giving the Maslov and Alexander gradings of the Kauffman states dis-

played in Figure 2.8 for the knot P (2a,−2b− 1, 2c+ 1).

by ĤFK(K), namely

g3(K) = max
s

{
rk
(
ĤFK(K, s)

)
> 0
}
.

Moreover, [33, Thm. 1.1] determines that

rk
(
ĤFK(K, g3)

)
= 1⇔ K is fibred.

So, one has the following easy corollary.

Corollary 2.8 The knot K = P (2a,−2b− 1,−2c− 1) has Seifert genus b+ c+ 1, and is

fibred only when a = 1.

These facts are more easily seen in other ways, as these knots are negative (so have positive

mirrors), but this will be discussed in terms of concordance invariants later.

Similar information can be seen for the family P (2a,−2b−1, 2c+1), using the information

in Table 2.2.

Lemma 2.9 The knot K = P (2a,−2b− 1, 2c+ 1), for a, b, c ∈ N is fibred, and has Seifert

genus g3(K) = b+ c.
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Proof Using the inequalities for i, j and k in Table 2.1, the grading information in Ta-

ble 2.2 yields

−b− c− 1 ≤A(Ajk) ≤ b− c

−b− c− 1 ≤A(Bik) ≤ c− b

−b− c ≤A(Cij) ≤ b+ c.

Since b and c are both positive, one there is a unique state with maximal Alexander

grading, namely C2c+1,2b+1, with A(C2c+1,2b+1) = b+ c.

The knot Floer homology of this knot has a support in at most two ∆ diagonals, ∆ = b−c
spanned by Ajk and Cij states, and ∆ = b− c+ 1, spanned by Bik states. Hence, since ∂̂

drops the ∆ grading by one, the states Cij lie in ker(∂̂) as they occupy the least ∆ grading.

Furthermore, b + c > c − b = maxx∈Bik {A(x)}, and so since the states Bik are the only

states in the ∆ = b − c + 1 diagonal, one has that any state Cij with A(Cij) > c − b

must be a generator of ĤFK(K). So, ĤFK(K, b + c) ∼= F(2b), and the result follows

from [33, Thm. 1.1] and [38, Thm 1.2].

More information about possible Maslov index 1 disks in the corresponding Heegaard

diagram is also extractable from Table 2.2, as displayed in the following lemma.

Lemma 2.10 If φ ∈ π2(x, y) is a Whitney disk for the Heegaard diagram corresponding

to the decorated knot diagrams in Figure 2.8 for the knot K = P (2a,−2b− 1, 2c+ 1), then

if µ(φ) = 1, one has the following restriction on nz(φ) + nw(φ).

x

y
Ajk Bik Cij

Ajk 1 2 1

Bik 0 1 0

Cij 1 2 1

Table 2.3: Table describing the quantity nw(φ) + nz(φ) for φ ∈ π2(x, y) with µ(φ) = 1 in

the Heegaard diagram for P (2a,−2b− 1, 2c+ 1) from the Kauffman states in Figure 2.8.

Proof Only the calculation for x = Ajk will be presented here, as the other cases are very

similar.
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Assume that one has a disk φ ∈ π2(Ajk, Apq), with µ(φ) = 1. Then, using Definition 1.7

yields

M(Ajk)−M(Apq) = (j + ε(k))− (p+ ε(q))

= 1− 2nw(φ)

A(Ajk)−A(Apq) = (j + ε(k))− (p+ ε(q))

= nz(φ)− nw(φ).

Hence, one has that 1− 2nw(φ) = nz(φ)− nw(φ), and so 1 = nz(φ) + nw(φ).

Likewise, with x = Ajk, y = Bpq, one has that

M(Ajk)−M(Bpq) = (j + ε(k))− (p+ ε(q))− 1

= 1− 2nw(φ)

A(Ajk)−A(Bpq) = (j + ε(k))− (p+ ε(q))

= nz(φ)− nw(φ).

So, one has that 2− 2nw(φ) = nz(φ)− nw(φ), and so 2 = nz(φ) + nw(φ).

Setting x = Ajk, y = Cpq, one as that

M(Ajk)−M(Cpq) = (j + ε(k))− (p+ q)

= 1− 2nw(φ)

A(Ajk)−A(Cpq) = (j + ε(k))− (p+ q)

= nz(φ)− nw(φ).

which yields nz(φ) + nw(φ) = 1.

By the principle of positivity of domains, see [53, Sec. 2.4], no domain D(φ) with pseudo-

holomorphic representative can have negative coefficients in the formal sum of regions

presented in Definition 1.5, and so to be counted in any differential ∂̂, ∂− or ∂∞, both nz

and nw are strictly non-negative.

So, guided by Lemma 2.10, one could then determine that the differential ∂−(Cij) would

have states U2Bpq as possible elements in the image. This would then require that

M(Bpq) = M(Cij) + 3, restricting the possible states in the image of ∂−. Hence, the

gradings of the Kauffman states can inform the search for Whitney disks that contribute

to the differentials in knot Floer homology.



Chapter 3

Concordance invariants

The package of knot Floer homology, and the reformulations by [4, 60, 62] allow the ex-

traction of concordance invariants associated to subcomplexes of CFK∞(K). Recall the

following definition from [55].

Definition 3.1 Oriented knots K1,K2 ⊂ S3 are smoothly concordant if there is some

smooth embedding of the cylinder S1 × [0, 1] into S3 × [0, 1] such that ∂(S1 × [0, 1]) =

(K1 × {0}) ∪ (−K2 × {1}).

A knot K is said to be smoothly slice if K ⊂ S3 is the boundary of a smoothly embedded

D2 ⊂ B4. It is well known (see [55]) that the connect sum K# −K is slice, where −K
is the mirror-reverse of the oriented knot K. Every slice knot is thus concordant to the

unknot.

Concordance of knots defines an equivalence relation on the set of knots, and hence one

can define the group

C =
{
K ⊂ S3 a knot

}
/∼,

whose elements are concordance classes of knots, with the operation of connect sum. The

identity element is then the class of slice knots, and the inverse element of the class [K]

is [−K].

Any function f : C → G, where G is some algebraic object is then said to be a concordance

invariant. If G is a group, f need not necessarily be a homomorphism, although many

concordance invariants are, for example the τ -invariant defined by Ozsváth-Szabó is a

group homomorphism from C to Z.

41
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3.1 Ozsváth-Szabó’s τ-invariant.

In [37], a surjective group homomorphism τ : C → Z was defined by examining maps of

subcomplexes into C{i = 0}, introduced in Section 1.2.3. This integer-valued invariant has

two equivalent formulations, with this equivalence demonstrated in [50, App. A].

Definition 3.2 Following [37], define the subquotient complex

C{i = 0} ∼= C{i ≤ 0}/C{i < 0},

with the differential induced by this quotient. Namely, one has

∂vert([x, 0, j]) =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1
nw(φ)=0

#
(
M̂(φ)

)
[y, 0, j − nz(φ)].

From Section 1.2.3 and [37, Sec. 2.2],

H∗ (C{i = 0}) ∼= ĤF (S3) ∼= F(0).

Using the filtration on CFK∞(K), one has the natural inclusion map

ιs : C{i = 0, j ≤ s} → ĈF (S3),

that has the induced map on homology

ιs∗ : H∗ (C{i = 0, j ≤ s})→ ĤF (S3) ∼= F(0).

The concordance invariant τ(K) is then defined as

τ(K) = min {s ∈ Z s.t. ιs∗ is non trivial } .

It is useful to note that the generator of ĤF (S3) ∼= H∗(C{i = 0}) is in Maslov index 0. It

does not mean that the complex C{i = 0} has a single generator in Maslov index 0 that

lies in ker(∂vert) and also ker(∂̂), as is the case for the complex in Figure 1.4. Take for

example Figure 3.1, where the sum of two generators would give the required generator of

the homology group.

The equivalent formulation of τ(K) as defined in [50] uses the idea of non-torsion elements

in HFK−(K).

Definition 3.3

τ(K) = −max
s∈Z

{
θ ∈ HFK−(K, s) | Unθ 6= 0 ∀n ∈ N

}
.
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i = 0

j = 2

j = 1

j = 0

Figure 3.1: An example diagram for part of a chain complex, demonstrating that a

generator of homology in H∗ (C{i = 0}) might not lie in ker(∂̂).

In particular, this formulation is also applicable in Zemke’s reformulation, and calculable

from the complex CFKR′(K) defined by [4]. This is because this formulation from [50]

uses information from HFK−, which is calculable from only horizontal information in

CFK∞(K), and so from ∂U as defined in Definition 1.18. In particular, τ(K) would then

be equal to the the negative of the Alexander grading of the U -nontorsion tower.

As summarised by [26], the τ -invariant as defined above has the following properties.

They are not proven here, but the fact that τ is a concordance invariant is proven in [37,

Thm. 1.2], with other results being corollaries in [26,37].

Theorem 3.4 Properties of τ [37]

� τ : C → Z is a group homomorphism, with τ(U) = 0.

� Defining g4(K) as the minimal genus of surface D bounded by K where D is smoothly

embedded in B4, one has the bound |τ(K)| ≤ g4(K). The quantity g4(K) is called

the slice genus of K.

� If K+ is the oriented knot with a marked positive crossing, and K− is the oriented

knot yielded by changing this marked crossing to a negative crossing, then

τ(K+)− 1 ≤ τ(K−) ≤ τ(K+).

The above crossing change inequality and lower bound on the slice genus will be useful

in the later discussion of bounds on concordance invariants for three strand pretzel knots.
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By convention, τ is positive for positive knots such as the right hand trefoil, so τ(T2,3) = 1

corresponding to the generator a from Figure 1.4.

For an oriented knot K, the quantity τ(K) is insensitive to reversing the orientation,

see [37, Sec. 3.2]. However, the concordance class the mirror-reverse −K is the inverse of

class [K], and since τ is a group homomorphism, one thus has that τ(−K) = −τ(K).

The properties demonstrated are similar to properties of the signature σ(K) of a knot,

and the Rasmussen s-invariant from Khovanov homology. It was conjectured in [54] that

τ(K) = −σ(K)
2 = − s

2 for all knots K. This was demonstrated to be false by [10], but the

following is true.

Theorem 3.5 [37, Thm. 1.4] For K an alternating knot in S3, τ(K) = −σ(K)

2
= −s

2
.

This statement is more generally true for all homologically thin knots, since the entire

knot Floer homology ĤFK is supported in a single diagonal ∆ = M −A.

3.2 Concordance invariants ν and ε

One can consider the inclusion of other subcomplexes into C{i = 0} to extract similar

concordance invariants.

Define C{max(i, j − s = 0)} as the quotient C{i = 0}/C{i = 0, j < s}. As a quotient

complex, this includes into C{i = 0} with the following family of maps:

ν̂s : C{max(i, j − s = 0)} → C{i = 0} ∼= ĈF (S3).

In the context of CFK∞(K), this can be thought of as the complex lying on the horizontal

line j = s, i ≤ 0 and the vertical line i = 0, j ≤ s.

The complex C{max(i, j − s = 0)} is isomorphic to the chain complex of ĈF (S3
N (K), s)

for |s| ≤ N
2 [44, Thm. 2.3], which is the Heegaard Floer homology of N surgery along the

knot K ⊂ S3.

As in Definition 3.2, this map gives an induced map on homology

ν̂s∗ : ĤF (S3
N (K), s)→ ĤF (S3),

which is necessarily trivial for s < τ(K) from Definition 3.2. Likewise, for s > τ(K) this

map is non-trivial.
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Definition 3.6 [45, Defn. 9.1]

ν(K) = min {s ∈ Z s.t. ν̂s∗ is surjective} .

Hence, ν(K) ∈ {τ(K), τ(K) + 1}, and moreover from [15, Prop. 2.3], one has that

τ(K) ≤ ν(K) ≤ g4(K)1.

Again, since the only information from CFK∞ needed to define ν(K) came from the

horizontal and vertical information separately — namely on the lines {i = 0, j ≤ s} and

{j = s, i ≤ 0} — this invariant is calculable from CFKR′(K), and also from the reduced

complexes discussed in Section 1.4.1.

Unlike τ(K), ν(K) is not a group homomorphism from C → Z. This can be seen from

that observation that for any knot K, one has that ν(K) is either equal to τ(K) or

τ(K) + 1. Hence, if one has that ν(K) = τ(K) + 1, then ν(−K) ∈ {τ(−K), τ(−K) + 1},
and thus

ν(−K) > −τ(K)− 1 = −ν(K).

Since there exist knots K with ν(K) 6= τ(K) — an example of which is the left-hand

trefoil −T2,3, as demonstrated in [29, Fig. 6] — taking an inverse in C does not correspond

to taking the inverse in Z, implying this is not a group homomorphism.

3.2.1 Simplified bases and the ε invariant

As mentioned previously, the notion of a reduced knot-like complex from Definition 1.18

is similar to notions previously introduced in knot Floer homology, namely that of hori-

zontally and vertically simplified bases from [12].

Definition 3.7 Let C = CFK−(K) be the subcomplex C{i ≤ 0} of CFK∞. The complex

C is then reduced if the differential ∂∞ drops the i-filtration level, j-filtration level or both.

A reduced complex represented in the familiar Z⊕Z grid then has no arrows that begin and

end at the same coordinate. Hence, each generator of a reduced complex lies in ĤFK(K).

Further, define Ca,b to be the subcomplex C{i ≤ a, j ≤ b}. A basis {xk} for (CFK−(K), ∂∞)

is then a filtered basis if for every pair (a, b) the set

{xk |xk ∈ Ca,b }
1This inequality is as stated in the proposition, which holds when τ(K) ≥ 0. In the case where τ is

negative, then taking the mirror of the knot would yield a similar inequality with τ positive.
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is a basis for Ca,b.

Using this definition, for a reduced complex (C, ∂∞), one can separate the differential

∂∞ into ∂∞ = ∂vert + ∂horz, where each drops the i and j filtration respectively. As a

consequence, a reduced complex is amenable to finding a basis that simplifies one (or both)

of these differentials.

Definition 3.8 A filtered basis {xk} for a reduced complex C is then a vertically simplified

basis if for every element xi, one has the following trichotomy.

� xi ∈ ker(∂vert) but xi /∈ im(∂vert).

� xi /∈ ker(∂vert), and ∂vert(xi) = xi+1.

� xi ∈ ker(∂vert) and there is a unique xi−1 such that xi = ∂vert(xi−1).

An equivalent notion then exists for the horizontal differential and horizontally simplified

bases. The property of having a vertically or horizontally simplified basis is universal, as

demonstrated by then following.

Lemma 3.9 [12, Lem. 2.1] Every CFK−(K) is filtered chain homotopy equivalent to a

reduced complex with a vertically (or horizontally) simplified basis.

If such a basis can be found, and the appropriate equivalent reduced complex, the calcula-

tion of the concordance invariants ν and τ becomes easier. For example, the generator of

ĤF (S3) determining τ would be the basis element of the vertically simplified basis that

falls into the first category.

The trichotomy and correspondence of C{i = 0} with ĈF (S3) dictates that there is

some filtered chain homotopy equivalent complex admitting a basis such that ∂vert cancels

generators in pairs, except for a single distinguished generator. Using this, Hom defines

the following concordance invariant [12].

Definition 3.10 Let xj be the distinguished generator of the vertically simplified basis for

C, a reduced complex filtered chain homotopy equivalent to CFK−(K). Using this basis

for C, one can then find a horizontally simplified basis by [12, Lem. 3.2,3.3]. Then, define
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ε(K) ∈ {−1, 0, 1} by

ε(K) =


−1 if xj /∈ ker(∂horz)

0 if xj ∈ ker(∂horz), xj /∈ im(∂horz)

1 if xj ∈ im(∂horz)

.

Informally, this corresponds to the distinguished generator of the vertically simplified basis

then being at the start of a horizontal arrow, the distinguished horizontal generator, or at

the end of a horizontal arrow.

In fact, ε can be defined purely in terms of τ and ν a knot K and its mirror.

Definition 3.11 [12, Rmk. 3.5]

ε(K) = (τ(K)− ν(K))− (τ(−K)− ν(−K)) .

Hence, as τ and ν are both concordance invariants, it then follows immediately that ε

is an invariant of not only the filtered chain homotopy class of CFK−(K), but also the

concordance class [K] ∈ C.

Remark 3.12 Since τ and ν are both determinable from CFKR′(K), Zemke’s formula-

tion over the reduced ring R′, so is ε(K). In fact, such a numerical invariant is extractable

from a reduced knot-like complex, a fact that is useful later on when considering the bor-

dered invariant of Ozsváth-Szabó.

3.3 Kawamura bounds and concordance results

From the Kauffman states, and observations on the standard diagrams of three-strand

pretzel knots, one can place bounds on the concordance invariants defined above. In

particular, the concordance invariants defined above provide lower bounds for the slice

genus, see [15, Prop. 2.3].

Consequently, if one can bound these concordance invariants from below, then one restricts

the possible values for the slice genus. In the case of quasipositive knots, this restriction

is enough to determine ν(K), τ(K) and g4(K).

Definition 3.13 [2, Ch. 2] From an oriented knot diagram for K, one can form a dec-

orated set of Seifert circles by smoothing each crossing agreeing with the orientation (to
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form Seifert circles), and at each crossing decorating the region with a signed arc, positive

or negative, as exemplified by Figure 3.2.

A knot diagram is defined to be quasipositive if it admits smoothing to a decorated set of

Seifert circles such that the signed arcs can be partitioned into single crossings and pairs

of crossings, such that

� Each single crossing is positive.

� Each pair of crossings consists of a positive and negative crossing joining the same

two Seifert circles.

� Traversing a Seifert circle from one element of a pair to another, one does not meet

both elements of any other pair.

Quasipositive knots (and more generally quasipositive links) bound Seifert surfaces cor-

responding to the above set of decorated Seifert circles called quasipositive surfaces. As

demonstrated by Rudolph [57, Thm. 90], quasipositive Seifert surfaces are ambient iso-

topic to subsurfaces of the fibre F of a torus knot Tp,q. Using this fact, and that from [37,

Cor. 1.7] one has

τ(Tp,q) =
pq − p− q + 1

2
= g4(Tpq),

Livingston proves the following.

Theorem 3.14 [26, Thm. 4] If K is a quasipositive knot, bounding a quasipositive Seifert

surface, then

τ(K) = g3(K) = g4(K).

Idea of proof Since quasipositive surfaces are subsurfaces of the fibre F of a torus knot

T , the connect sum T#K bounds a surface in a cobordism between Tp,q and K. Using

properties of slice genus, and properties of τ proved in [37], one can bound g4(K) and

g3(K) on each side by τ , yielding the result.

As a simple corollary, since the three-strand pretzel knots P (−2a, 2b+1, 2c+1) are positive

knots, and clearly the corresponding set of decorated Seifert circles has purely positive

decorated arcs one has the following.

Corollary 3.15 For K = P (−2a, 2b+ 1, 2c+ 1), the concordance invariants τ and ν are

τ(K) = ν(K) = g4(K) = g3(K) = b+ c+ 1.
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Proof K is positive, hence quasipositive, then the result is implied by Theorem 3.14 and

Lemma 2.7, together with the fact that τ(K) ≤ ν(K) ≤ g4(K).

+

+

− −

Figure 3.2: The decorated Seifert circles from an oriented knot diagram for the figure

eight knot 41. Note, since there is a Seifert circle with two negative crossings, this is not

a quasipositive diagram.

3.3.1 Sharper slice Bennequin inequality

For S ⊂ B4 with ∂S = K ⊂ ∂B4, in [56] Rudolph examines the slice Bennequin inequality

for quasipositive knots, which places bounds on the Euler characteristic χ(S) for quasi-

positive knots K. Since S is a surface bounding a knot smoothly embedded in B4 one has

that χ(S) = 1− g(S), and hence such bounds also bound g4(K).

Motivated by this, in [18,19] Kawamura uses a closer examination of the Seifert circles as

pictured in Figure 3.2 to bound the concordance invariant τ .

Definition 3.16 A Seifert circle S as in Figure 3.2 is strictly negative if there are no

positive arcs incident with this circle in the decorated collection of Seifert circles. If a

Seifert circle is not strictly negative, then it is defined to be positive.

Furthermore, associated to a knot diagram DK for a knot K, define the quantities

w(DK) = # ( positive crossings )−# ( strictly negative crossings )

O≥(DK) = # ( positive Seifert circles )

O<(DK) = # ( strictly negative Seifert circles ) .

Using the above definitions, the concordance invariant τ can be bounded as follows.
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Theorem 3.17 [18, Thm. 5.3] For K any knot with diagram DK , such that the associated

set of Seifert circles has O≥(DK) ≥ 1, then

τ(K) ≥ 1

2
(w(DK)−O≥(DK) +O<(DK) + 1) .

Although the knots in the family P (2a,−2b−1, 2c+1) are clearly not positive or negative,

as can be seen through the examination of Figure 3.3, using Theorem 3.17 one can place

bounds on τ(P (2a,−2b− 1, 2c+ 1)) as follows.

Proposition 3.18

c− b− 1 ≤ τ(P (2a,−2b− 1, 2c+ 1)) ≤ c− b

b− c ≤ τ(P (−2a, 2b+ 1,−2c− 1)) ≤ b− c+ 1.

Proof From Figure 3.3, abusing notation slightly, it is clear that

w(P (2a,−2b− 1, 2c+ 1)) = 2c− 2b− 2a

O≥(P (2a,−2b− 1, 2c+ 1)) = 2

O<(P (2a,−2b− 1, 2c+ 1)) = 2a− 1.

Hence, applying the bound from Theorem 3.17, one has that

τ(P (2a,−2b− 1, 2c+ 1)) ≥ 1

2
(2c− 2b− 2a− 2 + 2a− 1 + 1) = c− b− 1.

Then, noting that the mirror reverse P (−2a, 2b + 1,−2c − 1) has the same set of Seifert

circles with opposite decorations on the arcs, one has that

w(P (−2a, 2b+ 1,−2c− 1)) = 2b+ 2a− 2c

O≥(P (−2a, 2b+ 1,−2c− 1)) = 2a+ 1

O<(P (−2a, 2b+ 1,−2c− 1)) = 0.

Applying the same theorem, one has that τ(P (−2a, 2b + 1,−2c − 1)) ≥ b − c. But, as

τ(P (−2a, 2b+ 1,−2c− 1)) = −τ(P (2a,−2b− 1, 2c+ 1)), this implies that τ(P (2a,−2b−
1, 2c+ 1) ≤ c− b.

This limits the possible values of τ to two values for the family of pretzel knots P (2a,−2b−
1, 2c+ 1). But by using simple band moves, and the crossing change formula presented in

Theorem 3.4, one can determine τ and ν for subfamilies of these knots.
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+

Figure 3.3: The associated Seifert circles for the standard diagram of P (2c + 1,−2b −
1, 2a). The corresponding Seifert circles for the knot P (−2c− 1, 2b+ 1,−2a) can be found

by multiplying all of the decorations on the arcs by −1.

When b = c, it is simple to see that the P (2a,−2b − 1, 2b + 1) is slice. In particular, for

any knot P (2a,−2b − 1, 2c + 1), Figure 3.4 demonstrates the placement of a band that,

after surgery along this oriented band yields a link isotopic to T2,2|b−c|. If b = c, this link

is isotopic to the two-component unlink.

In the familiar movie format describing cobordisms between surfaces bounding knots, band

moves between arcs on the same knot correspond to saddle points in a cobordism. If there

is a surface F ⊂ B4 such that ∂F = J ⊂ S3, and there is some oriented band move

between K and the two-component link J , then there is a genus 0 cobordism between K

and J , and so g4(K) ≤ g(F ).

Lemma 3.19 For K = P (−2a, 2b+ 1,−2c− 1), with b ≥ c, one has that

τ(K) = b− c = g4(K).

Proof For b = c, the band move demonstrated in Figure 3.4 yields an unlink, which is

slice. The surface corresponding to this cobordism, together with the slice disks for each

component of the unlink imply that P (2a,−2b+ 1, 2c+ 1) is slice, since the knot bounds a

genus 0 surface with only one saddle point and two minima. Applying Theorem 3.4, this
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Figure 3.4: Diagram demonstrating the band move for the pretzel P (2c+ 1,−2b− 1, 2a)

that results in a link isotopic to T2,2|b−c|. Here, b = 2, c = 1 and a = 2. There is an

isotopy of the above diagram to the standard form of P (2a,−2b− 1, 2c+ 1) by rotating the

entire diagram about the third strand.

implies that τ(P (2a,−2b−1, 2b+1)) = 0, and hence the reverse knot P (−2a, 2b+1,−2b−1)

also has τ(P (−2a, 2b+ 1,−2b− 1)) = 0.

Restrict now to the case b > c. Since the standard diagram for the pretzel knot P (2a,−2b−
1, 2c + 1) is isotopic to the diagram in Figure 3.4, and the suggested band move gives a

genus zero cobordism between K = P (2a,−2b − 1, 2c + 1) and T2,2(b−c). This cobordism

and then implies that g4(K) ≤ g4(T2,2(b−c)) = b− c. It is a well known fact that taking the

reverse of the knot does not affect the slice genus, hence it is also true that g4(P (−2a, 2b+

1,−2c− 1)) ≤ b− c.

Using Proposition 3.18, one thus has that

b− c ≤ τ(K) ≤ g4(K) ≤ b− c,

which yields the result.

Remark 3.20 One can also recover this lemma using the crossing change formula from

Theorem 3.4, in a similar way to the proof of the statement below.
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Lemma 3.21 If τ(P (2a,−2b− 1, 2c+ 1)) = c− b− 1 , then for any A > a, one has that

τ(P (2A,−2b− 1, 2c+ 1)) = c− b− 1.

Proof As depicted in Figure 3.5, the encircled crossing is positive. So, in the cross-

ing change formula depicted in Theorem 3.4, denote the knot P (2c + 1,−2b − 1, 2a) =

P (2a,−2b− 1, 2c+ 1) as K+.

Changing the circled crossing to negative yields the knot K− = P (2(a+1),−2b−1, 2c+1).

If τ(K+) = c− b− 1, then the crossing change inequality implies that

τ(K+)− 1 ≤ τ(K−) ≤ τ(K+)

c− b− 2 ≤ τ(K−) ≤ c− b− 1.

Applying the bounds from Proposition 3.18, one thus has that τ(K−) = c − b − 1, since

the bounds presented in the proposition do not depend on a. Repeating this process with

the Reidemeister two move, and relabelling K− as K+ yields the result.

Figure 3.5: An example of the oriented knot P (2a,−2b−1, 2c+1), where a = 1. Changing

the circled crossing from positive to negative yields the knot P (2(a+ 1),−2b− 1, 2c+ 1).



Chapter 4

Algebraic objects in the

construction

As described during the description of Zemke’s reformulation of classical knot Floer ho-

mology in Section 1.3, in [46,49], Ozsváth-Szabó defined an algebraic invariant associated

to a knot which takes the form of a chain complex over R′ ∼= F[U, V ]/(UV ). Note, that

this is the same ring over which Dai et al defined the complex CFKR′(K) and reduced

knot-like complexes.

In [49], Ozsváth-Szabó use a cut-and-paste construction to associate a (Z⊕ Z)-bigraded,

bifiltered chain complex C(D) to an oriented knot diagramD for the knotK such that every

Morse event projects onto the (x, y)-plane at a different y-coordinate. This construction is

described in more detail in Section 4.1 and Section 4.5. As a cut-and-paste construction, to

smaller pieces of the knot diagram D one associates algebraic objects that can be ‘pasted’

together in the appropriate algebraic sense to form the larger algebraic invariant C(D).

The filtered chain homotopy type of the complex C(D) is invariant under Reidemeister

moves, as proven in [49, Thm. 1.1].

Theorem 4.1 (Ozsváth-Szabó) If D and D′ are isotopic oriented knot diagrams for

the oriented knot K, such that in both D and D′ every maximum, minimum and crossing

appears in a projection to the (x, y)-plane at a different y-coordinate, then there is a filtered

chain homotopy equivalence C(D) ∼= C(D′). Hence, the filtered chain homotopy type C(D)

for D a diagram of K is an invariant of the oriented knot K.

54



CHAPTER 4. ALGEBRAIC OBJECTS IN THE CONSTRUCTION 55

In [49, Thm. 1.1], it is stated that only the homology of the complex C(D) is an invariant

of the oriented knot. However as remarked in [1, Thm. 5], in [49, Sec. 8] the filtered

chain homotopy type of the complex does not change under the application of bridge

moves and Reidemeister moves to the corresponding knot diagram. More specifically, each

Reidemeister move or bridge move applied to the knot diagram corresponds to a different

sequence of algebra elements used in the cut-and-paste construction: however in the proof

of [49, Thm. 1.1] it is verified that the corresponding DA-bimodules associated to the

partial knot diagrams before and after these moves are equivalent.

As a consequence, the filtered chain homotopy type of the entire complex is a knot invari-

ant, not just the homology of the complex. This is because the complex is constructed

from the box-tensor product of the algebraic pieces corresponding to subsets of the knot

diagram (see Section 4.5), and if the algebraic pieces from which the complex is determined

are invariant under the application of Reidemeister and bridge moves, then so is the full

complex.

The cut-and-paste method lends itself to a computer implementation, and indeed Ozsváth-

Szabó in [47] have developed C++ code to implement the calculation of the invariant C(D)

from a given PD-code for a knot diagram. This has been adapted by the author in [58] for

the simple calculation of this invariant for three strand pretzel knots without the need to

manually determine a PD code for a specific example. Moreover, [58] includes the ability

to terminate the algorithm at any point in order to examine intermediate invariants.

The algebraic pieces into which the full knot invariant C(K) is decomposed are Type D

structures, DA-bimodules and A∞-algebras. The specific examples of the objects asso-

ciated to crossings, maxima and minima in the construction of [49] are presented in this

chapter, after first defining the objects following [24, 25, 46]. Furthermore, since the main

consideration in this thesis is the determination of C(D), for D a diagram of a three strand

pretzel knot, when adaptations have been made of the objects used in the constructions

of [47,49], this will be highlighted.

4.1 The complex C(K)

For D an oriented knot diagram for the knot K, the invariant C(D) defined by Ozsváth-

Szabó in [49] is a bigraded chain complex over the ring R′. This chain complex has a
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generating set over R′ that is in one to one correspondence with Kauffman states for the

oriented knot diagram D.

The reformulation of knot Floer homology from Dai et al described in Section 1.3.1 and [4]

is determined from a Heegaard diagram associated to a knot. Theorem 2.3 implies that the

Kauffman states for a knot diagram are in one to one correspondence with the intersection

points of a Heegaard diagram for this knot, and so provide an R′-basis for the complex

CFKR′(D), the local equivalence class of which is a knot invariant.

In [49, Sec. 1.3], Ozsváth and Szabó conjectured that the two formulations are equivalent,

with this equivalence to be proven in a forthcoming paper. Very recently, this conjectural

equivalence was proven in [48]. However, the two chain complexes are defined in two

completely independent ways. In [4], Dai et al adapt Zemke’s reformulation of knot Floer

homology to be taken over the ring R′, and the definition of the differential involves

counting pseudo-holomorphic representatives of Whitney disks between generators. The

construction of C(D) is purely algebraic, with algebraic objects associated to each ‘piece’

of the knot diagram with no reference being made to a corresponding Heegaard diagram

or Whitney disk.

But, as in the construction of Heegaard diagrams associated to knot diagrams for which

Kauffman states correspond to generators (see Section 2.1), from a thickened up projec-

tion of any partial knot diagram one can produce a partial Heegaard diagram: simply

the excised piece of the Heegaard diagram for the full knot. This partial Heegaard dia-

gram, although not used in the constructions of [46, 49], does motivate the definitions of

the maps in the DA-bimodules. This Heegaard diagram interpretation will be explained

further in Section 4.2.2, but the very recent work of Ozsváth-Szabó in [48, Sec. 2.6] also

gives the correspondence between the algebraic objects and appropriate partial Heegaard

diagrams.

More formally, the complex C(D) is defined as follows.

Definition 4.2 Let D be an oriented knot diagram for the oriented knot K, such that every

maximum, minimum and crossing appears at a different y-coordinate in the projection of

the knot diagram to the (x, y)-plane. Call such a knot diagram a special knot diagram for

K. Mark the global minimum of a special knot diagram, such that any Kauffman state of

this diagram has the edge containing the global minimum as the distinguished edge.
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As described in [49, Secs. 1,8], the complex (C(D), ∂) associated to a special knot diagram

diagram D is a chain complex over R′, generated by Kauffman states for the special knot

diagram. This complex is bigraded, with two integer gradings ∆ and A, such that the

complex splits as

C(D) =
⊕
δ,s

Cδ(D, s).

Here, δ is the ∆-grading, and s the A-grading (or Alexander grading).

These graded components are then equipped with the actions:

U : Cδ(D, s)→ Cδ−1(D, s− 1),

V : Cδ(D, s)→ Cδ−1(D, s+ 1),

∂ : Cδ(D, s)→ Cδ−1(D, s),

where U and V act on elements of the chain complex over R′ ∼= F[U, V ]/UV by multipli-

cation. The differential ∂ will be defined later in Section 4.5.

Note, the bigrading of the chain complex C(D) is not the same as the (grU , grV )-graded

complex CFKR′(K). This is most clearly seen by the fact that multiplication by U and

multiplication by V affect both gradings in this setting, whereas in CFKR′(K) grV is

unaffected by multiplication by U , and grU is unaffected by multiplication by V .

The ∆-grading of C(D) is identical to that of the ∆-grading introduced in Section 2.2, and

can be related back to the familiar Maslov grading from [39], by the equation ∆ = M −A.

Furthermore, the ∆ and A gradings can be read off directly from the Kauffman states, in

a similar method to Definition 2.2.

Definition 4.3 Let C be the collection of crossings in a special knot diagram D. Then

for x a Kauffman state of this special knot diagram, the integer valued gradings ∆(x) and

A(x) are defined as

∆(x) =
∑
c∈C

∆(c),

A(x) =
∑
c∈C

A(c),

where ∆(c) and A(c) are the local contributions at each crossing as displayed in Figure 4.1.

Remark 4.4 Note, for a Kauffman state x, since the values ∆(x) and A(x) are deter-

mined through local contributions, one can consider the same total of local contributions



CHAPTER 4. ALGEBRAIC OBJECTS IN THE CONSTRUCTION 58

Local ∆ contributions

Local A contributions

−1
2

−1
2

+1
2

+1
2

−1
2

−1
2 +1

2

+1
2

Figure 4.1: The contributions to ∆ and A at each crossing, following [49, Fig. 1]

for a Kauffman state for a partial knot diagram. This is discussed in more detail when

considering the specific Type D structures associated to three strand pretzel knots.

Although the Ozsváth-Szabó’s invariant C(D) and Dai et al’s invariant CFKR′(K) have

different gradings, the filtration provided is the same: i.e. in terms of U and V pow-

ers. An example is given for the trefoil T2,3 in Figure 4.2, which is a simplification of

Figure 1.5.

As remarked in [49, Sec. 1], and [46, Cor. 11.11], if one sets U = V = 0, the resulting com-

plex – denoted Ĉ(D) – has a homology that has (by construction) an Euler characteristic

that is equal to the (symmetric) Alexander polynomial ∆K(q). Modifying the grading

slightly back to the Maslov grading d = ∆−A, one has:

χ
(
H∗

(
Ĉ(D)

))
=
∑
d∈Z

(−1)drk
(
H∗

(
Ĉd(D, s)

))
qs = ∆K(q).

In a similar way to classical knot Floer homology and Zemke’s reformulation, one can take

subcomplexes and quotient complexes as formulated in Section 1.2.3 and extract bigraded

groups and associated homology theories that are also knot invariants. For example,

setting V = 0 yields a complex C−(D) that was originally proposed to be conjecturally

equivalent to CFK−(K), see [46]. Once more, this equivalence was recently proven in [48,

Thm. 1.1].

As will be elaborated upon later, the complex C(D) is the result of taking an appropriate

tensor product of a Type D structure and an A∞-module. These are modules associated
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bUa

V c

U

V

V 0

U 0

a

c

Figure 4.2: A special knot diagram D for the trefoil T2,3. The complex shown is then

a common pictorial simplification of the complex C(D) – which is identical to the repre-

sentation of CFKR′(T2,3). Recall, Figure 1.5 gives the diagrammatic representation of

CFKR(T2,3). Here, only the differential is displayed, and one can yield the non-simplified

diagram by setting UV = 0 in Figure 1.5. The state b is shown in the knot diagram, with

a the Kauffman state with the leftmost region occupied at the bottom crossing, and c the

Kauffman state with the leftmost region occupied at the top crossing. Following Defini-

tion 4.3, the (∆, A)-bigrading of a is (−1, 1), the bigrading of b is (−1, 0), and the bigrading

of c is (−1,−1).

to partial knot diagrams (respectively upper and lower knot diagrams), with a common

differential graded algebra A associated to each object.

4.2 Differential graded algebras

For a special knot diagram as defined in Definition 4.2, except at finitely many values,

a generic line y = ` will intersect the special knot diagram at 2m points, which can be

labelled using the set {1, 2, . . . , 2m}. In [49], building upon the definition in [46], Ozsváth-

Szabó associate to every one of these level sets a differential graded algebra (DGA), which

is a type of A∞-algebra.
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Definition 4.5 [25, Def. 2.1] Over the ground ring F, an A∞-algebra A is a graded

F-module, equipped with F-linear multiplication maps

µi : A⊗i → A[2− i],

defined for all i ≥ 1, such that for all i one has that

∑
i+j=n+1

n−j+1∑
`=1

µi(a1 ⊗ · · · ⊗ a`−1 ⊗ µj(a` ⊗ · · · ⊗ a`+j−1)⊗ a`+j ⊗ · · · ⊗ an) = 0.

All tensor products are taken over the idempotent ring of the algebra, I(A).

More intuitively, the terms in this relation correspond to an equivalence class of trees with

two vertices. Let the vertices of degree j + 1 of the tree represent operations µj , where j

incident edges are above the vertex, representing the j-inputs to µj . Trees are considered

equivalent when the collapse of an edge between the two vertices yields the same graph.

This is displayed in Figure 4.3.

µ2

µ1

+

µ1

µ2 +

µ1

µ2 = 0.

Figure 4.3: The collapsing tree relation for i = 2. Each edge within the tree represents

a tensor coordinate A, for A an A∞-algebra. The vertices correspond to maps µi, with

the i + 1 incident edges, i of which point upwards, representing the domain of the map.

Collapsing the edge between the two vertices in any tree yields an identical tree with a

single degree 3 vertex.

A differential graded algebra A is then an A∞-algebra such that the multiplication maps

µi = 0 for i ≥ 3. The (possibly non-zero) maps µ1 and µ2 in a DGA can then be thought

of as a differential and product in the graded algebra respectively. Differential graded

algebras have been used in the calculation of bordered Heegaard Floer homology of 3-
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manifolds, with examples including the torus algebra [25, Ch. 11] and the algebra defined

for matched circles [25, Ch. 3].

In [24, 25], modules are defined over these algebras which correspond to partial Heegaard

diagrams for a three-manifold, which are then pieced together algebraically in order to

calculate the Heegaard Floer homology of the three manifold. This setting motivates the

construction of C(D) through taking appropriate tensor products of A∞-modules and Type

D structures. The algebras in the construction of bordered Heegaard Floer homology

track the interaction of domains in the partial Heegaard diagrams with the boundary,

similar to the interpretation presented here in Section 4.2.2, and recently outlined in

depth in [48].

4.2.1 The algebra A(n)

Following the definitions in [49, Sec. 2], the algebra A(n) used in the construction of the

knot invariant C(D) is defined as the extension of an algebra B(2n, n). As highlighted

above, a special knot diagram cuts the line y = ` in 2n places at any point. One can then

index these intersection points by the set {1, 2, . . . , 2n}. One then defines I-states in this

algebra B as follows.

Definition 4.6 Let x be an n-element subset of {1, 2, . . . , 2n− 1} ⊂ {1, 2, . . . , 2n}. Then

Ix is an idempotent or I-state in B(2n, n) that can be represented by n occupied positions,

where each position is to the right of some wall i, as in Figure 4.4.

For every I-state, one has that µ1(Ix) = 0, and

µ2(Ix, Iy) =


Ix if x = y,

0 else.

1 2 3 4 5 6

Figure 4.4: A geometric interpretation of the idempotent, or I-state I125 in B(6, 3). Each

region bounded by walls in this diagram is then assigned the label matching the wall to the

left.
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This definition, restricting the possible occupied positions to the subset {1, 2, . . . , 2n− 1},
is in fact a truncated version of the idempotents presented in [49]. The possible truncations

of the idempotents are presented in [27, Sec. 3.4]. As explained in [49, Prop. 8.2] and [46,

Sec. 12], since the bigraded chain complex C(D) is generated by the Kauffman states

of a special knot diagram, and by construction this has the distinguished edge as the

global minimum, one can restrict all algebraic objects to an algebra with this truncated

idempotent ring and yield the appropriate knot invariant.

This will be clarified in Section 4.2.2: one can interpret the idempotents as providing in-

formation about where in the special knot diagram there is an occupied state. The regions

in Figure 4.4 must, excepting if they are incident to the global minimum, have a Kauffman

state somewhere within the region. The idempotent Ix then has the interpretation that

i ∈ x as an n-element subset of {1, 2, . . . , 2n−1} if the region to the right of wall i does not

have an marked point in this region in the subset of the knot diagram with y ≥ `.

Motivated by [46, 49], pure algebra elements in B(2n, n) are defined by triples [Ix, Iy, w],

where Ix, Iy are I-states in B(2n, n), and w ∈
(
1
2Z
)2n

is a half-integral weight. Informally,

the idempotents Ix and Iy will be referred to as incoming and outgoing idempotents

respectively. Hence, one can represent an algebra element b ∈ B(2n, n) as Ix · b · Iy, to give

information regarding the incoming and outgoing idempotents. The pure algebra elements

in B(2n, n) are thus defined as follows.

Definition 4.7 1. Idempotent elements: Let the triple [Ix, Ix,
−→
0 ] denote an idempotent

element of B(2n, n). Here, Ix is an I-state as defined in Definition 4.6. Note, the

weight of idempotent elements is 0 in every coordinate. Together, the idempotents

make the ring of idempotents I(B), and one can define the unital element

1 =
∑

all n-element subsets of
{1,2,...,2n−1}

[
Ix, Ix,

−→
0
]
.

2. Li: For x an n-element subset of {1, 2, . . . , 2n− 1}, such that i ∈ x, but (i− 1) /∈ x,

define y = (x\{i}) ∪ {i − 1}. Then, the element Ix · Li · Iy is defined as the triple

[Ix, Iy,
1
2ei], for ei the standard basis element of Z2n with 1 in the ith coordinate.

3. Ri: Similarly, let x be an n-element subset of {1, 2, . . . , 2n− 1} such that i /∈ x, but

(i−1) ∈ x. Then define y = (x\{i− 1})∪{i}. The element Ix ·Ri ·Iy is then defined

as the triple [Ix, Iy,
1
2ei].



CHAPTER 4. ALGEBRAIC OBJECTS IN THE CONSTRUCTION 63

4. Ui: Let Uxi denote the triple [Ix, Ix, ei] for some I-state Ix. Then, let Ui denote the

formal sum

Ui =
∑
Ix

{i,i−1}∩x 6=∅

Uxi .

When specifying the specific idempotents associated with Ui, the notation used will

often be Ix · Ui · Ix = Uxi .

The elements Li and Ri can be intuitively thought of as taking an incoming idempotent,

and moving the marked position in region i left across wall i for Li, or moving the marked

position i−1 right across wall i for Ri. In a slight abuse of notation, in a similar way to the

definition of Ui, the terms Li and Ri may also denote the formal sum of all triples

Li =
∑
Ix
i∈x

(i−1)/∈x

[Ix, Iy,
1

2
ei],

Ri =
∑
Ix

(i−1)∈x
i/∈x

[Ix, Iy,
1

2
ei].

Here, define Iy in the appropriate way for each of the terms, as shown in Definition 4.7.

Remark 4.8 As described above, every pure algebra element in B(2n, n) has an associated

incoming and outgoing idempotent. When I-states were defined in Definition 4.6, they were

described as n-element subsets of {1, 2, · · · , 2n − 1}. Throughout this work, idempotent

elements in B(2n, n) will often be denoted as simply Ix for some n-element subset x.

However, as seen in Definition 4.7, they are more formally triples
[
Ix, Ix,

−→
0
]
, with the

same incoming and outgoing n-element subsets, and 0 weight in every component.

To define a differential graded algebra B(2n, n), one must also carefully define the maps

µ1 : B(2n, n)→ B(2n, n) and µ2 : B(2n, n)⊗B(2n, n)→ B(2n, n), recalling that all higher

maps are 0 for a DGA. For now, the grading information will be omitted, since the full

algebra A(n) will be equipped both with an Alexander multigrading, and a homological

grading ∆, following [46,49].

Definition 4.9 Define B(2n, n) as the algebra generated over F ∼= Z/2 by the elements

above, namely:

B(2n, n) = 〈Ix, Li, Rj , Up〉 ,

taking all possible I-states Ix, and all possible Li, Rj and Up as defined in Definition 4.7.
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Define µ1 : B(2n, n)→ B(2n, n) to be trivial, so every element in B(2n, n) lies in ker(µ1).

Then, for any two algebra elements A = [Ix, Iy, wA] and B = [Ir, Iz, wb], with weights

wA, wB ∈ 1
2Z

2n, define the product µ2(A,B) := A ·B as

µ2(A,B) =


[Ix, Iz, wA + wB] when Iy = Ir,

0 else.

Here, one is taking wA + wB to be the component-wise sum of the two vectors. Note,

this means that the outgoing idempotent of A must be equal to the incoming idempotent

of B in order to have a non-zero product. Furthermore, use the convention that the

product

[Ix, Ix, ei] · [Ix, Ix, ei] = [Ix, Ix, 2ei] = Uxi · Uxi = (Uxi )2.

Before extending this algebra B(2n, n) to define the algebra A, used in the construction

of C(D), the definition in [49] takes the quotient of the above to define B0.

Definition 4.10 Define B0 as the quotient algebra of B(2n, n), as follows.

B0 = B(2n, n)/ ∼

where ∼ denotes the relations:

1. Li+1 · Li = 0 for every i.

2. Ri ·Ri+1 = 0 for every i.

3. Uxi = [Ix, Ix, ei] = 0 when {i, i− 1} ∩ x = ∅, for every i.

After taking this quotient, all non-zero elements in B0 have the same weights as in

B(2n, n), and the products µ2 and differential µ1 are defined as in Definition 4.9.

In the literature, the idempotents associated to the algebra elements Li+1 ·Li and Ri ·Ri+1

are said to be ‘far’, see [46, Def. 3.5]. Using Figure 4.4, an algebra element is then equal to

zero from one of the first two relations if the marked position by some wall moves across

more than one wall.

However, when taken with the appropriate idempotents, the terms Li ·Li+1 and Ri+1 ·Ri
are non-zero, as these would involve moving two marked positions across one wall each,

see Figure 4.5.
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I125 ·R3 ·R4 · I145

1 2 3 4 5 6

I125 ·R3 ·R2 · I235

1 2 3 4 5 6

Figure 4.5: A geometric interpretation of the two algebra elements [I125, I145,
1
2(e3 + e4)]

and [I125, I235,
1
2(e2 + e3)] in B(6, 3). The first algebra element is zero in the quotient

B0, since a marked point moves across two walls, whereas the second algebra element is

non-zero.

As remarked upon, the algebra B(2n, n) is associated to every level set y = ` of a special

knot diagram, since a special knot diagram intersects the line in 2n points for some natural

number n. The part of this knot diagram above this level set – i.e. the intersection of

the special knot diagram with {y ≥ l} – is called an upper knot diagram. An upper

knot diagram provides a complete matching1 on the set {1, 2, . . . , 2n}, obtained through

following the arc incident with position i at line y = ` through the upper knot diagram to

some other position j on the line y = `. From the upper knot diagram at this level, one

thus defines a term Cij .

Definition 4.11 Let M be the complete matching on {1, 2, . . . , 2n} arising from the upper

knot diagram above the line y = `. For every pair {p, q} ∈M , define elements

Cpq =
∑
Ix

[Ix, Ix, ep + eq] .

Note that although the number of strands may not change as one passes from the line

y = ` to y = ` − 1, the matching may change due to the change in the upper knot

diagram. For example a crossing between strands i and i+ 1 will swap i and i+ 1 in the

matching M to yield a new matching M ′. With these matching elements, the definition

of the algebra A(n) is as follows – see [49, Sec. 2.1], with grading conventions provided

by [46, Sec. 2].

1A complete matching M on the set {1, 2, · · · , 2k} is a partition of the set into k subsets, each with two

distinct elements.
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Definition 4.12

A(n) = B0 ∪ 〈Cpq〉pq∈M / ∼

where ∼ denotes the following relations.

1. Cpq ·X = X · Cpq for X any element not equal to Cpq.

2. Cpq · Cpq = 0, for any matching element Cpq.

Recall, B0 is already the quotient of the algebra B(2n, n) as defined in Definition 4.10.

The only non-zero differentials µ1 : A(n)→ A(n) are given by

µ1(Cpq) = Up · Uq,

for every matching element Cpq with {pq} ∈M .

The grading ∆(X) ∈ Z for an algebra element X ∈ A(n) is then given by

∆(X) = # (Cpq dividing X)−
2n∑
i=1

wi(X),

where wi(X) is the ith coordinate of the weight w(X). The weights w(X) defined above

provide a second 1
2Z

2n-grading, called the Alexander multi-grading.

The algebra A(n) then splits as a direct sum with these gradings. One can decompose

A(n) =
⊕
d∈Z

`∈( 1
2
Z)

2n

Ad,`,

such that the maps µ1 and µ2 in A(n) act by

µ1 : Ad,` → Ad−1,`, µ2 : Ad1,`1 ⊗Ad2,`2 → Ad1+d2,`1+`2 .

Using the above definition, Ozsváth-Szabó proved in [46] the useful proposition that pure

algebra elements are uniquely determined as follows.

Proposition 4.13 [46, Prop. 3.9] A pure, non-matching element [Ix, Iy, w(X)] = X ∈
A(n) is uniquely characterised by the idempotents Ix, Iy and the weight w(X).

Remark 4.14 The proof of this proposition presented in [46, Prop. 3.9] uses a formulation

of the algebra B(2n, n) in terms of an identification of F[U1, · · · , U2m]-modules, presented

in [46, Sec. 3.1]. Using this proposition, non-matching elements of the algebra A(n) can

be thought of as determined by these triples.
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As a consequence, one can make the observation that, for certain idempotents, Ix · Li ·
Ri · Ix = Uxi . To see this, note that if Li = [Ix, Iy,

1
2ei], and Ri = [Iy, Ix,

1
2ei], then since

elements are defined uniquely by their idempotents and weight, one has that

µ2(Li, Ri) = [Ix, Ix, ei] = Uxi .

4.2.2 Interpretation of algebra elements on a Heegaard diagram

The algebra A(n) is defined purely algebraically: i.e. by triples as given in Definitions 4.9,

4.10 and 4.12, together with a complete matching on {1, 2, . . . , 2n}. As highlighted by

Figure 4.4, idempotents Ix = [Ix, Ix,
−→
0 ] have an interpretation in terms of arcs intersecting

the level set {y = `} in a special knot diagram, but algebra elements Ri, Lj and Up also

have a similar interpretation.

A special knot diagram intersects the line y = ` in 2n points for some n, and using the

construction in Theorem 2.3 one can yield a Heegaard diagram from a knot diagram by

considering the ‘thickened up’ surface of the knot as a handlebody. Such a Heegaard

diagram associated to a knot would intersect this level in 2n-circles, with a local picture as

displayed in Figure 4.6. Algebra elements then have an interpretation as the intersection of

a domain in the partial Heegaard diagram with the boundary at the level y = `. This has

recently been explained in more depth in [48, Sec. 13], which formalises how the algebra

elements correspond to regions in upper and partial Heegaard diagrams.

Motivated by the idea that algebra elements correspond to regions bound by α and β curves

in partial Heegaard diagrams arising from the Kauffman state construction of [36], one can

associate the following regions in the local picture about y = `, with visual representation

as demonstrated in Figure 4.6.

� The element Li corresponds to the ‘back’ of the tube for strand i.

� The element Ri corresponds to the ‘front’ of the tube for strand i.

� The element Ui corresponds to the whole of the tube for strand i.

� For pq ∈M a matching, the element Cpq would correspond to the whole of the tubes

for strands p and q, with the domain in the upper knot diagram connecting these

tubes.

In this way, one can see that the view of Ui as the product of Li and Ri corresponds to
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the fact that the sum of the domains on the back and front of tube i would be the whole

tube.

Figure 4.6: The representation of the algebra element [I13, I23,
1
2e2+e4] = I13·R2·U4·I23 ∈

A(2) in a partial Heegaard diagram. Note that A(2) in a special knot diagram is associated

to four arcs intersecting the line y = ` for some `.

Furthermore, this gives some intuition as to the idempotent elements in the algebra. The

outgoing idempotent of the element I13 ·R2U4 ·I23 pictured in Figure 4.6 is the I-state I23.

Since only the front of the second tube (corresponding to arc 2 in a special knot diagram)

is shaded, then in order to yield a valid domain in a Heegaard diagram, one would need to

have an intersection point with a β curve somewhere along this α curve below y = `.

It is then relatively simple to check that appropriate β curves – for example corresponding

to the β-curves at crossings between arcs 1 and 2 or 2 and 3 – require an intersection point

on one of the α-curves of the tube corresponding to a point of a Kauffman state in this

region in order to yield a valid domain according to appropriate restrictions on the corners

of such domains (see [23,53]).

Hence, when using this algebra, one can carry the intuition that an idempotent state Ix

means that there is some decoration of a Kauffman state in region i for i ∈ x below y = `.

Equivalently, this would imply that there is no decoration of a Kauffman state in this

region above y = `. Figure 4.14 may clarify this slightly by introducing an example of

a DA-bimodule map between Kauffman state generators using a corresponding partial

Heegaard diagram.

4.3 Type D structures

As described earlier in the chapter, one of the algebraic objects used in the construction

of the invariant C(D) by Ozsváth-Szabó is a type of object called a Type D structure,
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defined over an A∞-algebra A. The A∞-algebra in question will be the algebra A(n) as

introduced in Section 4.2.1. Such objects are associated to upper knot diagrams.

Definition 4.15 For D a special knot diagram for a knot K, there are only finitely many

levels ` such that the level set is at a crossing, maximum, or minimum. For all other

choices of `, an upper knot diagram is then the part of the special knot diagram above this

chosen level, namely D ∩ {y ≥ `}.

Note, this subset of the special knot diagram also provides a matching M on the set

{1, 2, . . . , 2n}, as discussed in the previous section.

In the construction of the knot invariant defined by Ozsváth-Szabó in [47, 49], the A∞-

algebraA(n) is a differential graded algebra. As a consequence, the only Type D structures

considered in this thesis are those over differential graded algebras. Specialising to this

case, the definition of a Type D structure is as follows, as presented in [25, Def. 2.18].

Definition 4.16 Let M be a graded F-module, and fix a differential graded algebra A,

also over F. Let ∂1 : M → (A⊗M)[1] be a map satisfying the condition

0 = (µ2 ⊗ IdM ) ◦ (IdA ⊗ ∂1) ◦ ∂1 + (µ1 ⊗ IdM ) ◦ ∂1 : M → A⊗M.

Denote by AM the pair (M,∂1). A module and map pair satisfying this compatibility

condition is a Type D structure over the differential graded algebra A.

This compatibility condition is more easily pictured using trees, as in the case of the A∞-

algebra relations. See Figure 4.7 for a visual representation of this. For the more general

setting of a Type D structure defined over an A∞-algebra that is not a differential graded

algebra, the reader is referred to [24, Sec. 2.2.3].

Importantly, the tensor products within the Type D structure relations are taken over the

ring of idempotents I(A) as defined earlier, and any element in the module M of the Type

D structure thus has an associated idempotent. Hence, for the map ∂1 to be non-zero, if

∂1(x) = a ⊗ y, where a ∈ A and x, y ∈ M , then a must have an (outgoing) idempotent

matching that of y. For example, ∂1(If · x) = If · a · Ig ⊗ Ih · y is only non-zero when

Ig = Ih ∈ I(A).

A useful intuition when considering Type D structures is that the compatibility condition

roughly corresponds to the d2 = 0 relation for chain complex. In the tree on the left

in Figure 4.7, one takes one differential in A, and one in M ; whereas on the right the
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∂1

µ1

∂1

∂1

µ2

0

Figure 4.7: The Type D relation for AM , where A is a DGA. The solid edges represent

elements of M , and the dashed edges elements in A.

differential is taken twice in M .

4.3.1 Gradings and adaptation to a one-manifold

The algebra A(n) introduced by Ozsváth-Szabó in [49] is a graded algebra, and the Type D

structures used in the construction of C(D) admit similar gradings: namely the half-integer

valued ∆-grading, and the multi-grading S.

This multi-grading is not quite the same as the Alexander multi-grading, defined before as

the weight of an algebra element. Instead, the multi-grading S for a Type D structure is

a quotient of 1
2Z

2n that is determined by the upper-knot diagram. The Alexander multi-

grading in the algebra A(n) takes values in 1
2Z

2n, so the weight w of an algebra element

a ∈ A can be thought of as a half-integer valued function on the points D ∩ {y = `}. This

is denoted by w(a).

An upper knot diagram can be thought of as a one-manifold W with boundary ∂W = Y .

The zero-manifold Y is the intersection of the upper knot diagram with the level {y = `}.
From the relative long exact sequence in cohomology, there is a map

H0

(
Y ;

1

2
Z
)
→ H1

(
W,∂W ;

1

2
Z
)

given by y 7→ d0(y). This provides an action of H0(Y ) on H1(W,∂W ).

Definition 4.17 [49, Def. 2.6] A Type D structure AX is called adapted to the one-

manifold W if X is graded by S = H1(W,∂W ) with the above action. Furthermore, one

must have that:
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� There is an additional 1
2Z-grading ∆X such that when ∂1(x)→ b⊗ y ∈ A⊗X, one

has that

∆(b) + ∆X(y) = ∆X(x).

� X is a finite-dimensional vector space over F.

Informally, forcing that all Type D structures are adapted to one-manifolds allows one to

consistently assign gradings to each piece — and moreover to each generator of Type D

structures and DA bimodules.

The generators of the Type D structures used in the construction of C(D) are in correspon-

dence with upper Kauffman states. Upper Kauffman states can be assigned half-integer

valued gradings from the local contributions at each crossing, as seen in Figure 2.2, as was

the case for full Kauffman states of a knot diagram.

Moreover, the other algebraic objects used in the construction of the invariant, such as

DA-bimodules, are adapted to their corresponding one-manifolds, see [46,49].

Since the Type D structures used within this thesis are constructed iteratively as tensor

products — see Section 4.5 — all of the Type D structures considered are adapted to

a one-manifold by construction. The full detail is presented in [46, Sec. 3.9] and [49,

Def. 2.6].

Following [46, Sec. 2.4], a Type D structure over A(n), A(n)X admits gradings d ∈ Z, s ∈ S
such that X splits as the direct sum

A(n)X =
⊕

d∈Z,s∈S
Xd,s.

Furthermore, the map ∂1 for the Type D structure acts as follows:

∂1 : Xd,s −→
⊕

d0+d1=d−1
s0+s1=s

Ad0,s0 ⊗Xd1,s1 .

Equivalence of Type D structures

In the literature, Type D structures are sometimes referred to as Type D modules [24].

Moreover, following [24, Rmk. 2.2.28], Type D structures over a differential graded algebra

A give rise to a differential graded category Au Mod. One can suitably define the module

maps between Type D structures to be Type D structure homomorphisms if they obey

the following relation — see [25, Def. 2.18]
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Definition 4.18 Let (M,∂M ) and (N, ∂N ) be Type D structures over the same algebra

A. Then, if one defines the map φ : M → A⊗N such that

(µ2 ⊗ 1N ) ◦ (1A ⊗ φ) ◦ ∂M + (µ2 ⊗ 1N ) ◦ (1A ⊗ ∂N ) ◦ φ+ (µ1 ⊗ 1N ) ◦ φ = 0,

then φ is a Type D structure homomorphism.

Note, that the algebra in question does not change here. From such homomorphisms

between Type D structures, one can define a homotopy h between homomorphisms in a

similar way to that of chain complexes. Two Type D structures are then thought of as

equivalent if the composition of maps between the two type D structures are homotopic

to the identity. It is homotopy classes of Type D structures that are then objects of the

category above, and homomorphisms give the morphisms.

4.3.2 Visual representation of Type D structures

As an aid to the inductive proofs that will be much featured here, one can visualise Type

D structures as directed weighted graphs (possibly with loops), an example of which can

be seen in Figure 4.8.

The vertices of such a weighted, directed graph correspond to the elements of the Type D

structure AM = (M,∂1). Then, if there is a non-zero map from x ∈ M such that a ⊗ y
appears in the result ∂1(x), one would draw a directed edge from the vertex corresponding

to x to the vertex corresponding to y. The weight on this edge would thus correspond to

the algebra element a ∈ A.

At no point has the restriction been made that ∂1(x) is a pure element of A⊗M . Some-

times, this may be the case, which will be denoted by ∂1(x) = a ⊗ y for such elements

x, y ∈M , a ∈ A. However, if one has that

∂1(x) =
∑

(ai ⊗ yi) ∈ A⊗M,

then each summand will be denoted by either ∂1(x)→ ai ⊗ yi, or ai ⊗ yi ∈ ∂1(x). This is

notationally easier, and also highlights the link between directed edges in the graph and

non-zero maps in the Type D structure.

All of the Type D structures studied in the computation of invariants for three strand

pretzel knots are standard type D structures, as defined by [49, Sec. 2.8].
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I1

C12

Figure 4.8: Example of a directed graph corresponding to the Type D structure for the

unique global maximum. Note, that such a directed graph can have loops.

Definition 4.19 For A(n) the DGA defined above, and A(n)X a Type D structure, A(n)X

is said to be standard if it is adapted to a one-manifold with boundary, and for every

x ∈ X, one has that

∂1(x) =

∑
pq∈M

Cpq

⊗ x+ ε(x),

where M is the matching induced by the upper knot diagram on which the algebra depends,

and ε(x) is a sum of elements b⊗ y, where b is an element of B0 ⊂ A(n), and y ∈ X.

A Type D structure over A(n) is then standard if in the associated graph every vertex

has n self-loops, weighted by the n matching elements, and all of the other directed edges

from that vertex are weighted by non-matching elements.

For simplicity, the graphs corresponding to Type D structures shown here will often omit

the self-loops, since these would decorate every vertex, and by construction all of the

Type D structures within the construction by Ozsváth-Szabó are standard. This is proven

in [49, Prop. 8.3].

4.3.3 Type D structures of upper knot diagrams

The generators of the Type D structure for upper knot diagrams correspond to upper

Kauffman states. The correspondence between Kauffman states for a special knot diagram

and intersection points in the Heegaard diagram constructed from the projection [36,

Sec. 2.2] gives a similar correspondence between upper Kauffman states and intersection

points in a suitable partial Heegaard diagram associated to the upper knot diagram.

Definition 4.20 For an upper knot diagram, regions are either closed, and so bounded by

arcs of the upper knot diagram, or are not closed, so are bounded by arcs of the upper knot

diagram and the horizontal level. The upper knot diagram intersects this horizontal level

at 2n points, enclosing 2n− 1 regions.
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An upper Kauffman state Ip ·X then corresponds to decorating a crossing in each of the

closed regions and n−1 of the non-closed regions, as in the definition of a Kauffman state

presented in Definition 2.1. The n remaining non-closed regions which are undecorated

then determine an n-element subset of {1, 2, · · · , 2n − 1}, denoted p. The idempotent

associated to the upper Kauffman state X is then denoted Ip.

In this way, if i ∈ p, then the decoration in this region must be lower in the knot diagram.

It is worth noting however that not all upper Kauffman states extend to Kauffman states of

the full knot diagram. However, it is true that all Kauffman states for a full knot diagram

do restrict to upper Kauffman states at every level y. An example of an upper Kauffman

state for an upper knot diagram of the three-strand trefoil is presented in Figure 4.9.

Figure 4.9: An upper Kauffman state I23·X for an upper knot diagram of the right-handed

trefoil. Completing any upper Kauffman state to a full Kauffman state, the distinguished

edge in the special knot diagram is by convention the global minimum. Note here, that the

undecorated non-closed regions are to the right of the second and third intersection points

with the horizontal level. Hence, the associated idempotent to this upper Kauffman state

is I23.

The idempotents associated to each generator are important for dictating the possible

position of lower Kauffman states. They can also restrict the possible maps within the

Type D structure.

Lemma 4.21 In a Type D structure AM , all non-zero maps ∂1 : AM → A ⊗ AM are

such that

∂1(Ip ·X)→ [Ip, Iq, wa]⊗ Iq · Y = Ip · a · Iq ⊗ Iq · Y.

Note, the proof of this statement is obvious, as the tensor product A⊗ AM is taken over
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the ring of idempotents I(A). Hence, the outgoing idempotent of the algebra element,

and the associated idempotent to the Type D generator must match.

Example 4.22 As an example, assume one has a Type D structure with elements I134 ·X
and I135 · Y . The only half-integer weight algebra element between these idempotents is

I134 ·R5 · I135. Then, if there is a map in the Type D structure between X and Y , one has

∂1(X)→ I134 ·m1 ·R5 ·m2 · I135⊗ Y , where m1 and m2 are integer weight elements in A.

Also, if there is no non-zero algebra element between the two idempotents, then there is no

map between generators with these idempotents. As an example, since R4 · R5 = 0 ∈ A,

one has that there is no possible arrow between I123 ·X and I125 · Y .

4.3.4 Simplification of Type D structures

One of the strengths of the computer implementation of the determination of the invariant

C(D) for a special knot diagram D in [47] is the fact that the Type D structure can be

simplified at every step (Morse event) to yield a (filtered) homotopy equivalent Type D

structure with fewer generators.

Following the language of [49, Sec. 13.2], this simplification is the ‘contraction of arrows’ in

the Type D structure. For AX a Type D structure, the aim is to yield a Type D structure

AY such that for every y ∈ Y , ∂1(y) has no terms with an algebra element of non-zero

weight. Recall, in A, the only non-zero weight elements are the idempotent elements,

which sum together to form the unital element 1. In [49, Def. 3.2], Ozsváth-Szabó define

the following.

Definition 4.23 A Type D structure AX is defined to be small if for every x, y ∈ X with

∆(x) = ∆(y) + 1, one has that the A⊗ y coefficient of ∂1(x) is zero.

Ozsváth-Szabó then prove in [49, Lem. 13.3] that any standard, ∆-graded, finitely gen-

erated Type D structure is homotopy equivalent to a small, finitely generated, standard,

∆-graded Type D structure over the same algebra.

The lemma, and associated proof, are very similar to the zig-zag lemma as presented in [63,

Sec. 3.1] and the edge reduction algorithm presented in [21, Sec. 2.6]. More generally, [63,

Thm. 5] proves the following, when A has some unital element 1.

Theorem 4.24 (Zig-Zag Lemma) Let G be a set of generators for the Type D structure



CHAPTER 4. ALGEBRAIC OBJECTS IN THE CONSTRUCTION 76

AX. Then for any x ∈ G, one can expand ∂1(x) as

∂1(x) =
∑
y∈G

cxy ⊗ y,

for algebra elements cxy ∈ A. An algebra element e ∈ A is invertible if there exists some

element f such that f · e = e · f = 1. Denote the inverse of algebra element e by e−1.

If a, b ∈ G are such that cab ∈ A is invertible, the Type D structure X ′ generated by

G′ = G\{a, b} is homotopy equivalent to X, with map ∂1X′ defined by

∂1X′(x) =
∑
y∈G′

(
cxy + cxbc

−1
ab cay

)
⊗ y.

Note, that the only invertible elements in A(n) are the idempotent elements, and so

the simplification of Type D structures to ‘small’ Type D structures is essentially an

implementation of the zig-zag lemma.

The zig-zag lemma is a well-known method for simplifying chain complexes by removing an

acyclic pair. As stated in Theorem 4.24 presented above, there is a similar simplification of

Type D structures. Moreover, [63, Sec. 3.1] continues to prove that similar simplifications

exist for DA-bimodules and A∞-modules.

However, a crucial method in this thesis is the determination of Type D structures through

inductive proofs, and it is thus helpful to consider how a Type D structure changes upon

extending the upper knot diagram. The correspondence between upper Kauffman states

and generators of the Type D structure is useful in this, and so in the inductive proofs

of Type D structures for three strand pretzel knots presented in Chapter 5, the Type D

structures are not simplified in the intermediate stages.

4.4 DA-bimodules

The algebraic objects associated to the Morse events in a special knot diagram are DA-

bimodules over the differential graded algebras. Such Morse events are crossings, maxima

and minima, and by construction of the special knot diagram necessarily occur at finitely

many distinct values yi.

The specific examples of these DA-bimodules as defined by [49] will be given later in

this section, but first the general definition of DA-bimodules over a DGA is presented

following [46, Sec. 2.6] and [24]. As with Type D structures, such bimodules can be
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defined over a general A∞-algebra, but since the algebra A(n) is a differential graded

algebra, one can specialise and define a DA-bimodule as follows.

Definition 4.25 [24, Def. 2.2.43] Let A and B be differential graded algebras over the

rings k, j respectively. A type DA-bimodule AMB is a graded (k, j)-bimodule, with (k, j)-

linear maps

δ11+j :M⊗B⊗j → A⊗M.

The tensor products are taken over the rings of idempotents in each of the A∞-algebras.

These maps also satisfy similar compatibility conditions to A∞-algebras and Type D struc-

tures.

To define these compatibility relations, first note that one can compose δ11+j and δ11+k maps

by separating the algebra inputs. One can define the maps

∆n : An →
∑
i+j=n

Ai ⊗Aj .

Using this, one can define ∆ =
∑

n ∆n.

Then, define δ1 =
∑

j≥0 δ
1
1+j, the sum of those δ1 maps taking any number of algebra

inputs. Define the maps δk for k > 1 inductively, so

δi+1 =
(
1A⊗i ⊗ δ1

)
◦
(
δi ⊗ 1B⊗

)
◦ (1M ⊗∆) .

Figure 4.10 displays this definition of δi+1 from the composition of δi and δ1 pictorially,

which is perhaps easier to understand. Note, the base case for the induction is the δ1 map

defined above. For each j ≥ 0, the maps must satisfy the following compatibility conditions.

0 =
(
µA1 ⊗ 1M

)
◦ δ11+j(x⊗ a1 ⊗ · · · ⊗ aj)

+

j∑
k=1

δ11+j
(
x⊗ a1 ⊗ · · · ⊗ ak−1 ⊗ µB1 (ak)⊗ ak+1 ⊗ · · · ⊗ aj

)
+

j−1∑
k=1

δ1j
(
x⊗ a1 ⊗ · · · ⊗ ak−1 ⊗ µB2 (ak ⊗ ak+1)⊗ ak+2 ⊗ aj

)
+
(
µA2 ⊗ 1M

)
◦ δ21+j ◦∆j .

Once more, this definition can be intuitively thought of as forcing that the sum of the

possible ways to ‘differentiate’ twice is zero.

� In the first part of this sum, one differentiates once in A, and once in M.
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δi

δ1

∆

M B⊗

A⊗i+1 M

Figure 4.10: Pictorial representation of the maps δi+1 : M ⊗ B⊗ → A⊗i+1 ⊗M .

� In the second and third parts of this sum, one differentiates once in B, and once in

M.

� In the fourth part of the sum, one differentiates twice in M.

The DA-bimodule relation is displayed in Figure 4.11 for δ11+2 : M ⊗ B ⊗ B → A ⊗M .

Elements of a DA-bimodule then have an associated incoming and outgoing idempotent.

Unlike with algebra elements, such as I123·R4·I124, whose incoming idempotent is displayed

on the left, following the notation for a bimodule as AMB, the incoming idempotent

(associated to B) is presented on the right, and the outgoing (associated to A) on the left.

An example might be I12 ·X · I134, where I12 ∈ A(2) = A, and I134 ∈ A(3) = B.

Remark 4.26 As described in Definition 4.25, when defining the map δ1 =
∑

k δ
1
k in a

DA-bimodule, all tensor products are taken in the ring of idempotents for the algebra in

question.

Consequently, if there is some map δ11+k : AMB ⊗ B⊗k → A⊗ AMB, such that there are

bimodule elements X,Y ∈M, and algebra elements bi ∈ B and a ∈ A with

δ11+k(X, b1, b2, . . . , bk)→ a⊗ Y,

then in order for this map to be non-zero one must have the following restrictions upon

idempotents.

� The element X ∈ AMB with associated idempotents Ix ·X · Ix0. Hence, Ix ∈ I(A),

and Ix0 ∈ I(B).

� Idempotents Ixi−1 · bi · Ixi for each bi ∈ B in the sequence.
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Figure 4.11: Figure displaying the DA-bimodule compatibility condition of the map δ11+2.

If this expression sums to zero, and the same is true for all other values of j, then the

bimodule AMB is said to be a DA-bimodule. Note, the last term in the sum is the sum of

all possible ways to divide two algebraic inputs as input to δ1 ◦ δ1.

� Ix · a · Iy. Note, that the idempotent Ix is the same as the outgoing idempotent of

X ∈ AMB.

� Iy · Y · Ixk , where the incoming idempotent for the element Y is the same as that

associated to the element bk.

4.4.1 DA-bimodules associated to Morse events

For DA-bimodules as defined by [49] in their construction of the invariant C(D), every

Morse event has an associated bimodule BMA. Here, B is the outgoing algebra A(n′) asso-

ciated to the bottom of the Morse event (the lower value of y in the special knot diagram),

and A is the incoming algebra A(n) associated to the top of the Morse event.

Note, that if the event is a maximum or minimum, one would have n′ = n+1 or n′ = n−1

respectively. Whereas if the event is a crossing, one would have n = n′. However, in

nearly all cases, the incoming and outgoing differential graded algebras associated to a

DA-bimodule are different, since any crossing, maximum or minimum changes the upper

knot diagram, and so the matching. The algebra A(n) has elements Cpq associated to

arcs in the upper knot diagram matching arc p with arc q. More properly, one should

annotate each algebra AM (n) in order to demonstrate that there is a dependence upon

the matching, however this is hopefully clear from context.

The only case in which the incoming and outgoing algebra of a DA-bimodule associated to

a Morse event are equal is when there is a crossing between strands i and i+ 1, and there

is an element {i, i+1} ∈M , for M the associated matching of the incoming algebra.

Although the definitions for the bimodules associated to crossings and maxima are exactly
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as presented in [49], the definition of the bimodule associated to a minimum in [49, Sec. 7.2]

has been adapted to the case of a three-strand pretzel knot. More specifically, Ozsváth-

Szabó only present the explicit definition of the bimodule for a minimum between strands

one and two. Since every special knot diagram admits an isotopy such that all minima

always occur between these strands, at the expense of introducing additional crossings,

this is sufficient for the construction. However, it is algebraically simpler not to introduce

additional crossings that may complicate the determination of the Type D structure at

any level of the upper knot diagram, and so a specialisation to the case of three strand

pretzel knots is presented here in Section 4.6.2.

Exceptionally, the global minimum of the special knot diagram contains by convention

the distinguished edge used in the determination of any Kauffman state. This minimum

will have an A∞-module associated to it, rather than a DA-bimodule. Moreover, as one

can determine from the interpretation of idempotent states within an upper knot diagram

as presented in Section 4.2.2, the idempotents associated with the global minimum differ

from those of local minima.

In particular, idempotent elements Ix that are an associated idempotent to a generator of a

Type D structure or DA-bimodule indicate that there is a decoration of a Kauffman state

in the region above when i /∈ x. This must necessarily be true for the incoming idempotents

of all generators of a non-global minima between strands i and i + 1, because the local

diagram associated to a non-global minimum has no positions that may be marked by a

Kauffman state2. This is explained more fully in terms of preferred idempotents in the

construction of the specific bimodule.

However this property of the associated incoming idempotent is not true for the global

minimum: since the distinguished arc is by construction the global minimum, and in the

construction of [36] there can be no decoration placed in the region incident to the global

minimum. As such, one would require — since the global minimum is between strands 1

and 2 — that 1 is in the incoming idempotent for any generator of the object associated

to the global minimum, since this implies there is no Kauffman state in this region above

this horizontal level.

As noted, the generators of a DA-bimodule have an associated incoming and outgoing

idempotent, and the ring of idempotents for an algebra is the ring over which tensor

2Recall, Kauffman states mark one of the quadrants at each crossing in unoccupied regions.
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products are defined. The generators of the DA-bimodules associated to crossings, maxima

and minima are all in one-to-one correspondence with the valid partial Kauffman states for

the Morse event in the special knot diagram, which have a pair of idempotents associated

to them.

Definition 4.27 Let D be a special knot diagram for an oriented knot K, such that there

is only a single Morse event between y1 < y2. Then the associated bimodule AMB to this

Morse event has generators that are in one-to-one correspondence with partial Kauffman

states for this subset of the special knot diagram D: that is decorations of the subset

of the knot diagram agreeing with the interpretation of the idempotents as described in

Section 4.2.2.

A partial Kauffman state Ip ·X · Iq ∈ AMB has an associated incoming idempotent Iq ∈
I(B), and an outgoing idempotent Ip ∈ I(A). If M is the bimodule associated to any

crossing that is not between strands i and i+ 1, then when the Kauffman state decoration

at this crossing is placed in a region i incident with the line y2 (the upper horizontal level),

one must then have that i ∈ Iq but i /∈ Ip.

If M is the bimodule associated to a maximum or minimum, then the generators of the

bimodule correspond to partial Kauffman states with no decorations, simply all possible

valid assignments of incoming and outgoing idempotent.

Since DA-bimodules are associated to Morse events, and such Morse events can be thought

of as one-manifolds with boundary, there is a corresponding notion of a DA-bimodule being

adapted to the underlying one-manifold. This is similar to the adaptation of a Type D

structure to a one-manifold as presented in Definition 4.17. Informally, being adapted

to a one-manifold ensures consistency in gradings in the construction, particularly under

taking tensor products of these objects, as outlined in Section 4.5.

Definition 4.28 [49, Def. 2.6] From the construction of [49], to every Morse event there

is an underlying one-manifold W , to which a DA-bimodule is associated. The boundary

of W can be partitioned as ∂W = Y1 t Y2, where Y1 is the finite collection of points at the

‘top’ boundary of W , and Y2 the collection of points at the bottom.

The Alexander multi-grading in each algebra A1 and A2 associated to the level sets the

top and bottom of W respectively can be thought of as half-integer valued functions on Y1

and Y2 — i.e. taking values in H0(Yi;Q). From the relative long exact sequence, there
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is a corresponding action H0(Y1;Q) ⊕ H0(Y2;Q) → H1(W,∂W ;Q) given by (y1, y2) 7→
−d0(y1) + d0(y2).

The DA-bimodule A1MA2 is then defined to be adapted to W if:

� M is multi-graded by H1(W,∂W ) as described above, with additional Q-grading

∆M , compatible with the ∆-grading on the algebra. Namely, if there is a map

δ1+k(m, a1, . . . , ak)→ b⊗ y, then

∆(b) + ∆M (y) = ∆M (m)− k + 2 +

k∑
i=1

∆(ai).

� M is a finite dimensional vector space over F.

This condition of being adapted to a one-manifold will always be satisfied for the DA-

bimodules used in the construction of the invariant C(D) as described in [49]. For the

DA-bimodules associated to crossings, this condition means that generators of the DA-

bimodule have an associated
(
1
4Z
)2n

-valued grading, where 2n is the number of strands in

the local diagram of the crossing.

4.4.2 DA-bimodules associated to crossings

As described in Definition 4.27, the generators of bimodules associated to crossings cor-

respond to partial Kauffman states for each crossing. However, although there are only

four marked positions at each crossing (corresponding to the four cardinal directions N ,

E, S, W ), there can be more than four generators of the DA-bimodule, since there could

be two states with the same cardinal direction but different idempotents.

For a positive crossing between strands i and i+1, the associated DA-bimodule is P i, and

for a negative crossing between the same strands theDA-bimodule isN i. The generators of

the DA-bimodules P i and N i are in one to one correspondence, and indeed the bimodules

are said to be ‘opposite’, following [49, Def. 3.5].

Definition 4.29 If AMB is a DA-bimodule, with A and B both examples of the DGA

A(n) defined in Definition 4.12, then there is an opposite bimodule CND, with the same

generating set as M.

For the differential graded algebra A(n), following [46, Sec. 5.5], define the map o : A(n)→
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A(n) by

o(Ri) = Li o(Li) = Ri

o(Ui) = Ui o(Cij) = Cij

o(a · b) = o(b) · o(a) o(Ix) = Ix.

Then, the opposite bimodule CND is such that C = A, D = B, and with maps δ1i+1 :

N ⊗ B⊗i → A⊗N as follows.

� If in M there was some map δ11 such that δ11(X) = b⊗ Y , then in N there is a map

δ11(Y ) = o(b)⊗X.

� More generally, if there is a map δ1i+1(X, a1, . . . , ai) = b ⊗ Y in M, there is a

corresponding map δ1i+1(Y, o(ai), . . . , o(a1)) = o(b)⊗X in N .

Since the bimodules P i and N i are opposites of each other, defining one fully and applying

the definition of opposite bimodules over A(n) is sufficient to define the other.

Generators of the bimodules P i and N i

Corresponding to the four cardinal directions, one can separate the generators of a bi-

module corresponding to a crossing into four types. In [49, Sec. 3.2], Ozsváth-Szabó then

define these types as follows.

Definition 4.30

N =
∑
i∈Ix

Ix ·N · Ix E =
∑

i+1∈Ix
i/∈Ix

Ix\{i+1}∪i · E · Ix.

S =
∑
i/∈Ix

Ix · S · Ix W =
∑

i−1∈Ix
i/∈Ix

Ix\{i−1}∪i ·W · Ix

When taking a tensor product of the DA-bimodule associated to a crossing with a Type

D structure, as will be defined in Section 4.5, only one idempotent representative from a

class will be picked out by the tensor product. This is because the generators of a Type

D structure corresponding to an upper knot diagram have a single associated idempotent.

However, when defining the maps δ1 in a DA-bimodule for a crossing, algebra inputs to

the map will be considered that may not be valid for all possible idempotents.

Following Definition 4.28, one can assign a multi-grading to all generators of P i and

N i.
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Definition 4.31 With the generators N , E, S and W for the DA-bimodule P i, as outlined

in Definition 4.30, the
(
1
4Z
)2n

-valued grading, gr, of each generator is as follows:

gr(N) =
1

4
(ei + ei+1) gr(E) =

1

4
(−ei + ei+1)

gr(S) =
1

4
(−ei − ei+1) gr(W ) =

1

4
(ei − ei+1).

For the same generators in N i, the corresponding gradings are (−1) times the grading for

P i, as outlined by [46, Sec. 4.4].

Maps in the bimodule P i

The maps in a DA-bimodule are most easily described using a weighted, directed graph,

similar to the weighted directed graph for Type D structures as defined in Section 4.3.2.

In particular, the vertices of such a graph correspond to generators of the DA-bimodule,

and the weights correspond to algebraic inputs and outputs.

More specifically, if there is a map δ11+k(X, b1, b2, . . . , bk) → a ⊗ Y in the DA-bimodule

AMB, then from the vertex corresponding to X to the vertex corresponding to Y there is

a directed edge with weight a ⊗ (b1, b2, . . . , bk). Edges corresponding to maps δ11 without

any algebraic input may also be highlighted by a dashed line.

Correspondingly, the graph depicted in Figure 4.12 defines the maps δ11 and δ12 between

generators of different types in the bimodule P i, following [49, Sec. 3.2].

Between generators of the same type, one also has the following maps, where X denotes

any cardinal generator.

� δ12(X, a · b) = a · δ12(X, b) for algebra element a with weight outside of span{ei, ei+1}.
Algebra elements with weight outside the crossing region are said to commute with

the map δ12 .

� δ12(N,LiLi+1) = LiLi+1 ⊗N , and δ12(N,Ri+1Ri) = Ri+1Ri ⊗N .

� δ12(X,Ui ·a) = Ui+1 ·δ12(X, a) when Ui and Ui+1 are non-zero following the idempotent

conditions described in Remark 4.26, and 0 otherwise.

� δ12(X,Ui+1 · a) = Ui · δ12(X, a) likewise following Remark 4.26.

� Similarly, with the idempotents as described in Remark 4.26, one has δ12(X,UiUi+1 ·
a) = UiUi+1 · δ12(X, a).
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N

W E

S

Ui+1 ⊗ Li +Ri+1Ri ⊗Ri+1 Ui ⊗Ri+1 + LiLi+1 ⊗ Li

Li Ri+1

1⊗Ri + LiLi+1 ⊗ Li+1Ui

1⊗ Li+1 +Ri+1Ri ⊗RiUi+1

LiLi+1 ⊗ Ui

Ri+1Ri ⊗ Ui+1

UqRi ⊗ Ci+1,q UpLi+1 ⊗ Ci,p

Figure 4.12: The maps δ11 and δ12 in the DA-bimodule P i, following the definition pre-

sented in [49, Sec. 3.2]. The maps highlighted in red feature the matching elements Ci,p

and Ci+1,q. These are only non-zero when i and i + 1 are not matched in the incoming

algebra associated to P i.

The last three points correspond to the crossing switching the role of i and i + 1, which

is hopefully clarified by the interpretation of DA-bimodules and their associated maps as

regions in partial Heegaard diagrams, as described in Section 4.4.4.

The only remaining non-zero maps δ1k in the DA-bimodule P i are the maps δ13(S,−,−).

Those maps δ13 used in the calculations within this thesis are:

δ13(S,Ri, Ri+1) = Ri ⊗ E.

δ13(S,Ui, Ui+1) = Li+1Ui ⊗ E.

δ13(S,Li+1, Li) = Li+1 ⊗W.

δ13(S,Ui+1, Ui) = RiUi+1 ⊗W.

δ13(S,Li+1, Ui) = Li+1 ⊗N.

δ13(S,Ri, Ui+1) = Ri ⊗N.

The list of all possible maps δ13(S,−,−) in P i is slightly more extensive, and the full

description can be found in [49, p. 21]. Within the calculations presented in Chapter 5,

only the above maps are ever used when the tensor products between the TypeD structures

associated to three-strand pretzel knots and P i are taken. With the complete list, one

can verify in every calculation that the required idempotents and algebra elements for the

other maps are not found in the subject Type D structures.
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For the opposite bimodule N i, as described in Definition 4.29 the DA-bimodule maps can

be completely recovered from the definition of the bimodule P i. Intuitively, using the

directed graph representation of bimodule maps as presented in Figure 4.12, to find the

maps for the opposite bimodule, reverse the direction of all arrows, swap Lj for Rj and

Rj for Lj , and reverse the order of any terms in parentheses. For example, in N i, there is

a non-zero map

∂13(N,Ui+1, Li) = Li ⊗ S,

corresponding to the last bullet point in the list above.

The DA-bimodules P i and N i are as defined above, but the proof that the maps δ11 , δ12

and δ13 satisfy the structure relations presented in Definition 4.25 is omitted here. For the

bimodule P i, this is proven in [49, Prop. 3.3], and the fact that N i is a DA-bimodule

follows from the fact that an opposite bimodule to a DA-bimodule is a DA-bimodule,

see [46, Prop. 5.15].

4.4.3 DA-bimodules associated to maxima

In [49, Sec. 5.2], Ozsváth-Szabó define the DA-bimodule Ωi corresponding to the Morse

event of a maximum introduced to the left of strand i in the special knot diagram. As

remarked in Section 4.4.1, the incoming and outgoing algebra for this bimodule are differ-

ent: the incoming algebra is A(n) for some n ∈ N, and the outgoing algebra is A(n+ 1).

By necessity, since there is an arc between the new strand i and new strand i + 1, the

matching element Ci,i+1 must be a matching element in A(n+ 1).

A slight special case is that of the unique global maximum, A(1)tΩ1. Here, t denotes the

fact that this is the ‘terminal’ maximum. Since there is no incoming algebra in this case

(or, alternatively, the empty algebra), to the global maximum one associates a Type D

structure with a single generator C12 ∈ A(1). This Type D structure is presented as a

weighted directed graph in Figure 4.8.

The definition of the DA-bimodule A2(n+1)Ωi
A1(n)

is exactly as is presented in [49, Sec. 5.2].

One can specialise the construction to when the maximum introduced gives either the

left-most or the right-most strands, however the DA-bimodule is defined generally, and

the truncation of the idempotents to the case of knots gives the appropriate simplifica-

tion.
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Motivated by the interpretation of idempotents in terms of possible positions of marked

points in upper Kauffman states, the generators of the DA-bimodule Ωi correspond to

idempotent pairs, with outgoing idempotent in I(A2) and incoming idempotent in I(A1).

More specifically, the generators of the DA-bimodule A2Ωi
A1

correspond to compatible

idempotent pairs where the outgoing idempotent is said to be allowed.

Definition 4.32 For y an n-element subset of {1, 2, · · · , 2n− 1} for some n, the idempo-

tent Iy ∈ I(A2) is defined to be an allowed idempotent if i ∈ y and |{i− 1, i+ 1} ∩ y| ≤ 1.

Allowed idempotents are then separated into the following three types, based upon the in-

tersection of y with the set {i− 1, i+ 1}.

� Iy is of type X if y ∩ {i− 1, i, i+ 1} = {i− 1, i}.

� Iy is of type Y if y ∩ {i− 1, i, i+ 1} = {i, i+ 1}.

� Iy is of type Z if y ∩ {i− 1, i, i+ 1} = {i}.

Following [49, Sec. 5.2], one can find a map from idempotents in A1 = A(n) to idempotents

in A2 = A(n+ 1). In A2Ωi
A1

, this is a map φi : {1, 2, . . . , 2n} → {1, 2, . . . , 2n+ 2}, defined

by

φi(j) =

 j if j ≤ i− 1,

j + 2 if j ≥ i.
Note that the map φi is not surjective, since the elements {i, i + 1} ∩ im(φi) = ∅. Using

the map φi, one can construct a map from allowed idempotents in A2 = A(n + 1) to

idempotents in A1. Define this map ψ as

ψ(x) =

 φ−1i (x) if i+ 1 /∈ x,
φ−1i (x) ∪ {i− 1} if i+ 1 ∈ x.

The map ψ is then used in the definition of the generators of the DA-bimodule Ωi: recall,

every generator is a compatible idempotent pair, with an allowed outgoing idempotent. If

this allowed idempotent is Ix (of any type), one has that the incoming idempotent of this

generator is Iψ(x).

Definition 4.33 � For every allowed idempotent Ix ∈ I(A2) of type X, define the

generator Ix ·Xx · Iψ(x).

� For every allowed idempotent of Iy ∈ I(A2) of type Y , define the generator Iy · Yy ·
Iψ(y).
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1 2 3 4
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A(2)

A(3)

Figure 4.13: An example generator for the bimodule A(3)Ω3
A(2). This is a generator I123 ·

X123 · I12 of type X, with highlighted incoming and outgoing idempotents. The idempotent

I123 ∈ I(A) is an allowed idempotent, since 3 ∈ {1, 2, 3}, and |{2, 4} ∩ {1, 2, 3}| = 1.

� For every allowed idempotent Iz of type Z, define the generator Iz · Zz · Iψ(z).

Each allowed idempotent is an (n+ 1) element subset of {1, 2, . . . , 2n+ 1}. The incoming

idempotent (rightmost) is then an n-element subset of {1, 2, . . . , 2n− 1}.

Truncating the idempotents to the case of knots, as explained previously, one sees that

the bimodule Ω1 thus has no idempotents of type X, and the bimodule Ω2n+1 has no

idempotents of type Y , since the outgoing idempotents would be outside the permitted

range. An example of a generator of type X for the bimodule A(3)Ω2
A(2) is presented in

Figure 4.13.

In the DA-bimodule Ωi, the maps δ11+k : Ωi⊗A(n)⊗k → A(n+ 1)⊗Ωi with k > 0 take as

algebraic inputs sequences of algebra elements in A(n). Following [49, Lem. 5.2], one can

then use the map ψ in order to find a correspondence between algebra elements in A(n)

and A(n+ 1). Lemma 4.34 is quoted from [49, Lem. 5.2].

Lemma 4.34 For Ix an allowed idempotent in A2 = A(n + 1), and Iy an idempotent in

A1 = A(n), such that ψ(x) and y are not ‘far apart’, then there is an allowed idempotent

state Iz in A2 such that ψ(z) = y, so that there is a map

Φx : Iψ(x) · A1 · Iy → Ix · A2 · Iz,

with the following properties:

� Φx maps the portion of Iψ(x) · B1 · Iψ(z) with weights in span{e1, e2, . . . , e2n} surjec-

tively onto the portion of Ix ·B2 ·Iz with weights in span {{e1, . . . , e2n+2}\{ei, ei+1}}.
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� Φx satisfies

Φx(Uj · a) = Uφi(j) · Φx(a) and Φx(Cp · a) = Cφi(p) · Φx(a)

for any j ∈ {1, . . . , 2n} and p ∈M the matching for A1.

Moreover, the state z is uniquely characterised by the existence of map Φx.

Example 4.35 As an example, consider the algebra element I23 · L2U3 · I13 ∈ A(2). In

A(3)Ω3
A(2), the map Φ235 carries this element to I235 · L2U5 · I135. Both I235 and I135 are

allowed idempotents in Ω3, with φ3(I235) = I23 and φ3(I135) = I13.

Moreover, the map Φ235 takes L2U3 ∈ A(2), an element of weight 1
2e2+e3, to L2U5 ∈ A(3),

an element of weight 1
2e2 + e5 = 1

2eφ3(2) + eφ3(3).

Using this correspondence between algebra elements in the incoming algebra and outgoing

algebras of Ωi, one can then define the maps δ1 for this bimodule.

Definition 4.36 Let X be the sum of all generators of Ωi of type X. Likewise, define Y

and Z as the sum of all generators of the corresponding types, defined by Definition 4.33.

The maps δ11 : Ωi → A(n+ 1)⊗ Ωi are then defined as follows:

δ11(X) = Ci,i+1 ⊗X +Ri+1Ri ⊗ Y,

δ11(Y ) = Ci,i+1 ⊗ Y + LiLi+1 ⊗X,

δ11(Z) = Ci,i+1 ⊗ Z.

The maps δ12 : Ωi⊗A(n)→ A(n+1)⊗Ωi are then defined by the Φx. Namely, for generator

Qx corresponding to the allowed idempotent Ix, let z be the allowed idempotent defined by

the map Φx. Then

δ12(Qx, a) = Φx(a)⊗Qz.

The maps δ1j = 0 for j ≥ 3.

An important part of this definition is that for the algebra element a ∈ A(n), the map

Φx(a) defines the allowed idempotent Iz, as remarked in Lemma 4.34.

The maps δ11 and δ12 as defined then satisfy the DA-bimodule structure relations, outlined

in Definition 4.25. This fact is proven in [46, Thm 8.3].
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4.4.4 Interpretation of DA-bimodules in partial Heegaard diagrams

As described above, for example in Figure 4.6, the algebra elements in A(n) have a repre-

sentation in a subset of the Heegaard diagram derived from a special knot diagram.

With the same interpretation of the algebra elements, and motivated by the [46, Sec. 4.4],

one can view the maps δ11+k :M⊗B⊗k → A⊗M in terms of domains in the partial Hee-

gaard diagrams corresponding to Morse events. Specifically, the algebraic inputs (elements

of B⊗k) represent the sum of domains corresponding to the algebra elements as outlined in

Section 4.2.2 at the top of the Morse event. Likewise, an element outgoing algebra a ∈ A
has a corresponding domain exiting at the bottom of the Morse event.

Using the association of the differential graded algebra B to the top of some Morse event,

and A to the bottom of the same Morse event, the algebra elements represent sums of

domains intersecting the upper and lower boundary of the corresponding partial Heegaard

diagram. The corners of the domains — as introduced in Remark 1.6 — correspond to

the intersection points in a partial Heegaard diagram that are in bijection with the partial

Kauffman states for this Morse event, see Section 4.4.1.

Furthermore, for the map to be non-zero, the sum of domains must satisfy the same

conditions as corners of the domains in a full Heegaard diagram. If there is a map between

two different generators of the bimodule, then the corresponding intersection points in the

partial Heegaard diagram should be acute or obtuse corners of the domain. Whereas if the

map is from a generator to itself, then the corners in the Heegaard diagram are degenerate,

as in the sense of [23].

Example 4.37 As an example, consider the domain pictured in Figure 4.14. This is the

partial Heegaard diagram associated to a positive crossing between strands one and two,

namely associated to the DA-bimodule P1.

In the definition of the maps δ1 in P1, one has that there is a non-zero map δ13(S,R1, U2)→
R1 ⊗ N . Here, the solid dot on the intersection between red α and blue β curves is in

correspondence with partial Kauffman state S, and the open dot is in correspondence with

the partial Kauffman state N . Together, the two algebra elements R1 and U2 form a

domain with an obtuse corner at N , and an acute corner at S. This domain intersects the

bottom of the partial Heegaard diagram at the front half of the first tube, corresponding to

the algebra element R1.
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Figure 4.14: A domain on a partial Heegaard diagram corresponding to P1. The domain

shown corresponds to the map δ13(S,R1, U2) → R1 ⊗N . The U2 input corresponds to the

full tube incoming on the right, and R1 the front half of the tube in both incoming and

outgoing algebras.

This correspondence between DA-bimodules and partial Heegaard diagrams has recently

been further described by [48]. For example [48, Sec. 2.6] describes partial Heegaard

diagrams for Morse events. Moreover, in this paper, Ozsváth-Szabó discuss the appropriate

gluing of partial Heegaard diagrams, which corresponds to taking the box-tensor product

of the algebraic objects defined over A∞-algebras.

4.5 Tensor products of algebraic objects over A∞-algebras

In order to utilise the strength of a cut and paste construction, it must be possible to con-

struct C(D) from smaller algebraic objects. Moreover, from the physical interpretation of

upper knot diagrams and partial knot diagrams, one should intuitively be able to construct

a Type D structure from a DA-bimodule and a Type D structure, since by attaching a

Morse event to an upper knot diagram one yields another upper knot diagram.

Algebraically, this operation is the box-tensor product � between a DA-bimodule and a

Type D structure to yield another Type D structure.

As defined in [24, Sec. 2.3.2], given a bimodule AMB with map δ and Type D structure

BN with map ∂, one defines the Type D structure AX = AMB � BN . Generators of AX

correspond to elements of M⊗N , with this tensor product taken over I(B). The map

∂X : X → A⊗X is then defined by

∂X(m⊗ n) =
(
δ11(m)⊗ n

)
+
∑
j≥1

(δ11+j ◦ ∂j)(m⊗ n).
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∂X = δ11 + δ12

∂

+ δ13

∂

∂

+ · · ·

Figure 4.15: Representation of how to take the tensor product of a Type D structure and

a DA-bimodule, yielding another Type D structure.

The tensor product forming a new Type D structure is demonstrated pictorially in Fig-

ure 4.15. Note, this is a finite sum (and so the product is well defined) if there is an

N ∈ N such that the DA-bimodule map has δ11+j = 0 for j > N . In the construction of

the algebraic invariant by Ozsváth-Szabó , this tensor product will be well defined for this

reason.

The fact that the pair (X, ∂X) defines a Type D structure is a specialisation of the result

in [24, Prop. 2.3.10], which states that the tensor products of bimodules of certain types

also result in bimodules. Tensor products of bimodules are only well defined when certain

conditions on boundedness are satisfied, see [24, Sec. 2.2]. However, as proven in [49,

Prop. 2.8], the Type D structures and DA-bimodules used in the construction of C(D) are

bounded.

Remark 4.38 By construction, the box-tensor product can only be taken when the out-

going algebra of the Type D structure matches the incoming algebra of the DA-bimodule.

Since the tensor products in the definition of the map ∂X are taken over the ring of idem-

potents for this common algebra, if there are no generators in the Type D structure N
with a certain idempotent, then there are no generators of X with this as an incoming

idempotent to the M-tensor coordinate.

This is a useful property, since a DA-bimodule may have many possible generators with

different idempotents, for example in the case of the DA-bimodule associated to the max-

imum: Ωi. The generators of this bimodule are all compatible pairs of idempotents with

an allowed outgoing idempotent. However, under taking the tensor product with a Type D

structure, only those generators in Ωi with incoming idempotents matching the outgoing
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idempotents of the Type D structure will appear in the tensor product.

This motivates why three strand pretzel knots are so amenable to the cut and paste de-

termination of C(D). Placing each set of crossings together in the special knot diagram,

the possible upper Kauffman states that generate the Type D structure restrict the possible

idempotents that give non-zero tensor products after the next crossing is added. Hence,

the Type D structures at any point have relatively few (and well structured) generators,

making inductive methods for the determination of Type D structures easier to utilise.

4.5.1 The tensor product of two bimodules

As described by [24, Sec. 2.3.2], under certain restrictions, it is possible to take the box-

tensor product of two bimodules to yield another. In particular, the tensor product of two

DA-bimodules is another DA-bimodule. The composition of two partial knot diagrams is

also a partial knot diagram, and has an associatedDA-bimodule in this construction.

Let
(AMB, δ1M) and

(BNC , δ1N) be bimodules over A∞-algebras A, B and C. One can then

define the bimodule AXC , which is generated by the elements of M⊗I(B) N . Note, this

tensor product is taken over I(B) the ring of idempotents for the A∞-algebra B. As in the

case of a tensor product between a Type D structure and a DA-bimodule, the outgoing

algebra of the rightmost DA-bimodule must match the incoming algebra of the leftmost

DA-bimodule. This once more places restrictions upon the generators of the AXC , due to

the enforced compatibility of idempotents.

The map δ1X for the bimodule AXC is defined similarly to the map shown in Figure 4.15.

For any DA-bimodule, say FYG with map δ1, recall that one can define the map δk :

Y ⊗ G⊗ → F⊗k ⊗ Y iteratively, as demonstrated in Figure 4.10. Using this, the map

δ1X : X ⊗ C⊗ → A⊗X is defined as

δ1X =
∑
n≥0

(δ1M,1+n ⊗ IdN ) ◦ (IdM ⊗ δnN ).

Once more, this is more intuitively displayed pictorially, as in Figure 4.16. Note that in

the left-most tensor product there is only a single bimodule map, since the map δ1X has

only a single algebra output.

Observe, if one specifies that in the bimodule BNC the maps δ1N,1+k = 0 for all k > 0, then

N would be a Type D structure over B, and the map displayed in Figure 4.16 would be

precisely as displayed in Figure 4.15.
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Figure 4.16: Pictorial representation of the definition of the DA-bimodule map δ1M�N

for the bimodule AMB � BNC, as displayed in [24, Fig. 4].

The fact that this map δ1X : X ⊗ C⊗ → A⊗ X satisfies the structure relations of a DA-

bimodule as outlined in Definition 4.25 is proved in [24, Prop. 2.3.10]. The proof is not

presented here, but is a relatively simple consequence of the fact that the maps in both

M and N satisfy the structure relations.

Remark 4.39 Determining the DA-bimodule associated to k half-twists between neigh-

bouring strands would make the determination of the Type D structure at any point in an

n-strand pretzel knot simpler, and possible extend the amenability of this construction to

pretzel knots with more than three strands. This is beyond the scope of the current thesis,

but could provide a useful direction for further work.

4.5.2 Yielding a chain complex via box-tensor product

As remarked above, if a DA-bimodule has a trivial incoming algebra, it has the structure

of a Type D structure. Likewise, if the output algebra of the DA-bimodule is empty, the

DA-bimodule has the structure of an A∞-module, see Definition 4.40. Hence, one can

specialise the definition of a tensor product between two DA-bimodules presented above

to define the tensor product of an A∞-module and other algebraic objects.

Following [46, Sec. 2.5], let (AX, ∂) be a Type D structure, and (MA,m1+i) an A∞-module.

Recall, from Definition 4.40, that each m1+j : M ⊗ A⊗j → M takes j algebraic inputs

from A. The box tensor product M �X is then defined as the module generated by the

tensor product M ⊗I(A) X, with map

∂M�X(t⊗ x) =
∞∑
j=0

(mj+1 ⊗ Idx) ◦ (t⊗ ∂j(x)).
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The resulting pair (M �X, ∂M�X) forms a chain complex when either X is a bounded

Type D structure or M is a bounded A∞-module. This is demonstrated in [25, Lem. 2.30],

and by construction, the invariant C(D) of [49] is thus a well-defined chain complex.

This notion of boundedness is important in making sure that tensor products are well

defined. Roughly speaking, this notion of boundedness is when the sum displayed above

is finite. For example, a Type D structure AX is a bounded type D structure if for each

x ∈ X, there is some n such that for i > n, ∂i(x) = 0. Boundedness for A∞-modules is

defined similarly, see [24, Def. 2.2.18] and [24, Def. 2.2.23].

By virtue of being adapted to one-manifolds associated to special knot diagrams, the

objects used in the construction of C(D) are bounded, as proved by [49, Prop. 2.8].

4.6 A∞-modules

As remarked in the special case of the module assigned to the global maximum in Sec-

tion 4.4.3, the Type D structure A(1)tΩ1 can be thought of as a DA-bimodule with empty

incoming algebra. Hence, the compatibility conditions outlined in Definition 4.25 and

Figure 4.11 simplify to the relations necessary for a module to be a Type D structure as

presented in Definition 4.16.

A∞-modules are in some sense dual to Type D structures, being equivalent to DA-

bimodules with empty outgoing algebra. As presented in [25, Def. 2.5], when A is a

differential graded algebra, define an A∞-module as follows.

Definition 4.40 An A∞-module MA over differential graded algebra A is a graded F-

module M, with operations

m1+i :M⊗A⊗i →M[1− i],

for all i ≥ 0, such that the following compatibility condition holds.

0 =
∑

i+j=n+1

mi (mj(x⊗ a1 ⊗ . . . aj−1)⊗ aj ⊗ . . . an−1)

+

n−1∑
l=1

mn(x⊗ a1 ⊗ . . .⊗ al−1 ⊗ µ1(al)⊗ . . .⊗ an−1)

+
n−2∑
l=1

mn−1(x⊗ a1 ⊗ . . .⊗ al−1 ⊗ µ2(al ⊗ al+1)⊗ . . . an−1).
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An inspection of these relations, and those presented in Definition 4.25, reveals that the

A∞-module relations are a specialisation to the case where the algebra output of every

map δ11+j is trivial. Furthermore, following [24, 25], one can define A∞-modules over a

general A∞-algebra, rather than the special case of a differential graded algebra.

Type D structures are associated to upper knot diagrams, and similarly A∞-algebras

are associated to lower knot diagrams in the construction of [49]. Then, as described

in [1, Sec. 4.3], the generators of these A∞-module are in correspondence with the partial

Kauffman states of this lower diagram.

Remark 4.41 The duality between Type D structures and A∞-modules can be formalised

in terms of the cobar resolution of a differential graded algebra. Informally, if there is

an A∞-module MA, such that for some x ∈ M with map m1+i(x, a1, . . . , ai) = y, then

there is a Type D structure with the same generators, such that δi(x) = a∗1 ⊗ · · · ⊗ a∗i ⊗ y.

These algebra elements a∗j are in the dual algebra to A, denoted A′. This duality is more

explicitly described in [24, Rmk. 2.2.35] and [63, Def. 6].

4.6.1 The terminal minimum as an A∞-module

In [49, Sec. 7], Ozsváth-Szabó associate a DA-bimodule A(n)f1
A(n+1) to the Morse event

of a minimum between strands one and two. The case of a generic minimum fi between

strands i and i+ 1 is defined inductively in [49, Sec. 7.5], so that

fi = fi−1 � P i � P i−1.

Defining the DA-bimodule in this way, one need only introduce the specific maps and

generators for the DA-bimodule f1, and add crossings to the special knot diagram to

yield an isotopic special knot diagram with all non-global minima between strands one

and two. The isotopy in question is given in Figure 4.17. Note that the expense of

this procedure is adding more crossings, and so a greater number of Kauffman states as

generators. This makes inductive calculations more complicated.

The global minimum is treated differently, as this is by construction the distinguished

edge of the decorated projection associated to Kauffman states of a special knot diagram.

Associate to the global minimum the bimodule tf.

Let R′ = F[U, V ]/(UV ) be the same ring as defined previously. The overall chain complex

C(D) for a special knot diagram D is a chain complex over R′, and so a module over R′.
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i + 1 i + 2ii− 1 i− 1 i i + 1 i + 2

Figure 4.17: Diagram showing the isotopy required in the inductive definition of the DA-

bimodule fi associated to a minimum between strands i and i + 1. Although all special

knot diagrams admit isotopies to special knot diagrams with all minima between the first

and second strands, this comes at the expense of adding additional crossings.

The Kauffman states for a special knot diagram correspond to generators of C(D) over

this ring R′.

This ring R′ can be given the structure of a differential graded algebra, and moreover a

type of bimodule called an (left,right) AA-bimodule. The full definition of an AA-bimodule

will not be presented here, although it can be found in [24, Def. 2.2.38]. Furthermore,

one can yield another (left,right) AA-bimodule under taking the box-tensor product with

a DA-bimodule. Namely, there is a well-defined operation (under certain boundedness

conditions, which these bimodules satisfy) such that R′R′R′ � R′XA(1) is a (left,right)

AA-bimodule.

Definition 4.42 Let R′ be defined as above. Define the operation µ2 : R′ ⊗ R′ → R′

by P ⊗ Q 7→ P · Q, where · denotes multiplication of polynomials in F[U, V ], followed by

setting UV = 0. Equip R′ with the additional operation µ1 : R′ → R′ such that P 7→ 0 for

all P ∈ R′. Together, µ1 and µ2 give R′ the structure of a differential graded algebra.

Define the bimodule R′R′R′ to be generated by the elements of R′, together with actions

m1,1,0 : R′ ⊗R′ ⊗R′ → R′, m0,1,1 : R′ ⊗R′ ⊗R′ → R′ and m0,1,0 : R′ ⊗R′ ⊗R′ → R′
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defined by:

m1,1,0(r ⊗ s⊗ u) = µ2(r, s)

m0,1,1(r ⊗ s⊗ u) = µ2(s, u)

m0,1,0(r ⊗ s⊗ u) = µ1(s).

Let all other relations mi,1,k : R′⊗i⊗R′⊗R′⊗k be zero. Then, R′R′R′ has the structure of

a (left,right) AA-module as defined by [24, Def. 2.2.38].

Using Definition 4.42 and viewing R′ as an AA-bimodule, define as follows the AA-

bimodule Y , motivated by [49, Sec. 8.2].

R′YA(1) = R′R′R′ � R
′
tfA(1).

The definition presented here is slightly different than that presented in [49], since from the

beginning of the construction within this thesis, it has been assumed that the idempotents

of the differential graded algebras have been truncated to the case of knots. This is left

until just before the addition of the global minimum in Ozsváth-Szabó’s construction,

see [49, Prop. 8.2] and [46, Rmk. 11.2].

The effect of this is that the original definition of tf by Ozsváth-Szabó has an output

algebra for tf that is S = F[u, v]/(uv). However, as remarked in the proof of [49, Prop. 8.2],

restricting to the idempotents considered here can be done for all the bimodules used in

the construction, and the effect of this is that the output algebra of tf is then R′ ⊂ S,

where u2 = U, v2 = V .

Definition 4.43 Let R
′
tfA(1) be generated by a single element Q1 · I1. Then, define the

maps

δ12(Q1, U
k
1 ) = Uk ⊗Q1

δ12(Q1, U
k
2 ) = V k ⊗Q1

δ12(Q1, 1) = 1⊗Q1

δ12(Q1, U
k
1U

l
2) = 0⊗Q1

δ12(Q1, C12) = 0⊗Q1.

Let all other maps δ1j be zero.

Using the AA-bimodule R′R′R′ as defined above, define the AA-bimodule R′R′R′�R
′
tfA(1).
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This has a single generator – corresponding to 1⊗Q1. The left action of R′ corresponds

to multiplication of this generator by polynomials in U or V in R′.

Consequently, one can think of this as an A∞-module Y ′A(1) generated by 1⊗Q1, Uk ⊗Q1

and V j ⊗Q1, for all k, j ∈ N. The non-zero maps m1+n : Y ′⊗A(1)⊗n are then defined as

follows:

m2(X, 1) = X for any generator X

m2(U
j ⊗Q1, U

k
1 ) = U j+k ⊗Q1 for any j, k ∈ Z≥0

m2(V
j ⊗Q1, U

k
2 ) = V j+k ⊗Q1 for any j, k ∈ Z≥0.

Definition 4.43 is strongly motivated by the correspondence between partial Heegaard

diagrams for the global minimum and A∞-modules. Using the construction of a Heegaard

diagram associated to a special knot diagram, as in Section 2.1, there is a meridional

curve on the partial Heegaard diagram corresponding to the distinguished edge in the

decorated projection of the lower knot diagram, on either side of which are the z and w

basepoint.

In the construction of the invariant C(D) for three strand pretzel knots, the global mini-

mum will be oriented right to left, which corresponds with placing the z-basepoint on the

right of the meridian, and the w-basepoint opposite. If the global minimum is oriented

left to right, the role of U and V are switched, see [49, Sec. 8.2].

4.6.2 The other minima

Pretzel knots, and in particular three strand pretzel knots, admit knot diagrams such that

all minima are at lower y-coordinates than the crossings and maxima, see Figure 5.1. In

particular, in order to yield the special knot diagram associated to a three strand pretzel

knot with an upper knot diagram as demonstrated in Figure 5.1, one would take the tensor

product with the A∞-module

Y ′A(1) �
A(1)f2

A(2) �
A(2)f2

A(3).

From the construction of [49, Sec. 7.5], the bimodule f2 is inductively defined as f1 �

P2 � P1.

Using the fact that all idempotents used in the construction are truncated as described on

page 61, one can define the the bimodule A(1)f1
A(2) as follows.
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Definition 4.44 Let A(1)f1
A(2) be generated by a single generator I1 ·G23 · I23. In A(2),

denote the matching elements by C1,α+2 and C2,β+2, where α 6= β, and each take one of

the values 1 or 2. As a shorthand, let C1,α+2 be denoted by C1, and C2,β+2 by C2.

By virtue of being a knot, one has that C12 is not a matching element in A(2). Then, the

maps in the bimodule are defined as follows.

δ11+1+m(G23, U
m
2 , C

⊗m
1 ) = Umα ⊗G23,

δ13(G23, C1, C2) = Cα,β ⊗G23,

δ1∗(G23, U
m
2 L2, C

m
1 , . . .

. . . , Ua1+1
1 , C⊗a12 , U b1+1

2 , C⊗b11 , Ua2+1
1 , C⊗a22 , . . . ,

. . . , Uak+1
1 , C⊗ak2 , Un2 R2, C

⊗n
1 ) = UAα U

B
β ⊗G23.

Here, A = m+ n+
∑
bi, and B =

∑
ai, with ai, bi, n,m ∈ Z≥0.

This is not exactly the same as the definition presented in [49, Sec. 7.2], which is described

in terms of walks on a directed graph with fixed start and endpoints, although this is

similar to the presentation of this bimodule in [49, Sec. 13.1].

In order to provide an algebra input to the A∞-module Y ′ that gives some non-zero

module element output, one would require that at most one of A or B to be non-zero,

since UV = 0 in R′. In particular, this restricts the algebra inputs yielding non-zero maps

in the A∞-module Y ′ � f1.

The DA-bimodule f̃2

As mentioned, the downside of defining the DA-bimodule f2 inductively for minima is

that there is a cost to increasing the number of generators in the corresponding partial

knot diagram.

Specifically, consider Figure 4.18. In the leftmost diagram, there is only a single possible

Kauffman state. Let the corresponding bimodule be f̃2, and denote the generator by

I1 ·Q · I13. For the rightmost diagram, the corresponding DA-bimodule is

A(1)f2
A(2)
∼= A(1)f1

A(2) � P2 � P1.
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3 421 1 2 3 4

Figure 4.18: Diagram of two partial knot diagrams, corresponding to the DA-bimodules

f̃2 (left), and f2 ∼= f1 � P2 � P1 (right), as defined by Ozsváth-Szabó .

ThisDA-bimodule (the tensor product of threeDA-bimodules) has three generators:

I1 ·G⊗W ⊗N · I13

I1 ·G⊗W ⊗ E · I23

I1 ·G⊗N ⊗ S · I23,

where G is the generator of f1 as defined in Definition 4.44. Of these three, only G⊗W⊗N
has idempotents that match the single generator of the bimodule f̃2.

Definition 4.45 Let A(1)f̃2
A(2) be a bimodule generated by the single generator I1 ·Q · I13.

Let the map δ1 : f̃2 ⊗A(2)⊗ → A(1)⊗ f̃2 be defined by:

δ13(Q,C2∗, C3∗) = C12 ⊗Q

δ14(Q,L3, U2, R3) = 1⊗Q

δ12(Q,Uk1 ) = Uk1 ⊗Q for k ≥ 0

δ12(Q,U `4) = U `2 ⊗Q for l ≥ 0

δ11+1+n(Q,Un3 , C
⊗n
2p ) = Unq ⊗Q for n ≥ 1,

where q = 1 when p = 1, and q = 2 when p = 4. Note, C23 cannot be an element of A(2),

as the corresponding diagram would yield a link of two components. Define all other maps

δ1k to be zero.

Lemma 4.46 The bimodule A(1)f̃2
A(2) with the associated maps has the structure of a

DA-bimodule.
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Proof Clearly, f̃2 has a single generator to which incoming and outgoing idempotents

are associated. In order to prove that this has the structure of a DA-bimodule, it remains

to verify that the structure relations in Definition 4.25 are satisfied.

Since δ11 is trivial, start by considering δ12 . Examining Figure 4.11, as there is only a single

algebra input to δ12 , it remains to verify that only the first two terms sum together to give

0.

For δ12(Q,U1), note that since µ1(U1) = 0 in both A(1) and A(2), one has that

(µ1 ⊗ 1) ◦ δ12(Q,U1) = 0

δ12 ◦ (1⊗ µ1) (Q,U1) = 0.

The same is true for δ12(Q,U4), since µ1(U4) = 0 in both the incoming and outgoing

differential graded algebras.

For δ13(Q,C2∗, C3∗), note that the fourth and fifth terms in the sum displayed in Figure 4.11

will be zero, since δ11 = 0 and δ12(Q,C2∗ · C3∗) = 0. Likewise, no non-zero δ13 map takes

C3∗ or µ1(C3∗) as an input, hence the second and third terms are zero. Finally, the first

term is zero, since µ1(C12) = U1U2 ∈ A(1). However, I1 ·U1U2 ·I1 has identical weight and

idempotents to I1 · L1R1R2L2 · I1, which is zero in A(1). By Proposition 4.13, U1U2 = 0

in A(1), and so all terms in the sum are zero.

For the term δ14(Q,L3, U2, R3), note that since µ1(1) = 0 ∈ A(1), and all three algebra

inputs are in the kernel of µ1 in A(2), the first three terms in the sum of Figure 4.11 are

zero. Similarly, since there are no non-zero δ1k terms with similar inputs for k < 4, the

other terms in the sum are also zero. So the structure relation is satisfied for this set of

inputs.

Similar logic applies for δ11+1+n(Q,Un3 , C
⊗n
2p ). The first term is necessarily zero, since

µ1(Uq) = 0 ∈ A(1). Likewise, the last two terms in the sum are zero, since δ1 is zero if

only U3 or C2p inputs are supplied. No non-zero arrow has U2Up as an input, so the second

and third terms in the sum are zero. Hence, f̃2 is a DA-bimodule.

Using this definition, one can then define the A∞-module Y ′ � f̃2
A(2). This is a simple

result of applying the tensor product as defined in Section 4.5.1, specialising to the case

of an empty outgoing algebra for the leftmost DA-bimodule.
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Lemma 4.47 The A∞-module Y ′ � f̃2
A(2) has generators:

1⊗G⊗Q · I13,

U ` ⊗G⊗Q · I13,

V k ⊗G⊗Q · I13,

with maps m1+i : (Y ′ � f̃2)⊗A(2)⊗i → Y ′ � f̃2 defined as follows.

m2(U
` ⊗G⊗Q,Uk1 ) = Uk+` ⊗G⊗Q, k, ` ∈ Z≥0

m2(V
s ⊗G⊗Q,U t4) = V t+s ⊗G⊗Q, t, s ∈ Z≥0

m4(U
` ⊗G⊗Q,L3, U2, R3) = U ` ⊗G⊗Q, ` ∈ Z≥0

m4(V
s ⊗G⊗Q,L3, U2, R3) = V s ⊗G⊗Q, s ∈ Z≥0

m1+1+n(Up ⊗G⊗Q,Un3 , C⊗n12 ) = Up+n ⊗G⊗Q, p ∈ Z≥0, n ∈ N

m1+1+m(V q ⊗G⊗Q,Un3 , C⊗m24 ) = V q+m ⊗G⊗Q, q ∈ Z≥0,m ∈ N

All other maps in the A∞-module are trivial. Note that only one of the last two relations

may be non-zero, as the matching element in A(2) is either C12 or C24.

The dual algebra and canonical bimodule

Having defined the bimodule f̃2, and theA∞-module Y ′�f̃2
A(2) as described in Lemma 4.47,

the aim is to prove an equivalence between this and Y ′ � f2
A(2), where f2 is defined in-

ductively following [49].

In [46, 49], a common method for demonstrating the equivalence of two DA-bimodules is

to prove that the two yield identical Type D structures (over some algebra) after a tensor

product is taken with an invertible bimodule.

Before explaining some of these terms, the dual algebra to A(n), denoted A′(n) needs to

be introduced. This is defined in [49, Sec. 2.2], and after the usual truncation, can be

described as follows.

Definition 4.48 Adapting the definition of an I-state presented in Definition 4.6, let an

I ′-state be an (n − 1)-element subset of {1, 2, · · · , 2n − 1}. Define the algebra B′ in the

same way as B was defined in Definition 4.9. Namely, elements in the algebra consist of

triples [Ix, Iy, wi], where Ix and Iy are I ′-states, and wi is a weight in
(
1
2Z
)2n

.
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Then, augment B′ with the elements Ei for i ∈ {1, · · · , 2n}. More formally, let Ei denote

the formal sum

Ei =
∑
Ix

[Ix, Ix, ei],

where Ix are the I ′-states as defined above. Hence, define A′(n) as

A′(n) = B′ ∪ 〈Ei〉/ ∼

where ∼ denotes the relations:

1. Li+1 · Li = 0 for all i.

2. Ri ·Ri+1 = 0 for every i.

3. Uxi = [Ix, Ix, ei] = 0 when {i, i− 1} ∩ x = ∅, for every i.

4. Ei · b = b · Ei for any b ∈ B.

5. E2
i = 0 for all i.

6. When {i, j} /∈ M , where M is the associated matching as in the definition of A(n),

then

JEi, EjK = Ei · Ej + Ej · Ei = 0.

Otherwise, this element is non-zero.

The only non-trivial map µ1 is µ1(Ei) = Ui for every i. Furthermore, define the integer

valued grading ∆(a) by

∆(a) = # (Ej dividing a)−
∑
i

wi(a).

The duality of this algebra with the algebraA(n) is not discussed here, however is presented

in more detail in [49, Sec. 2.4].

As described by [46, Sec. 2.6], when B and C are differential graded algebras, a (left,left)

DD-bimodule B,CX is a module X that is a Type D structure over B ⊗ C. Using this

notion, the canonical bimodule A(n),A
′(n)K is defined in [49, Sec. 2.3] as follows.

Definition 4.49 Let the canonical bimodule A(n),A
′(n)K be generated by idempotent pairs

(Ix ⊗ Iy) ·Kx, where Ix is an n-element subset of {1, 2, . . . , 2n− 1}, and Iy is the comple-
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mentary (n− 1)-element subset3. Define the element A ∈ A(n)⊗A′(n) by

A =
∑
i

(Li ⊗Ri +Ri ⊗ Li) +
∑
i

Ui ⊗ Ei +
∑
{i,j}∈M

Cij ⊗ JEi, EjK ∈ A(n)⊗A′(n).

The map ∂ : K → A(n)⊗A′(n)⊗K is defined by ∂(v) = A⊗ v, where this tensor product

is taken over I(A(n))⊗ I(A′(n)).

The fact that this map ∂, and the bimodule A(n),A
′(n)K satisfy the Type D relations is

proven in [49, Lem. 2.2]. From [24, Def. 2.3.9], one can suitably define the tensor product

of a DA-bimodule and DD-bimodule. If AMB is a DA-bimodule, and B,CN is a DD-

bimodule, then there is a DD-bimodule A,CX whose generators correspond to elements of

M⊗N .

The maps in the tensor product are defined similarly to the tensor product of a DA-

bimodule and Type D structure, as in Section 4.5, excepting that the resulting algebra

element in C is the product of the algebra elements in C from the map ∂nN . This is presented

in more detail in [24]

Remark 4.50 A useful result is that the canonical bimodule is invertible (see [49, Thm. 2.3]).

A corollary of this is that if there are two DA-bimodules APB and AQB, then if the tensor

product APB � K is equivalent to AQB � K, then the DA-bimodules are equivalent. This

is used to great effect in the construction of the invariant C(D), for example in the proof

of [49, Thm. 4.1], which states that the bimodules for positive and negative crossings satisfy

the relation corresponding to the second Reidemeister move: i.e. P i�N i ∼= Id ∼= N i�P i.

The DD-bimodule for a minimum

Unlike the definition of the DA-bimodule f2, which is defined inductively, Ozsváth-Szabó

define the DD-bimodule associated to a minimum between strands c and c+ 1 explicitly.

Adapting their definition in [49, Sec 7.1] to the truncated algebras in question, the DD-

bimodule f2 is defined as follows.

Definition 4.51 Define the Type DD-bimodule A(1),A
′(2)f2 to be the bimodule as gener-

ated by P2, corresponding to the idempotent pair I1 ⊗ I2 ∈ A(1)⊗A′(2), namely

(I1 ⊗ I2) · P2.

3Hence, the two collections partition the set {1, 2, . . . , 2n − 1}. If y is not a complementary set to x,

define Ix ⊗ Iy ·Kx to be zero.
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Define the element A ∈ A(1)⊗A′(2) as

A = U1 ⊗ E1 + U2 ⊗ E4 + 1⊗ E2U3

+ Uα ⊗ JEφ(α), E2KE3

+ Cα,β ⊗ JEφ(α), E2KJE3, Eφ(β)K.

Here, φ is the map φ2 : {1, 2} → {1, 2, 3, 4}, as defined on page 87. The above uses

the fact that 2 and 3 cannot be matching in A′(2), hence there are non-zero elements

JEφ(α), E2K and JE3, Eφ(β)K, corresponding to the matching elements C2,α and C3,β in

A(2). Necessarily, Cα,β = C12 ∈ A(1).

Then, the map ∂1 : f2 → A(1)⊗A′(2)⊗f2 is defined by ∂1(P2) = A⊗ P2, similar to the

map in the canonical bimodule K.

By [49, Lem. 7.1], f2 has the structure of a Type DD-bimodule, so this will not be

proved here. However, as a Type DD-bimodule, one can define the tensor product Y ′A(1)�

A(1),A′(2)f2. This is a simple consequence of the tensor products defined in [24, Def. 2.3.9]

and Definition 4.43

Lemma 4.52 The box-tensor product Y ′ � f2 has the structure of a Type D structure

over the differential graded algebra A′(2). This module has generators U ` ⊗ G ⊗ P2 and

V k ⊗G⊗P2, with `, k ∈ Z≥0. The maps ∂ in the Type D structure are defined as follows.

∂(U ` ⊗G⊗ P2) = (E2U3)⊗ U ` ⊗G⊗ P2

+ (E1 + JE1, E2KE3)⊗ U `+1 ⊗G⊗ P2.

∂(V k ⊗G⊗ P2) = (E2U3)⊗ V k ⊗G⊗ P2

+ (E4)⊗ V k+1 ⊗G⊗ P2.

Here, the matching elements are assumed to be C12 and C34, but are easily adapted to the

other case.

This is a Type D structure as a consequence of the fact that Y ′ is an A∞-module, and f2

a DD-bimodule. Recall, in Lemma 4.47 an A∞-module Y ′ � f̃2 was defined. Using the

canonical bimodule K, one can define a Type D structure over A′(2),

Y ′ � f̃2
A(2) �

A(2),A′(2)K.

Proposition 4.53 The Type D structures Y ′ � f̃2
A(2) �

A(2),A′(2)K and Y ′ � f2 over the

differential graded algebra A′(2) are equivalent.
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Proof Firstly, the generators of
(
Y ′ � f̃2

)
�K are:

1⊗G⊗Q · I13 ⊗ (I13 ⊗ I2) ·K13 = I2 · 1⊗G⊗Q⊗K13

U ` ⊗G⊗Q · I13 ⊗ (I13 ⊗ I2) ·K13 = I2 · U ` ⊗G⊗Q⊗K13

V k ⊗G⊗Q · I13 ⊗ (I13 ⊗ I2) ·K13 = I2 · V k ⊗G⊗Q⊗K13.

Calculating the tensor product of
(
Y ′ � f̃2

A(2)

)
and A(2),A

′(2)K essentially reduces to find-

ing inputs for the maps m1+i

(
(Y ′ � f̃2)⊗A(2)⊗i

)
that are in the A(2) coordinate of the

term A ∈ A(2)⊗A′(2) as defined in Definition 4.49. After finding the required inputs, the

algebra coefficient in A′(2)⊗
(
Y ′ � f̃2

A(2)

)
is the product of the algebra coefficients in the

A′(2) in the coordinate of A.

� From the term m2(U
` ⊗G⊗Q,U1) = U `+1 ⊗G⊗Q, one pairs this with U1 ⊗E1 in

A, to yield

∂(U ` ⊗G⊗Q⊗K13) 3 E1 ⊗
(
U `+1 ⊗G⊗Q⊗K13

)
.

� Similarly, the term m2(V
k ⊗ G ⊗ Q,U4) = V k+1 ⊗ G ⊗ Q is paired with the term

U4 ⊗ E4 in A to yield

∂(V k ⊗G⊗Q⊗K13) 3 E4 ⊗
(
V k+1 ⊗G⊗Q⊗K13

)
.

� For any generator X in Y ′ � f̃2, the map m4(X,L3, U2, R3) = X is paired with the

terms L3 ⊗R3, U2 ⊗ E2 and R3 ⊗ L3 to yield

∂(X ⊗K13) 3 E2U3 ⊗ (X ⊗K13) .

This follows from the fact that in A′(2), the product of the rightmost tensor coordi-

nates is R3 · E2 · L3 = E2 ·R3 · L3 = E2U3, since E2 is central.

� Assuming the matching elements to be C12 and C34 (the other case is easily adapted),

one has that the map m3(U
` ⊗ G ⊗ Q,U3, C12) pairs with the terms U3 ⊗ E3 and

C12 ⊗ JE1, E2K in A. This yields

∂(U ` ⊗G⊗Q⊗K13) 3 E3JE1, E2K⊗
(
U `+1 ⊗G⊗Q⊗K13

)
.

There is a simple one-to-one correspondence between the generators of the two Type D

structures, given by G⊗Q⊗K13 ↔ G⊗ P2, with matching idempotents. Using this and

the result of Lemma 4.52 gives an equivalence between the two modules, as the action of

∂ is the same on each.
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Using Remark 4.50, which outlines that the canonical bimodule can be used to show that

two DA-bimodules are equivalent, one has the following simple corollary.

Corollary 4.54 The A∞-modules Y ′ � f̃2 and Y ′ � f2 are equivalent.

Proof When the DA-bimodule f2 was inductively defined, Ozsváth-Szabó proved in [49,

Thm. 7.10] that there is an equivalence between the two Type DD-bimodules f2 �K and

f2. Including the notation denoting the algebras, this is the equivalence

A(1)f2
A(2) �

A(2),A′(2)K ∼= A(1),A′(2)f2.

Hence, Y ′ � f2
∼= Y ′ � f2 �K. Applying the result of Proposition 4.53, one has that

Y ′ � f̃2 �K ∼= Y ′ � f2 �K.

From the invertibility of the canonical bimodule K, as proven in [49, Thm. 2.3], one yields

the result. See [49, Lem. 2.13] for example.

One can go further than this, and demonstrate that the two DA-bimodules A(1)f2
A(2) and

A(1)f̃2
A(2) are equivalent, by showing that the DD-bimodules f2 � K and f̃2 � K are

equal. However, it is sufficient when examining the minima to only prove equivalence of

the A∞-modules.

Remark 4.55 Examining the motivation behind the definition of f̃2, one might question

why there is no term m3(Q,U2, C34) = V ⊗Q. From the DA-bimodule f2, the only term

with the matching idempotents to Q is

I1 ⊗G⊗W ⊗N · I13.

One sees that δ12(I13·N ·I13, U2) = I13·U1⊗N in P1, yet δ12(I23·W ·I13, U1) = I23·U1⊗W = 0

in P2.

Furthermore, of the three generators presented for f2 on page 101, in the associated Hee-

gaard diagram for f1 � P2 � P1, there is a rectangular domain between the generators

G⊗W ⊗E and G⊗N ⊗S. With the recently proven equivalence between C(D) and classi-

cal knot Floer homology, such a domain would provide the term G⊗N⊗S 3 ∂̂(G⊗W⊗E),

and so both terms would be trivial in homology.

Using a very similar technique, one can define the DA-bimodule A(2)f̃2
A(3), and then the

A∞-module Y ′ � f̃2 � f̃2
A(3), corresponding to the lower Heegaard diagram of the global
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minimum, and minima between strands 2 and 3 and between strands 4 and 5. Both of these

are defined here, but the equivalence with Y ′ � f̃2 � f2 is omitted, since the calculation

is a simple adaptation of the above.

Definition 4.56 Corresponding to the appropriate partial Heegaard diagram, define the

bimodule A(2)f̃2
A(3) to have a single generator, I13 ·H · I135. In the following definition, the

matching elements in A(3) are assumed to be C14, C26 and C35, corresponding to the case

of three-strand pretzel knots considered within this thesis. Definitions with other matching

elements are very similar.

Let the non-zero maps δ11+k : f̃2 ⊗A(3)⊗k → A(2)⊗ f̃2 be defined as follows.

δ12(H,Uk1 ) = Uk1 ⊗H

δ12(H,Uk6 ) = Uk4 ⊗H

δ12(H,U `5) = U `3 ⊗H

δ11+1+`(H,U
`
3 , C

⊗`
26 ) = U `4 ⊗H

δ14(H,L5, U4, R5) = 1⊗H

δ14(H,L3, U2, R3) = 1⊗H

δ13(H,C26, C35) = C34 ⊗H

δ12(H,C14) = C12 ⊗H.

Once more, in [49, Sec. 7.1], Ozsváth-Szabó define the DD-bimodule A(2),A
′(3)f2. However,

the forced compatibility with the idempotent of the single generator of the A∞-module

Y ′ � f̃2
A(2) means that there is only a single generator of this bimodule: (I13 ⊗ I24) · P24.

Furthermore, the map ∂(P2) = A⊗ P2, where

A = U1 ⊗ E1 + U2 ⊗ E4 + U3 ⊗ E5 + U4 ⊗ E6 + 1⊗ E2U3

+ U4 ⊗ JE2, E6KE3 + C34 + JE2, E6KJE3, E5K + C12 ⊗ JE1, E4K.

Using this, and the canonical bimodule A(3),A
′(3)K, one can prove the equivalence between

Y ′ � f̃2
A(2) �

A(2),A′(3)f2 and Y ′ � f̃2
A(2) �

A(2)f̃2
A(3) �K as Type D structures exactly as

in Proposition 4.53.

Then, invertibility of the canonical bimodule yields an equivalence between Y ′ � f̃2 �

f̃2
A(3) and Y ′ � f̃2 � f2

R(3). The former is defined here, utilising Definition 4.56 and

Section 4.5.1.
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Definition 4.57 Define the A∞-module corresponding to the three minima, without ad-

ditional introduced crossings as in the inductive definition, as Y ′ � f̃2 � f̃2. Let this be

generated by the elements:

(1⊗G⊗Q⊗H · I135) ,(
U ` ⊗G⊗Q⊗H · I135

)
,(

V j ⊗G⊗Q⊗H · I135
)
.

The maps in the A∞-module m1+j : Y ′ � f̃2 � f̃2 ⊗ A(3)⊗j → Y ′ � f̃2 � f̃2 are defined

as follows.

m2(U
` ⊗G⊗Q⊗H,Uk1 ) = Uk+` ⊗G⊗Q⊗H, k, ` ∈ Z≥0

m2(V
s ⊗G⊗Q⊗H,U t6) = V t+s ⊗G⊗Q⊗H, t, s ∈ Z≥0

m4(U
` ⊗G⊗Q⊗H,L3, U2, R3) = U ` ⊗G⊗Q⊗H, ` ∈ Z≥0

m4(V
s ⊗G⊗Q⊗H,L3, U2, R3) = V s ⊗G⊗Q⊗H, s ∈ Z≥0

m4(U
` ⊗G⊗Q⊗H,L5, U4, R5) = U ` ⊗G⊗Q⊗H, ` ∈ Z≥0

m4(V
s ⊗G⊗Q⊗H,L5, U4, R5) = V s ⊗G⊗Q⊗H, s ∈ Z≥0

m1+1+`(V
r ⊗G⊗Q⊗H,U `3 , C⊗`26 ) = V r+` ⊗G⊗Q⊗H, r ∈ Z≥0, ` ∈ N

m1+1+n(Up ⊗G⊗Q⊗H,Un5 , C⊗n14 ) = Up+n ⊗G⊗Q⊗H, p ∈ Z≥0, n ∈ N



Chapter 5

Inductive Arguments

As mentioned above, three strand pretzel knots are particularly amenable to study using

the cut and paste argument of Ozsváth-Szabó, since the Type D structure at any point

can be determined using inductive methods. In this chapter, the calculation of the Type

D structure for the upper knot diagram of P (2c + 1,−2b − 1, 2a) will be determined up

until the three final minima. See Figure 5.1 for an example.

In what follows, much use will be made of the pictorial representation of Type D struc-

tures by directed graphs, see Section 4.3.2. Excepting the case of the Type D structures

associated to Ω1 and Ω2 � Ω1, the self-arrows with weight given by
∑

pq∈MatchingCpq will

be omitted.

5.1 Initial maxima

In any special knot diagram, the program developed by Ozsváth-Szabó in [47, 49] starts

with a Type D structure for the global maximum of the diagram. This is represented by

the directed graph in Figure 4.8. The Type D structure A(1)Ω1 has a single generator

corresponding to the idempotent I1, and as a standard Type D structure has only a single

self-arrow, given by the matching element C12. Recall from Definition 4.11 that each

matching element Cpq is the sum
∑

Ix
Ix ·Cpq · Ix, so forms a non-zero tensor product with

all elements in the image of a map from a Type D structure.

More formally, A(1)Ω1 = 〈I1 · P 〉, with the map ∂1 given by

∂1(I1 · P ) = C12 ⊗ I1 · P ∈ A(1)⊗ A(1)Ω1.

111
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Figure 5.1: An example of the (oriented) upper knot diagram for a three strand pretzel

knot P (2c+ 1,−2b− 1, 2a). In this case, c = 2, b = 1 and a = 1. Note that every Morse

event occurs at a different height.

Then, consider the tensor product with the DA-bimodule corresponding to the next max-

imum A(2)Ω2
A(1). This is defined in [49, Sec. 5.2] and Section 4.4.3, but from the view of

DA-bimodules as being generated by partial Kauffman states (see Definition 4.27), there

are only two admissible generators, both corresponding to idempotents:

I12 ·X · I1,

I23 · Y · I1.

One can then take the tensor product of each with the generator I1 · P ∈ A(1)Ω1, follow-

ing the procedure outlined in Section 4.5. A pictorial representation of this is given in
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Figure 5.2a. Note, that in Ω2, the maps δ11+k are given by

δ12(X,C12) = C14 ⊗X,

δ12(Y,C12) = C14 ⊗ Y,

δ11(X) = C23 ⊗X +R3R2 ⊗ Y,

δ11(Y ) = C23 ⊗ Y + L2L3 ⊗X.

This is exactly as presented in Section 4.4.3, with generators as defined in Definition 4.33.

Then, taking the appropriate box-tensor product of the DA-bimodule and Type D struc-

ture yields the Type D structure A(2)Ω2 � Ω1, as shown in Figure 5.2b.

(a) Pictorial representation of the gener-

ator I12 ·X ⊗ P .

L2L3

I23 · Y ⊗ PI12 ·X ⊗ P

C14 + C23 C14 + C23

R3R2

(b) Type D structure for A(2)Ω2 � Ω1

Figure 5.2: The Type D structure for the tensor product of the global maximum and the

second maximum. Note, this is a standard Type D structure.

5.2 First set of crossings

As can be seen in Figure 5.1, the next part of the special knot diagram for the pretzel knot

P (2c+ 1,−2b− 1, 2a) are 2c+ 1 positive crossings between strands 1 and 2. Determining

the Type D structure after these crossings corresponds to taking the tensor product(
A(2)P1

A(2)

)�(2c+1)
� A(2)Ω2 � Ω1.

One can determine this Type D structure using induction on the number of crossings.

Hence, one must first consider the base case of two maxima and a single positive cross-

ing.
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Inductive statement

Let P2k+1 be the statement that the Type D structure(
A(2)P1

A(2)

)�2k+1
� A(2)Ω2 � Ω1

is as depicted by the weighted, directed graph in Figure 5.3, with the understanding that

all Type D structures are standard, as defined by Definition 4.19. By convention, the

self-arrows corresponding to matching elements are suppressed.

Moreover, it is worth noting that the algebras A(2) in the above tensor product are not all

equal. Given that a positive crossing between the first and second strand switches the role

of 1 and 2 in the algebra, one has that one of the copies of A(2) has matching elements

{C13, C24}, while the other has matching elements {C14, C23}. However, one can see from

a simple diagram that if one adds an odd number of positive crossings, the output algebra

has matching elements {C13, C24}.

I12

I13

I23

KeyA

B1 B2 B3 B2k B2k+1

B>

R3U1

L3 U2

U4

U1

U3

U2 U2

U4 U4

U1

U3 R2

L2U4

Figure 5.3: Weighted graph describing the inductive structure of a set of 2k + 1 positive

crossings P1 attached to two maxima. A denotes the Kauffman state with only North N

states, Bk denotes that the E state occurs k crossings from the top, and B> denotes that

one has only S states.
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Base case: 1 crossing, k = 0

The possible positions for Kauffman states in P1 are dictated by the idempotents associ-

ated to the Type D structure above, see Figure 5.2b. Using the definition of the cardinal

generators N , S, E and W , one sees that the tensor product

P1 � Ω2 � Ω1

has only three possible generators:

A := I12 ·N · I12 ⊗ (X ⊗ P )

B1 := I13 · E · I23 ⊗ (Y ⊗ P )

B> := I23 · S · I23 ⊗ (Y ⊗ P ).

Remark 5.1 This notation indicates the possible position of the decorations in the Kauff-

man state. As described earlier in Section 2.2, and inspired by Eftekhary [5], one can

separate Kauffman states for three strand pretzel knots by the position of the marked point

in the region enclosed by the global maximum. Using the local grading information at each

crossing, following Figure 4.1 one can also easily determine the grading of these elements

of the Type D structure.

In this case, and in the case of Figure 5.3, A denotes that one only has N generators on

the strand, Bk denotes that the marked point in the region adjacent to the strand is the

kth from the top, and B> denotes that the generators on this strand are all S.

In order for a valid tensor product to be taken with the generator I12 ·X⊗P , the incoming

tensor product of a generator in P1 must be I12. There is thus only one choice of generator

in order to produce a valid term in P1 � Ω2 � Ω1, namely I12 ·N · I12.

This requirement is identical under any number of iterations of tensor product of P1, and

this results in such states being A states. It is behaviour like this that makes inductive

arguments possible in determining the Type D structure.

Let the state with idempotent I12 in Ω2 � Ω1 be X, and let the other be Y . Proceeding

with the calculation of the map d in the Type D structure P1 � Ω2 � Ω1, one has the

following.
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d(N ⊗X) = δ12(N,R3R2)⊗ Y,

= R3 · δ12(N,R2)⊗ Y,

= R3U1 ⊗ E ⊗ Y,

= R3U1 ⊗B1.

d(E ⊗ Y ) = δ11(E)⊗ Y + δ12(E,L2L3)⊗X,

= R2 ⊗ S ⊗ Y + L3 · δ12(E,L2)⊗X,

= R2 ⊗B> + L3 ⊗N ⊗X,

= R2 ⊗B> + L3 ⊗A.

d(S ⊗ Y ) = δ12(S,C14)⊗ Y,

= U4L2 ⊗ E ⊗ Y,

= L2U4 ⊗B1.

This fits the structure given in Figure 5.3 with k = 0. In the above calculation, use has

been made of the fact that when tensoring by the bimodule P i, elements with weight

outside span{ei, ei+1} commute with the map δ. Moreover, one has that L2U4 = U4L2,

since Proposition 4.13 states that elements are uniquely determined by their weights and

idempotents, and these elements have equal idempotents and weights in 1
2Z

4. Hence, the

base case is true.

Increasing the number of crossings

It is a relatively straightforward calculation to show that this holds for k = 1, i.e. the

special knot diagram with three positive crossings. As remarked upon before, if in the

Type D structure X one has an element I1` · x, then the only possible element in P1 with

compatible idempotent is I1` ·N · I1`. Hence, the only possible generator with x in the X

tensor-coordinate is I1` ·N ⊗ x.

Abusing the notation slightly, tensoring with P1 once, yields a Type D structure with four
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generators

I12 ·A := N ⊗A

I13 ·B1 := N ⊗B1

I13 ·B2 := E ⊗B>

I23 ·B> := S ⊗B>.

Then, one has the following differentials.

d(A) = δ12(N,R3U1)⊗B1,

= R3 · δ12(N,U1)⊗B1,

= R3U2 ⊗N ⊗B1 = R3U2 ⊗B1.

d(B1) = δ12(N,L3)⊗A+ δ12(N,R2)⊗B>,

= L3 ⊗N ⊗A+ U1 ⊗ E ⊗B>,

= L3 ⊗A+ U1 ⊗B2.

d(B2) = δ11(E)⊗B> + δ12(E,L2U4)⊗B1,

= R2 ⊗ S ⊗B> + U4 ⊗N ⊗B1,

= R2 ⊗B> + U4 ⊗B1.

d(B>) = δ12(S,C13)⊗B>,

= U3L2 ⊗ E ⊗B>,

= L2U3 ⊗B2.

This once more utilises the observation that elements with weights outside the crossing

region commute with the map δ. For example, δ12(N,L3) = L3 · δ12(N, 1) = L3 · 1 ⊗ N.
Moreover, tensoring by P1 swaps the role of 1 and 2, so one has that δ12(N,U1) = U2 ⊗
N .

Tensoring once more by the DA-bimodule P1 swaps the role of 1 and 2, and the impact

of this is that

d(S ⊗B>) = δ12(S,C14) = U4L2 ⊗ E = L2U4 ⊗ E.

Hence, the Type D structure
(
P1
)�3

� Ω2 � Ω1 also conforms to the form described in

Figure 5.3.
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Using the inductive assumption

Assume that the Type D structure for
(
A(2)P1

A(2)

)�2k+1
� A(2)Ω2 � Ω1 is as displayed

in Figure 5.3 when k = n: i.e. that the statement P2n+1 is true. Since Br and A have

idempotents I13 and I12 respectively, the only compatible generator in P1 is N .

Tensoring once by P, one has the following calculation for the differential, where 1 ≤ r ≤
n− 1 in B2r+1, and 1 ≤ r ≤ n for B2r.

d(A) = δ12(N,R3U1)⊗B1,

= R3U2 ⊗N ⊗B1.

d(B1) = δ12(N,L3)⊗A+ δ12(N,U2)⊗B2,

= L3 ⊗N ⊗A+ U1 ⊗N ⊗B2,

= L3 ⊗A+ U1 ⊗B2.

d(B2r) = δ12(N,U4)⊗B2r−1 + δ12(N,U1)⊗B2r+1,

= U4 ⊗B2r−1 + U2 ⊗B2r+1.

d(B2r+1) = δ12(N,U3)⊗B2r + δ12(N,U2)⊗B2r+2,

= U3 ⊗B2r + U1 ⊗B2r+2.

d(B2n+1) = δ12(N,U3)⊗B2n + δ12(N,R2)⊗B>,

= U3 ⊗B2n + U1 ⊗ E ⊗B>,

= U3 ⊗B2n + U1 ⊗B2n+2.

d(B2n+2) = δ11(E)⊗B> + δ12(E,L2U4)⊗B2n+1,

= R2 ⊗ S ⊗B> + U4 ⊗N ⊗B2n+1,

= R2 ⊗B> + U4 ⊗B2n+1.

d(B>) = δ12(S,C13)⊗B>,

= U3L2 ⊗ E ⊗B>,

= L2U3 ⊗B2n+2.

The graph describing the Type D structure for
(
P1
)2n+2

�Ω2�Ω1 is shown in Figure 5.4.

The loops on each vertex have once more been suppressed, but one has that δ12(X,C1p +

C2q) = (C1q + C2p)⊗X for any X ∈ P1: i.e. the roles of 1 and 2 are swapped.

This is the intermediate step in the calculation of the Type D structure
(
P1
)2(n+1)+1

�

Ω2 � Ω1, as one needs to tensor by P once more. Luckily, the calculation is practically
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I12

I13

I23

KeyA

B1 B2 B3 B2n+1 B2n+2

B>

R3U2

L3 U1

U4

U2

U3

U1 U2

U4 U3

U1

U4 R2

L2U3

Figure 5.4: Weighted, directed graph showing the intermediate step in the inductive proof,

i.e. the Type D structure with an even number of positive crossings.

identical to the above, but is included here for the sake of completeness.

d(A) = δ12(N,R3U2)⊗B1,

= R3U1 ⊗N ⊗B1.

d(B1) = δ12(N,L3)⊗A+ δ12(N,U1)⊗B2,

= L3 ⊗N ⊗A+ U2 ⊗N ⊗B2,

= L3 ⊗A+ U2 ⊗B2.

d(B2r) = δ12(N,U4)⊗B2r−1 + δ12(N,U2)⊗B2r+1,

= U4 ⊗B2r−1 + U1 ⊗B2r+1.

d(B2r+1) = δ12(N,U3)⊗B2r + δ12(N,U1)⊗B2r+2,

= U3 ⊗B2r + U2 ⊗B2r+2.

d(B2n+2) = δ12(N,U4)⊗B2n+1 + δ12(N,R2)⊗B>,

= U4 ⊗B2n+1 + U1 ⊗ E ⊗B>,

= U4 ⊗B2n+1 + U1 ⊗B2n+3.

d(B2n+3) = δ11(E)⊗B> + δ12(E,L2U3)⊗B2n+2,

= R2 ⊗ S ⊗B> + U3 ⊗N ⊗B2n+2,

= R2 ⊗B> + U3 ⊗B2n+2.
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d(B>) = δ12(S,C14)⊗B>,

= U4L2 ⊗ E ⊗B>,

= L2U4 ⊗B2n+3.

This matches the form in Figure 5.3, as is required for the inductive proof. So, P2n+1 ⇒
P2(n+1)+1, and the typeD structure

(
P1
)2(n+1)+1

�Ω2�Ω1 is thus determined by induction.

Remark on the Type D relation.

As one can see from Figure 5.3, it does not appear at first that the Type D relation as

defined in [25, Def. 2.18] and represented in Figure 4.7 is satisfied. This can be thought

of as analogous to the relation d2 = 0 in a chain complex. In this case, note that d(d(A))

contains the term R3U1U2 ⊗B2.

However, as one can see from the relation

0 = (µ2 ⊗ IdM ) ◦ (IdA ⊗ ∂1) ◦ ∂1 + (µ1 ⊗ IdM ) ◦ ∂1,

for this to be a Type D structure the above term must be equal to zero. This is clear after

including the information of the idempotents. The term B2 has associated idempotent

I13 · B2, and note that the element I13 · U1U2 · I13 has the same weight and associated

idempotents as I13 · R2L2L1R1 · I13. From Proposition 4.13, this information uniquely

determines an element in A(2), yet L2L1 = 0, and so I13 · U1U2 · I13 = 0.

Traversing two arrows and returning to the same position in the graph is cancelled us-

ing the differential µ1 : A → A; for example one has that d(d(B2)) contains the term

(U1U3 + U4U2)⊗B2. However, in A(2), µ1(C13 +C24) = U1U3 +U4U2, hence this term in

µ1 ◦ d provides the cancellation. It is relatively straightforward to check this relation at

all vertices in the directed graph, but this should necessarily be a valid Type D structure

as the tensor product of a DA-bimodule and a Type D structure, see [24, Sec. 2.3].

5.3 The next maximum Ω4

As one can see from Figure 5.1, the form one takes for the special knot diagram of a three

strand pretzel knot requires the addition of the bimodule associated to a maximum to give
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the new fourth and fifth strands. The generators of this bimodule then correspond to the

permissible idempotents in this situation.

Since this DA-bimodule is tensored with a Type D structure only featuring the idempo-

tents I12, I13 and I23, one only needs to consider generators with incoming idempotents

matching these.

Following [49, Sec. 5], one has a map

φ4 : {1, 2, 3, 4} → {1, 2, 3, 4, 5, 6}

given by

φ4(j) =


j if j ≤ 3

j + 2 if j = 4.

This corresponds to the new integer assignments of strands after the tensor product with

the maximum. Moreover, Ozsváth-Szabó define allowed idempotent states in A(3). If y is a

three-element subset of {1, 2, . . . , 6}, then y is an allowed idempotent state if |y∩{3, 5}| ≤ 1.

Thinking of this visually, this means that in the regions on either side of the new maximum,

at most one of them is occupied. See Figure 5.5 for examples of allowed idempotent states

in this case.

Ozsváth-Szabó then divide the generators of the bimodule Ω4 into classes X, Y and Z,

depending upon the intersection of the preferred idempotent with the set {3, 4, 5}, see [49,

Sec. 5].

X134 := I134 ·X134 · I13

X234 := I234 ·X234 · I23

Y145 := I145 · Y145 · I13

Y245 := I245 · Y245 · I23

Z124 := I124 · Z124 · I12

The arrows δ11 in the DA-bimodule split in each of the X, Y , Z cases. In particular, one
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Figure 5.5: The lower (outgoing) idempotents in this figure are examples of compatible,

allowed idempotents in the case of the new maximum. Moreover, these two correspond to

generators of the DA-bimodule Ω4, namely X134 and Y245.

has the following.

δ11(X134) = C45 ⊗X134 +R5R4 ⊗ Y145

δ11(X234) = C45 ⊗X234 +R5R4 ⊗ Y245

δ11(Y145) = C45 ⊗ Y145 + L4L5 ⊗X134

δ11(Y245) = C45 ⊗ Y245 + L4L5 ⊗X134

δ11(Z124) = C45 ⊗ Z124.

The remaining arrows δ12 in Ω4 are defined in [49, Lemma 5.2], which roughly gives a

map Φx that translates elements from A(2) to algebra elements in A(3). Since the full

detail is presented in the cited lemma, I will only state that this provides a correspondence

between the weights as one would expect from the map φ defined above. So, Φ145 maps

I13 · U4 · I13 7→ I145 · U6 · I145.

There is some subtlety here, since one expects U4 to map to U6, but this is only when

this is permitted by the idempotents. For example, with the map Φ134, one has that

I13 ·U4 · I13 7→ I134 ·U6 · I134. However, from Definition 4.12, one has that I134 ·U6 · I134 = 0

in A(3).

The full DA-bimodule used in this case is presented in Figure 5.6, following from simple

applications of the definitions in [49, Sec. 5] and [46, Sec. 8]. In particular, note the self-

arrows, which are described in the caption. They contain terms from both δ11 arrows, and

from δ12 .
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R2 ⊗ (R2)

Y145 Y245

X134 X234

R5R4

L4L5

R5R4

L4L5

R2 ⊗ (R2)

L2 ⊗ (L2)

L2 ⊗ (L2)

Z124

L3 ⊗ (L3)

L2L3 ⊗ (L2L3)

R3R2 ⊗ (R3R2)R3 ⊗ (R3)

Key

δ11

δ12

Figure 5.6: This is a diagramattic representation of the DA-bimodule Ω4. The elements

with different outgoing idempotents are distinguished by colour. Moreover, the dashed

arrows denote δ11 maps, and the solid arrows δ12 maps, with the bracketted coefficient being

the algebraic input. There are also self arrows, which have coefficient C45 +C13⊗ (C13) +

C24 ⊗ (C26) + Uφ4(p) ⊗ (Up).

5.3.1 Tensoring with the current Type D structure

As can be seen from the idempotents associated to each generator of the DA-bimodule

Ω4, one has the following set of generators of the Type D structure Ω4 � (P1)2c+1 � Ω2 �

Ω1.

A := Z124 ⊗A

Bk := X134 ⊗Bk

Ck := Y145 ⊗Bk

B> := X234 ⊗B>

C> := Y245 ⊗B>.

The states B> are upper Kauffman states which will not complete to full Kauffman states

for the knot P (2c + 1,−2b − 1, 2a) with diagram as shown in Figure 5.1 after the three
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minima are added. This can be seen from the fact that the idempotent I234 indicates the

presence of a marked point in the region adjacent to the first and second set of crossings.

Since by construction of the special knot diagram all positive crossings between the first

and second strands have already been placed, this indicates that the marked point in this

region must be placed adjacent to the second set of (negative) twists. But, since 3 ∈ {234},
this indicates that all of the marked points on this set of twists must be North N states,

which would contradict the position of the remaining marked point. However, it is still

important to preserve this state in the calculations, because it may be used in later tensor

products.

Proceeding with the calculation of the tensor product, one has the following. Since by

construction the Type D structure is standard, if G is an element of the Type D structure,

one has that d(G) 3 (C13 + C26 + C45)⊗G. For the sake of brevity, these terms have been

omitted.

d(A) = δ11(Z124)⊗A+ δ12(Z124, R3U1)⊗B1,

= R3U1 ⊗X134 ⊗B1,

= R3U1 ⊗B1.

d(B1) = δ11(X134)⊗B1 + δ12(X134, L3)⊗A+ δ12(X134, U2)⊗B2,

= R5R4 ⊗ Y145 ⊗B1 + L3 ⊗ Z124 ⊗A+ U2 ⊗X134 ⊗B2,

= R5R4 ⊗ C1 + L3 ⊗A+ U2 ⊗B2.

d(C1) = δ11(Y145)⊗B1 + δ12(Y145, L3)⊗A+ δ12(Y145, U2)⊗B2,

= L4L5 ⊗X134 ⊗B1 + 0⊗A+ U2 ⊗ Y145 ⊗B2,

= L4L5 ⊗B1 + U2 ⊗ C2.

d(B2r) = δ11(X134)⊗B2r + δ12(X134, U4)⊗B2r−1 + δ12(X134, U1)⊗B2r+1, 1 ≤ r ≤ c

= R5R4 ⊗ Y145 ⊗B2r + U6 ⊗X134 ⊗B2r−1 + U1 ⊗X134 ⊗B2r+1,

= R5R4 ⊗ C2r + 0⊗B2r−1 + U1 ⊗B2r+1,

= R5R4 ⊗ C2r + U1 ⊗B2r+1.

d(C2r) = δ11(Y145)⊗B2r + δ12(Y145, U4)⊗B2r−1 + δ12(Y145, U1)⊗B2r+1, 1 ≤ r ≤ c

= L4L5 ⊗X134 ⊗B2r + U6 ⊗ Y145 ⊗B2r−1 + U1 ⊗ Y145 ⊗B2r+1,

= L4L5 ⊗B2r + U6 ⊗ C2r−1 + U1 ⊗ C2r+1.

d(B2r+1) = δ11(X134)⊗B2r+1 + δ12(X134, U3)⊗B2r + δ12(X134, U2)⊗B2r+1, 1 ≤ r ≤ c
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= R5R4 ⊗ Y145 ⊗B2r+1 + U3 ⊗X134 ⊗B2r + U2 ⊗X134 ⊗B2r+2,

= R5R4 ⊗ C2r+1 + U3 ⊗B2r + U2 ⊗B2r+2.

d(C2r+1) = δ11(Y145)⊗B2r+1 + δ12(Y145, U3)⊗B2r + δ12(Y145, U2)⊗B2r+2, 1 ≤ r ≤ c

= L4L5 ⊗X134 ⊗B2r+1 + U3 ⊗ Y145 ⊗B2r + U2 ⊗ Y145 ⊗B2r+2,

= L4L5 ⊗B2r+1 + 0⊗ C2r + U2 ⊗ C2r+2,

= L4L5 ⊗B2r+1 + U2 ⊗ C2r+2.

d(B2c+1) = δ11(X134)⊗B2c+1 + δ12(X134, U3)⊗B2c + δ12(X134, R2)⊗B>,

= R5R4 ⊗ Y145 ⊗B2c+1 + U3 ⊗X134 ⊗B2c +R2 ⊗X234 ⊗B>,

= R5R4 ⊗ C2c+1 ⊗ U3 ⊗B2c +R2 ⊗B>.

d(C2c+1) = δ11(Y145)⊗B2c+1 + δ12(Y145, U3)⊗B2c + δ12(Y145, R2)⊗B>,

= L4L5 ⊗X134 ⊗B2c+1 + U3 ⊗ Y145 ⊗B2c +R2 ⊗ Y245 ⊗B>,

= L4L5 ⊗B2c+1 + 0⊗ C2c +R2 ⊗ C>,

= L4L5 ⊗B2c+1 +R2 ⊗ C>.

d(B>) = δ11(X234)⊗B> + δ12(X234, L2U4)⊗B2c+1,

= R5R4 ⊗ Y245 ⊗B> + L2U6 ⊗X134 ⊗B2c+1,

= R5R4 ⊗ C> + 0⊗B2c+1,

= R5R4 ⊗ C>.

d(C>) = δ11(Y245)⊗B> + δ12(Y245, L2U4)⊗B2c+1,

= L4L5 ⊗X234 ⊗B> + L2U6 ⊗ Y145 ⊗B2c+1,

= L4L5 ⊗B> + L2U6 ⊗ C2c+1.

The above is represented in Figure 5.7, again as a weighted directed graph. Once more, the

self-arrows are omitted, but correspond to the matching elements. Moreover, as mentioned

previously, not all of the arrows between the Bk and Bk+1 states in the Type D structure(
P1
)2c+1

� Ω2 � Ω1 are preserved under tensor product with Ω4, due to the applications

of the relations within the algebra to the idempotents.

The generators of the Type D structure have been labelled in such a way that they indicate

the Kauffman state to which they extend in the full special knot diagram. As remarked

before, not all of the pictured upper Kauffman states in Figure 5.7 extend to full Kauffman

states.
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U3
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R2
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R2

R5R4
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Figure 5.7: Weighted, directed graph describing the Type D structure Ω4 �
(
P1
)2c+1

�

Ω2 � Ω1. Self-arrows corresponding to the matching elements are once more omitted, as

this is necessarily a standard Type D structure. The horizontal arrows incident to B> and

C> are between these two states.

Moreover, the same Type D relations are satisfied, despite it appearing at first that they

are not. Taking as an example the ‘double differential’ starting at C1, one sees that

d(d(C1)) 3 U2U1 ⊗ C3. But, the fact that the associated idempotent to this algebra

element is I145 · U2U1 · I145 determines that this must be zero due to having the same

weight and idempotents as an algebra element containing the term L2L1 = 0.

5.4 Second set of crossings

Remark 5.2 (Remark on the following inductive proofs:) In the following induc-

tive processes, the DA-bimodules corresponding to the crossings will be box-tensored to

the Type D structure one at a time. If Qr is the inductive statement, the proof will at-
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tempt to show that Qr implies Qr+2. This could also be attempted by first determining

the DA-bimodule for the box-tensor product of the two crossings, i.e. for negative cross-

ings determining N � N . As shown in [24], this is a DA-bimodule, which one can then

box-tensor with a Type D structure to yield another Type D structure.

However, the benefit of doing this one bimodule at a time is that one need not specialise

to the parity case considered. Here, the special knot diagram constructed will be for the

knot P (2c + 1,−2b − 1, 2a), so the next step is to take an odd number of negative cross-

ings, then an even number of positive crossings. If the intermediate Type D structures

are determined, one could then examine other cases. For example, although in [41] the

ĤFK(P (odd,−odd, odd)) is determined, by fully defining the intermediate Type D struc-

ture one could use this to then determine the bordered invariant C(D) for this family.

Before proceeding with the calculation of the Type D structure after the second set of

crossings, note that the DA-bimodule now utilised in the tensor product is N 3, describing

a negative crossing between strands 3 and 4. Although this is given a formal description

in [46, Sec. 5.5], recall from Definition 4.29 this bimodule is the opposite of P3. Intuitively,

one yields the description of N 3 from P3 by reversing the direction of all arrows, and

swapping L for R.

For ease of notation, define the module A(3)X = A(3)Ω4 �
(
P1
)2c+1

�Ω2 �Ω1 as the Type

D structure defined through induction in Subsection 5.3.1. The aim is now to determine

the Type D structure for
(
N 3
)2b+1

�X using similar methods.

The upper Kauffman states that correspond to generators of this module can again be

split depending on the position of the marked points in each region. Figure 5.8 depicts

the possible different positions of the marked points after adding additional crossings

between strands 3 and 4. There are also other upper Kauffman states not depicted in this

figure, such as I234 ·B>. This has all S generators on the first set of crossings, and all N

generators on the second set of crossings, and will not extend to a full Kauffman state of

the three-strand pretzel knot P (2c+ 1,−2b− 1, 2a).

Before making the inductive statement, it is informative to determine the Type D structure

N 3 �X, where X is defined as above. This has (6c+ 10) generators, as can be seen from

an examination of the possible upper Kauffman states. Using the description given in

Figure 5.8, one has the following collection of upper Kauffman states corresponding to
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I134 · A3 I134 ·B2

I123 ·D1 I135 · C21

I345 · S3

I145 · C1>

Figure 5.8: Diagrams depicting the different categories into which Kauffman states rep-

resenting the generators of
(
N 3
)2b+1

�X may fall. As described above, there are also >

states, such as the C1> state pictured. The associated idempotents to each generator have

been shown.

generators of this module.

{A1, A>, D1} ∪

{B1, . . . , B2c+1, B>} ∪

{C11, . . . , C2c+1,1, C>,1, C1,>, . . . , C2c+1,>, C>,>, S1}.

The idempotents force the position of Kauffman states in the tensored DA-bimodule N ,

or rather restrict the positions in which they might be. Using the idempotents noted

in Figure 5.7, since 3 belongs to the idempotents of both Bk and B>, non-zero tensor

products will have the generator N in the N tensor coordinate. In a similar way: I124 ·A
forces either E, S or W in the tensor product; I145 ·Ck forces E or S; and I245 ·C> forces

E, S or W .

One then has the following calculation of the differential map d in N �X, which is also

presented as a weighted directed graph in Figure 5.9. Matching terms are omitted, for
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ease of notation.

d(A1) = d(W ⊗A)

= δ12(W,R3U1)⊗B1 + δ12(W,C45)⊗A+ δ13(W,R3U1, R5R4)⊗ C1

= U1U4 ⊗N ⊗B1 + L3U5 ⊗ S ⊗A+R5R4U1 ⊗ S ⊗ C1

= U1U4 ⊗B1 + L3U5 ⊗A> ⊗R5R4U1 ⊗ C1,>

d(A>) = d(S ⊗A)

= δ11(S)⊗A

= R3 ⊗W ⊗A+ L4 ⊗ E ⊗A

= R3 ⊗A1 + L4 ⊗D1

d(D1) = d(E ⊗A)

= δ12(E,C13)⊗A+ δ12(E,R3U1)⊗B1

= R4U1 ⊗ S ⊗A+R4R3U1 ⊗N ⊗B1

= R4U1 ⊗A> +R4R4U1 ⊗B1

d(B1) = d(N ⊗B1)

= δ12(N,L3)⊗A+ δ12(N,U2)⊗B2 + δ12(N,⊗R5R4)⊗ C1

= 1⊗W ⊗A+ U2 ⊗N ⊗B2 +R5 ⊗ E ⊗ C1

= 1⊗A1 + U2 ⊗B2 +R5 ⊗ C11.

d(B2r) = d(N ⊗B2r)

= δ12(N,U1)⊗B2r+1 + δ12(N,R5R4)⊗ C2r

= U1 ⊗N ⊗B2r+1 +R5 ⊗ E ⊗ C2r

= U1 ⊗B2r+1 +R5 ⊗ C2r,1

d(B2r+1) = d(N ⊗B2r+1)

= δ12(N,U3)⊗B2r + δ12(N,U2)⊗B2r+2

+ δ12(N,R5R4)⊗ C2r+1 + δ13(N,U3, R5R4)⊗ C2r

= U4 ⊗N ⊗B2r + U2 ⊗N ⊗B2r+2 +R5 ⊗ E ⊗ C2r+1 +R5R4 ⊗ S ⊗ C2r

= U4 ⊗B2r + U2 ⊗B2r+2 +R5 ⊗ C2r+1 +R5R4 ⊗ C2r,>

d(B2c+1) = d(N ⊗B2c+1)

= δ12(N,U3)⊗B2c + δ12(N,R5R4)⊗ C2c+1 + δ12(N,R2)⊗B>

+ δ13(N,U3, R5R4)⊗ C2c
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= U4 ⊗N ⊗B2c +R5 ⊗ E ⊗ C2c+1 +R2 ⊗N ⊗B> +R5R4 ⊗ S ⊗ C2c

= U4 ⊗B2c +R5 ⊗ C2c+1,1 +R2 ⊗B> +R5R4 ⊗ C2c,>

d(B>) = d(N ⊗B>) = δ12(N,R5R4)⊗ C>

= R5 ⊗ E ⊗ C> = R5 ⊗ C>,1

d(C11) = d(E ⊗ C1)

= δ12(E,L4L5)⊗B1 + δ12(E,U2)⊗ C2 + δ13(E,L4L5, L3)⊗A+ δ12(E,C13)⊗ C1

= L5U3 ⊗N ⊗B1 + U2 ⊗N ⊗ C2 + L3L5 ⊗ S ⊗A+R4U1 ⊗ S ⊗ C1

= L5U3 ⊗B1 + U2 ⊗ C21 + L3L5 ⊗A> +R4U1 ⊗ C1,>

d(C2r,1) = d(E ⊗ C2r)

= δ12(E,U6)⊗ C2r−1 + δ12(E,U1)⊗ C2r+1 + δ12(E,L4L5)⊗B2r

+ δ12(E,C13)⊗ C2r

= U6 ⊗ E ⊗ C2r−1 + U1 ⊗ E ⊗ C2r+1 + L5U3 ⊗N ⊗B2r +R4U1 ⊗ S ⊗ C2r

= U6 ⊗ C2r−1,1 + U1 ⊗ C2r+1,1 + L5U3 ⊗B2r +R4U1 ⊗ C2r,>

d(C2r+1,1) = d(E ⊗ C2r+1)

= δ12(E,U2)⊗ C2r+2 + δ12(E,C13)⊗ C2r+1 + δ12(E,L4L5)⊗B2r+1

= U2 ⊗ E ⊗ C2r+2 +R4U1 ⊗ S ⊗ C2r+1 + L5U3 ⊗N ⊗B2r+1

= U2 ⊗ C2r+2,1 +R4U1 ⊗ C2r+1,> + L5U3 ⊗B2r+1

d(C2c+1,1) = d(E ⊗ C2c+1)

= δ12(E,R2)⊗ C> + δ12(E,C13)⊗ C2c+1 + δ12(E,L4L5)⊗B2c+1

= R2 ⊗ E ⊗ C> +R4U1 ⊗ S ⊗ C2c+1 + L5U3 ⊗N ⊗B2c+1

= R2 ⊗ C>,1 +R4U1 ⊗ C2c+1,> + L5U3 ⊗B2c+1

d(C>,1) = d(E ⊗ C>)

= δ12(E,L2U6)⊗ C2c+1 + δ12(E,L4L5)⊗B> + δ12(E,C13)⊗ C>

= L2U6 ⊗ E ⊗ C2c+1 + L5U3 ⊗N ⊗B> +R4U1 ⊗ (I245 · C>)

= L2U6 ⊗ C2c+1,1 + L5U3 ⊗B> + 0⊗ C>

d(C2r+1,>) = d(S ⊗ C2r+1)

= δ11(S)⊗ C2r+1 + δ12(S,U2)⊗ C2r+2

= L4 ⊗ E ⊗ C2r+1 + U2 ⊗ S ⊗ C2r+2

= L4 ⊗ C2r+1,1 + U2 ⊗ C2r+2,>
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d(C2r,>) = d(S ⊗ C2r)

= δ11(S)⊗ C2r + δ12(S,U6)⊗ C2r−1 + δ12(S,U1)⊗ C2r+1

= L4 ⊗ E ⊗ C2r + U6 ⊗ S ⊗ C2r−1 + U1 ⊗ S ⊗ C2r+1

= L4 ⊗ C2r,1 + U6 ⊗ C2r−1,> + U1 ⊗ C2r+1,>

d(C>,>) = d(S ⊗ C>)

= δ11(S)⊗ C> + δ12(S,L2U6)⊗ C2c+1

= L4 ⊗ E ⊗ C> +R3 ⊗W ⊗ C> + L2U6 ⊗ S ⊗ C2c+1

= L4 ⊗ C>,1 +R3 ⊗ S1 + L2U6 ⊗ C2c+1,>.

d(S1) = d(W ⊗ C>)

= δ12(W,C45)⊗ C> + δ12(W,L4L5)⊗B>

= L3U5 ⊗ S ⊗ C> + L3L4L5 ⊗N ⊗B>

= L3U5 ⊗ C>,> + L3L4L5 ⊗B>.

Note, the idempotents do restrict certain differentials being present. For example, in the

term d(C>,1) one has that R4U1 ⊗ C> = 0 since I245 · U1 · I245 = 0. Moreover, except in

the case of C>,>, the term δ11(S) = L4 ⊗ E by virtue of the idempotents enforcing that

R3 ⊗W = 0.

5.4.1 Inductive statement

Let P2b+1 be the inductive statement that the Type D structure for

(
N 3
)2b+1

�X

is as displayed in Figure 5.10. Note, that the idempotents do not change from the case

with a single added negative crossing, and once more, the structure in the blue box can

be copied and pasted for the remaining rows. Once more, since by construction all of the

Type D structures are standard, the self-arrows have been suppressed.

5.4.2 Base case

The base case in this inductive proof is shown by calculating the Type D structure for

k = 1, that is determining the bimodule
(
N 3
)�3

�X takes the form as demonstrated in

the inductive statement and Figure 5.10.
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Figure 5.9: Directed weighted graph describing the Type D structure N � X. Note

that the boxed area is not dependent on the position of the marked state on the first set

of crossings. Hence, to determine the full Type D structure, simply copy and paste this

section until r = c.
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Figure 5.10: Directed weighted graph displaying the Type D structure for the module(
N 3
)2b+1

�X. The blue highlighted box can be copied and pasted for the rows (2k, 2k+ 1),

as this structure is inherited from the first set of crossings.
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In the following, it is instructive to note that the number of B` states does not change,

because there is only a single choice of generator for N 3 corresponding to a cardinal

direction that yields a non-trivial tensor product, namely I134 · N · I134. Moreover, any

algebra element with weight outside of span{e3, e4} commutes with the map δ1 =
∑

k δ
1
k

in
(
N , δ1

)
.

Since the Type D structure N �X has already been determined, as shown in Figure 5.9.

The determination of this base case then proceeds in two steps: determining
(
N 3
)�2

�X,

then
(
N 3
)�3

�X. Determining that P1 ⇒ P3 requires tensoring by the DA-bimodule N 3

twice. The taking of the second tensor product is nearly identical to the first, with some

care needed only when considering the ‘right’ hand edge of the diagram: for example the

map δ12(E,C3p) = R4Up⊗S is sometimes zero based upon the value of p and the associated

idempotents of the generator in the Type D structure.

First tensor product with N

The generators of the Type D structure are as displayed in Figure 5.8, and are simply

enumerated by determining the possible cardinal generators of N that pair with generators

of the Type D structure N �X. With a slight abuse of notation, these are:

A1 = N ⊗A1

A2 = W ⊗A>

A> = S ⊗A>

D1 = N ⊗D1

D2 = E ⊗A>

Bk = N ⊗Bk

B> = N ⊗B>

Ck1 = N ⊗ Ck1

Ck2 = E ⊗ Ck,>

Ck,> = S ⊗ Ck,>

C>,1 = N ⊗ C>,1

C>,2 = E ⊗ C>,>

C>,> = S ⊗ C>,>
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S1 = N ⊗ S1

S2 = W ⊗ C>,>.

The idempotents of these generators are shown in the key of Figure 5.10.

The maps d in the Type D structure are then calculated as follows. It is important that one

considers the idempotents and the algebra relations in A, since in the calculation of d(D2)

one has that the algebra coefficient of the map to A> must be zero, since I123 ·R4U5 · I124
has the same weight and idempotents as I123 ·R4R5L5 · I124.

d(A1) = δ12(N,U1U4)⊗B1 + δ12(N,L3U5)⊗A> + δ12(N,R5R4U1)⊗ C1,>

= U1U3 ⊗N ⊗B1 + U5 ⊗W ⊗A> +R5U1 ⊗ E ⊗ C1,>

= U1U3 ⊗B1 + U5 ⊗A2 +R5U1 ⊗ C12.

d(A2) = δ12(W,R3)⊗A1 + δ12(W,L4)⊗D1 + δ12(W,C14)⊗A>

+ δ13(W,R3, R5R4U1)⊗ C1,>

= U4 ⊗N ⊗A1 + L3L4 ⊗N ⊗D1 + U1L3 ⊗ S ⊗A>

+R5R4U1 ⊗ S ⊗ C1,>

= U4 ⊗A1 + L3L4 ⊗D1 + L3U1 ⊗A> +R5R4U1 ⊗ C1,>.

d(A>) = δ11(S)⊗A>

= R3 ⊗W ⊗A> + L4 ⊗ E ⊗A>

= R3 ⊗A2 + L4 ⊗D2.

d(D1) = δ12(N,R4R3U1)⊗B1 + δ12(N,R4U1)⊗A>

= R4R3U1 ⊗N ⊗B1 + U1 ⊗ E ⊗A>

= R4R3U1 ⊗B1 + U1 ⊗D2.

d(D2) = δ12(E,L4)⊗D1 + δ12(E,R3)⊗A1 + δ12(E,C35)⊗A>

= U1 ⊗N ⊗D1 +R4R3 ⊗N ⊗A1 +R4U5 ⊗ S ⊗A>

= U1 ⊗D1 +R4R3 ⊗A1 + I123 ·R4U5 · I124 ⊗A>

= U1 ⊗D1 +R4R3 ⊗A1 + 0⊗A>.

d(B1) = δ12(N, 1)⊗A1 + δ12(N,R5)⊗ C11 + δ12(N,U2)⊗B2

= 1⊗N ⊗A1 +R5 ⊗N ⊗ C11 + U2 ⊗N ⊗B2

= 1⊗A1 +R5 ⊗ C11 + U2 ⊗B2.

d(B2r) = δ12(N,R5)⊗ C2r,1 + δ12(N,U1)⊗B2r+1
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= R5 ⊗N ⊗ C2r,1 + U1 ⊗N ⊗B2r+1

= R5 ⊗ C2r,1 + U1 ⊗B2r+1.

d(B2r+1) = δ12(N,U4)⊗B2r + δ12(N,U2)⊗B2r+2 + δ12(N,R5)⊗ C2r+1,1

+ δ12(N,R5R4)⊗ C2r,>

= U3 ⊗N ⊗B2r + U2 ⊗N ⊗B2r+2 +R5 ⊗N ⊗ C2r+1,1

+R5 ⊗ E ⊗ C2r,>

= U3 ⊗B2r + U2 ⊗B2r+2 +R5 ⊗ C2r+1,1 +R5 ⊗ C2r,2.

d(B2c+1) = U3 ⊗B2c +R5 ⊗ C2c+1,1 +R5 ⊗ C2c,2 + δ12(N,R2)⊗B>

= U3 ⊗B2c +R5 ⊗ C2c+1,1 +R5 ⊗ C2c,2 +R2 ⊗B>.

d(B>) = δ12(N,R5)⊗ C>,1

= R5 ⊗N ⊗ C>,1 = R5 ⊗ C>,1.

d(C11) = δ12(N,L3L5)⊗A> + δ12(N,L5U3)⊗B1 + δ12(N,U2)⊗ C21

+ δ12(N,R4U1)⊗ C1,>

= L5 ⊗W ⊗A> + L5U4 ⊗N ⊗B1 + U2 ⊗N ⊗ C21 + U1 ⊗ E ⊗ C1,>

= L5 ⊗A2 + L5U4 ⊗B1 + U2 ⊗ C21 + U1 ⊗ C12.

d(C12) = δ12(E,L4)⊗ C11 + δ12(E,U2)⊗ C2,> + δ13(E,L4, L3L5)⊗A>

+ δ12(E,C35)⊗ C1,>

= U3 ⊗N ⊗ C11 + U2 ⊗ E ⊗ C2,> + L3L5 ⊗ S ⊗A> +R4U5 ⊗ S ⊗ C1,>

= U3 ⊗ C11 + U2 ⊗ C22 + L3L5 ⊗A> +R4U5 ⊗ C1,>.

d(C1,>) = δ11(S)⊗ C1,> + δ12(S,U2)⊗ C2,>

= L4 ⊗ E ⊗ C1,> + U2 ⊗ S ⊗ C2,>

= L4 ⊗ C12 + U2 ⊗ C2,>.

d(C2r,1) = δ12(N,U6)⊗ C2r−1,1 + δ12(N,L5U3)⊗B2r + δ12(N,R4U1)⊗ C2r,>

+ δ12(N,U1)⊗ C2r+1,1

= U6 ⊗N ⊗ C2r−1,1 + L5U4 ⊗N ⊗B2r + U1 ⊗ E ⊗ C2r,>

+ U1 ⊗N ⊗ C2r+1,1

= U6 ⊗ C2r−1,1 + L5U4 ⊗B2r + U1 ⊗ C2r,2 + U1 ⊗ C2r+1,1.

d(C2r,2) = δ12(E,L4)⊗ C2r,1 + δ12(E,U6)⊗ C2r−1,> + δ12(E,U1)⊗ C2r+1,>

+ δ12(E,C35)⊗ C2r,>
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= U3 ⊗N ⊗ C2r,1 + U6 ⊗ E ⊗ C2r−1,> + U1 ⊗ E ⊗ C2r+1,>

+R4U5 ⊗ S ⊗ C2r,>

= U3 ⊗ C2r,1 + U6 ⊗ C2r−1,2 + U1 ⊗ C2r+1,2 +R4U5 ⊗ C2r,>.

d(C2r,>) = δ11(S)⊗ C2r,> + δ12(S,U6)⊗ C2r−1,> + δ12(S,U1)⊗ C2r+1,>

= L4 ⊗ E ⊗ C2r,> + U6 ⊗ S ⊗ C2r−1,> + U1 ⊗ S ⊗ C2r+1,>

= L4 ⊗ C2r,2 + U6 ⊗ C2r−1,> + U1 ⊗ C2r+1,>.

d(C2r+1,1) = δ12(N,L5U3)⊗B2r+1 + δ12(N,R4U1)⊗ C2r+1,> + δ12(N,U2)⊗ C2r+2,1

+ δ13(N,L5U3, R5R4)⊗ C2r,>

= L5U4 ⊗N ⊗B2r+1 + U1 ⊗ E ⊗ C2r+1,> + U2 ⊗N ⊗ C2r+2,1

+ L5R5R4 ⊗ S ⊗ C2r,>

= L5U4 ⊗B2r+1 + U1 ⊗ C2r+1,2 + U2 ⊗ C2r+2,1 +R4U5 ⊗ C2r,>.

d(C2r+1,2) = δ12(E,L4)⊗ C2r+1,1 + δ12(E,U2)⊗ C2r+2,> + δ12(E,C35)⊗ C2r+1,>

= U3 ⊗N ⊗ C2r+1,1 + U2 ⊗ E ⊗ C2r+2,> +R4U5 ⊗ S ⊗ C2r+1,>

= U3 ⊗ C2r+1,1 + U2 ⊗ C2r+2,2 +R4U5 ⊗ C2r+1,>.

d(C2r+1,>) = δ11(S)⊗ C2r+1,> + δ12(S,U2)⊗ C2r+2,>

= L4 ⊗ E ⊗ C2r+1,> + U2 ⊗ S ⊗ C2r+2,>

= L4 ⊗ C2r+1,2 + U2 ⊗ C2r+2,>.

d(C2c+1,1) = δ12(N,L5U3)⊗B2c+1 + δ12(N,R2)⊗ C>,1 + δ12(N,R4U
1)⊗ C2c+1,>

+ δ13(N,L5U3, R5R4)⊗ C2c,>

= L5U4 ⊗N ⊗B2c+1 +R2 ⊗N ⊗ C>,1 + U1 ⊗ E ⊗ C2c+1,>

+R4U5 ⊗ S ⊗ C2c,>

= L5U4 ⊗B2c+1 +R2 ⊗ C>,1 + U1 ⊗ C2c+1,2 +R4U5 ⊗ C2c,>.

d(C2c+1,2) = δ12(E,L4)⊗ C2c+1,1 + δ12(E,R2)⊗ C>,> + δ12(E,C35)⊗ C2c+1,>

= U3 ⊗N ⊗ C2c+1,1 +R2 ⊗ E ⊗ C>,> +R4U5 ⊗ S ⊗ C2c+1,>

= U3 ⊗ C2c+1,1 +R2 ⊗ C>,2 +R4U5 ⊗ C2c+1,>.

d(C2c+1,>) = δ11(S)⊗ C2c+1,> + δ12(S,R2)⊗ C>,>

= L4 ⊗ E ⊗ C2c+1,> +R2 ⊗ S ⊗ C>,>

= L4 ⊗ C2c+1,2 +R2 ⊗ C>,>.

d(C>,1) = δ12(N,L5U3)⊗B> + δ12(N,L2U6)⊗ C2c+1,1
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= L5U4 ⊗N ⊗B> + L2U6 ⊗N ⊗ C2c+1,1

= L5U4 ⊗B> + L2U6 ⊗ C2c+1,1.

d(C>,2) = δ12(E,L4)⊗ C>,1 + δ12(E,L2U6)⊗ C2c+1,> + δ12(E,R3)⊗ S1

+ δ12(E,C35)⊗ C>,>

= U3 ⊗N ⊗ C>,1 + L2U6 ⊗ E ⊗ C2c+1,> +R4R3 ⊗N ⊗ S1

+R4U5 ⊗ S ⊗ C>,>

= U3 ⊗ C>,1 + L2U6 ⊗ C2c+1,2 +R4R3 ⊗ S1 +R4U5 ⊗ C>,>.

d(C>,>) = δ11(S)⊗ C>,> + δ12(S,L2U6)⊗ C2c+1,>

= L4 ⊗ E ⊗ C>,> +R3 ⊗W ⊗ C>,> + L2U6 ⊗ S ⊗ C2c+1,>

= L4 ⊗ C>,2 +R3 ⊗ S2 + L2U6 ⊗ C2c+1,>.

d(S1) = δ12(N,L3L4L5)⊗B> + δ12(N,L3U5)⊗ C>,>

= L3L4L5 ⊗N ⊗B> + U5 ⊗W ⊗ C>,>

= L3L4L4 ⊗B> + U5 ⊗ S2.

d(S2) = δ12(W,L4)⊗ C>,1 + δ12(W,L2U6)⊗ C2c+1,> + δ12(W,R3)⊗ S1

+ δ12(W,C14)⊗ C>,>

= L3L4 ⊗N ⊗ C>,1 + L2U6 ⊗W ⊗ C2c+1,> + U4 ⊗N ⊗ S1

+ L3U1 · I245 ⊗ S ⊗ C>,>

= L3L4 ⊗ C>,1 + L2U6 · I345 ⊗W ⊗ C2c+1,> + U4 ⊗ S1

+ 0⊗ C>,>

= L3L4 ⊗ C>,1 + 0⊗ C2c+1,> + U4 ⊗ S1.

While lengthy, this calculation is simply applying the DA-bimodule maps detailed in

Section 4.4.2 and [46, 49]. The only nuance is as stated above, that the idempotents of

the Type D generators sometimes force the calculated algebra coefficient to be 0. In other

cases, one simply cannot have an upper Kauffman state as suggested by the DA-bimodule

maps. For example d(S⊗C1,>) would contain the term R3⊗W ⊗C1,> from δ11(S)⊗C1,>;

yet no such upper Kauffman state can exist, as can be seen from the corresponding upper

knot diagram.

There is a little subtlety here. In [49], Ozsváth-Szabó introduce their algebra A(n) in

the most general sense, so that idempotents can include 0 and 2n as part of their n-
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element subsets, unlike the definition presented in Definition 4.12. As noted, following [49,

Prop. 8.2], the truncation of this ring of idempotents is made suitable for the construction

of a knot invariant, since in a special knot diagram the distinguished meridian used in the

construction of a Heegaard diagram from a knot projection [36] is placed on the global

minimum.

Indeed, other truncations of the algebra can be made, as in the case of [27, Def. 3.16],

and these truncations have suitable interpretations in terms of Heegaard diagrams for

bordered sutured knot Floer homology and corresponding quiver algebra representations,

see [27,28].

Second tensor product with N

The above calculation follows in nearly exactly the same way under the second tensor

product with N . Indeed, the roles of U3 and U4 are switched in the same way. Moreover,

all of those states with 3 in the idempotent have the corresponding Kauffman state in

N forced as N , as this region must be occupied. This simplifies the majority of the

calculation, hence the calculation for Bk states will be omitted, as it is almost identical to

the above. A visual description of these states is once more provided in Figure 5.8.

d(A1) = δ12(N,U1U3)⊗B1 + δ12(N,U5)⊗A2 + δ12(N,R5U1)⊗ C12)

= U1U4 ⊗N ⊗B1 + U5 ⊗N ⊗A2 +R5U1 ⊗N ⊗ C12

= U1U4 ⊗B1 + U5 ⊗A2 +R5U1 ⊗ C12.

d(A2) = δ12(N,U4)⊗A1 + δ12(N,L3L4)⊗D1 + δ12(N,L3U1)⊗A>

+ δ12(N,R5R4U1)⊗ C1,>

= U3 ⊗N ⊗A1 + L3L4 ⊗N ⊗D1 + U1 ⊗W ⊗A> +R5U1 ⊗ E ⊗ C1,>

= U3 ⊗A1 + L3L4 ⊗D1 + U1 ⊗A3 +R5U1 ⊗ C13.

d(A3) = δ12(W,R3)⊗A2 + δ12(W,L4)⊗D2

+ δ13(W,R3, R5R4U1)⊗ C1,> + δ12(W,C45)⊗A>

= U4 ⊗N ⊗A2 + L3L4 ⊗N ⊗D2 +R5R4U1 ⊗ S ⊗ C1,>

+ L3U5 ⊗ S ⊗A>

= U4 ⊗A2 + L3L4 ⊗D2 +R5R4U1 ⊗ C1,> + L3U5 ⊗A>.

d(A>) = δ11(S)⊗A>
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= R3 ⊗W ⊗A> + L4 ⊗ E ⊗A>

= R3 ⊗A3 + L4 ⊗D3.

d(D1) = δ12(N,R4R3U1)⊗B1 + δ12(N,U1)⊗D2

= R4R3U1 ⊗N ⊗B1 + U1 ⊗N ⊗D2

= R4R3U1 ⊗B1 + U1 ⊗D2.

d(D2) = δ12(N,U1)⊗D1 + δ12(N,R4R3)⊗A1

= U1 ⊗N ⊗D1 +R4R3 ⊗N ⊗A1

= U1 ⊗D1 +R4R3 ⊗A1.

d(D3) = δ12(E,R3)⊗A2 + δ12(E,L4)⊗D2 + δ12(E,C13)⊗A>

= R4R3 ⊗N ⊗A2 + U3 ⊗N ⊗D2 +R4U1 ⊗ S ⊗A>

= R4R3 ⊗A2 + U3 ⊗D2 +R4U1 ⊗A>.

d(C11) = δ12(N,L5)⊗A2 + δ12(N,L5U4)⊗B1 + δ12(N,U2)⊗ C21 + δ12(N,U1)⊗ C12

= L5 ⊗N ⊗A2 + L5U3 ⊗N ⊗B1 + U2 ⊗N ⊗ C21 + U1 ⊗N ⊗ C12

= L5 ⊗A2 + L5U3 ⊗B1 + U2 ⊗ C21 + U1 ⊗ C12.

d(C12) = δ12(N,U3)⊗ C11 + δ12(N,U2)⊗ C22 + δ12(N,L3L5)⊗A>

+ δ12(N,R4U5)⊗ C1,>

= U4 ⊗N ⊗ C11 + U2 ⊗N ⊗ C22 + L5 ⊗W ⊗A> + U5 ⊗ E ⊗ C1,>

= U4 ⊗ C11 + U2 ⊗ C22 + L5 ⊗A3 + U5 ⊗ C13.

d(C13) = δ12(E,L4)⊗ C12 + δ12(E,U2)⊗ C2,> + δ13(E,L4, L3L5)⊗A>

+ δ12(E,C13)⊗ C1,>

= U3 ⊗N ⊗ C12 + U2 ⊗ E ⊗ C2,> + L3L5 ⊗ S ⊗A> +R4U1 ⊗ S ⊗ C1,>

= U3 ⊗ C12 + U2 ⊗ C2,3 + L3L5 ⊗A> +R4U1 ⊗ C1,>.

d(C1,>) = δ11(S)⊗ C1,> + δ12(S,U2)⊗ C2,>

= L4 ⊗ E ⊗ C1,> + U2 ⊗ S ⊗ C2,>

= L4 ⊗ C13 + U2 ⊗ C2,>.

d(C2r,1) = δ12(N,U6)⊗ C2r−1,1 + δ12(N,L5U4)⊗B2r + δ12(N,U1)⊗ C2r,2

+ δ12(N,U1)⊗ C2r+1,1

= U6 ⊗N ⊗ C2r−1,1 + L5U3 ⊗N ⊗B2r + U1 ⊗N ⊗ C2r,2

+ U1 ⊗N ⊗ C2r+1,1
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= U6 ⊗ C2r−1,1 + L5U3 ⊗B2r + U1 ⊗ C2r,2 + U1 ⊗ C2r+1,1.

d(C2r,2) = δ12(N,U3)⊗ C2r,1 + δ12(N,U6)⊗ C2r−1,2 + δ12(N,U1)⊗ C2r+1,2

+ δ12(N,R4U5)⊗ C2r,>

= U4 ⊗N ⊗ C2r,1 + U6 ⊗N ⊗ C2r−1,2 + U1 ⊗N ⊗ C2r+1,2

+ U5 ⊗ E ⊗ C2r,>

= U4 ⊗ C2r,1 + U6 ⊗ C2r−1,2 + U1 ⊗ C2r+1,2 + U5 ⊗ C2r,3.

d(C2r,3) = δ12(E,L4)⊗ C2r,2 + δ12(E,U6)⊗ C2r−1,> + δ12(E,U1)⊗ C2r+1,>

+ δ12(E,C13)⊗ C2r,>

= U3 ⊗N ⊗ C2r,2 + U6 ⊗ E ⊗ C2r−1,> + U1 ⊗ E ⊗ C2r+1,>

+R4U1 ⊗ S ⊗ C2r,>

= U3 ⊗ C2r,2 + U6 ⊗ C2r−1,3 + U1 ⊗ C2r+1,3 +R4U1 ⊗ C2r,>.

d(C2r,>) = δ11(S)⊗ C2r,> + δ12(S,U6)⊗ C2r−1,> + δ12(S,U1)⊗ C2r+1,>

= L4 ⊗ E ⊗ C2r,> + U6 ⊗ S ⊗ C2r−1,> + U1 ⊗ S ⊗ C2r+1,>

= L4 ⊗ C2r,3 + U6 ⊗ C2r−1,> + U1 ⊗ C2r+1,>.

d(C2r+1,1) = δ12(N,L5U4)⊗B2r+1 + δ12(N,U1)⊗ C2r+1,2

+ δ12(N,U2)⊗ C2r+2,1 + δ12(N,R4U5)⊗ C2r,>

= L5U3 ⊗N ⊗B2r+1 + U1 ⊗N ⊗ C2r+1,2 + U2 ⊗N ⊗ C2r+2,1

+ U5 ⊗ E ⊗ C2r,>

= L5U3 ⊗B2r+1 + U1 ⊗ C2r+1,2 + U2 ⊗ C2r+2,1 + U5 ⊗ C2r,3.

d(C2r+1,2) = δ12(N,U3)⊗ C2r+1,1 + δ12(N,U2)⊗ C2r+2,2 + δ12(N,R4U5)⊗ C2r+1,>

+ δ13(N,U3, R4U5)⊗ C2r,>

= U4 ⊗N ⊗ C2r+1,1 + U2 ⊗N ⊗ C2r+2,2 + U5 ⊗ E ⊗ C2r+1,>

+R4U5 ⊗ S ⊗ C2r,>

= U4 ⊗ C2r+1,1 + U2 ⊗ C2r+2,2 + U5 ⊗ C2r+1,3 +R4U5 ⊗ C2r,>.

d(C2r+1,3) = δ12(E,L4)⊗ C2r+1,2 + δ12(E,U2)⊗ C2r+2,> + δ12(E,C13)⊗ C2r+1,>

= U3 ⊗N ⊗ C2r+1,2 + U2 ⊗ E ⊗ C2r+2,> +R4U1 ⊗ S ⊗ C2r+1,>

= U3 ⊗ C2r+1,2 + U2 ⊗ C2r+2,3 +R4U1 ⊗ C2r+1,>.

d(C2r+1,>) = δ11(S)⊗ C2r+1,> + δ12(S,U2)⊗ C2r+2,>

= L4 ⊗ E ⊗ C2r+1,> + U2 ⊗ S ⊗ C2r+2,>
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= L4 ⊗ C2r+1,3 + U2 ⊗ C2r+2,>.

For the sake of brevity, note that when r = c, the only change to the calculations for

d(C2r+1,k) where k ∈ {1, 2, 3, >} involves changing the term δ12(X,U2) ⊗ C2r+2,k for the

term δ12(X,R2)⊗ C>,k, which is equal to R2 ⊗X ⊗ C>,k.

d(C>,1) = δ12(N,L5U4)⊗B> + δ12(N,L2U6)⊗ C2c+1,1

= L5U3 ⊗N ⊗B> + L2U6 ⊗N ⊗ C2c+1,1

= L5U3 ⊗B> + L2U6 ⊗ C2c+1,1.

d(C>,2) = δ12(N,U3)⊗ C>,1 + δ12(N,L2U6)⊗ C2c+1,2

+ δ12(N,R4R3)⊗ S1 + δ12(N,R4U5)⊗ C>,>

= U4 ⊗N ⊗ C>,1 + L2U6 ⊗N ⊗ C2c+1,2 +R4R3 ⊗N ⊗ S1

+ U5 ⊗ E ⊗ C>,>

= U4 ⊗ C>,1 + L2U6 ⊗ C2c+1,2 +R4R3 ⊗ S1 + U5 ⊗ C>,3.

d(C>,3) = δ12(E,L4)⊗ C>,2 + δ12(E,R3)⊗ S2 + δ12(E,L2U6)⊗ C2c+1,>

+ δ12(E,C13)⊗ C>,>

= U3 ⊗N ⊗ C>,2 +R4R3 ⊗N ⊗ S2 + L2U6 ⊗ C2c+1,>

+R4U1 ⊗ I245 · S ⊗ C>,>

= U3 ⊗ C>,2 +R4R3 ⊗ S2 + L2U6 ⊗ C2c+1,>.

d(C>,>) = δ11(S)⊗ C>,> + δ12(S,L2U6)⊗ C2c+1,>

= L4 ⊗ E ⊗ C>,> +R3 ⊗W ⊗ C>,> + L2U6 ⊗ S ⊗ C2c+1,>

= L4 ⊗ C>,3 +R3 ⊗ S3 + L2U6 ⊗ C2c+1,>.

d(S1) = δ12(N,L3L4L5)⊗B> + δ12(N,U5)⊗ S2

= L3L4L5 ⊗N ⊗B> + U5 ⊗N ⊗ S2

= L3L4L5 ⊗B> + U5 ⊗ S2.

d(S2) = δ12(N,L3L4)⊗ C>,1 + δ12(N,U4)⊗ S1

= L3L4 ⊗N ⊗ C>,1 + U3 ⊗N ⊗ S1

= L3L4 ⊗ C>,1 + U3 ⊗ S1.

d(S3) = δ12(W,L4)⊗ C>,2 + δ12(W,R3)⊗ S2 + δ12(W,L2U6)⊗ C2c+1,>

+ δ12(W,C45)⊗ C>,>

= L3L4 ⊗N ⊗ C>,2 + U4 ⊗N ⊗ S2 + 0⊗W ⊗ C2c+1,>
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+ L3U5 ⊗ S ⊗ C>,>

= L3L4 ⊗ C>,2 + U4 ⊗ S2 + L3U5 ⊗ C>,>.

Hence, comparing to the form required in Figure 5.10, one can see that the base case is

determined, namely that
(
N 3
)3

�X has the form fitting the inductive statement.

Type D structure relations

Once more, it is a relatively simple calculation to verify that the Type D relations are

satisfied, as presented in Figure 4.7. An example of this relation being satisfied is presented

here, as the sum of the two different terms must be zero. Once more, the fact that algebra

elements are uniquely determined by their idempotents and weight (Proposition 4.13) is

used.

(µ1 ⊗ IdM ) ◦ d(I234 ·B>) = µ1 (C14 + C26 + C35)⊗B>

= I234 · (U1U4 + U2U6 + U3U5)⊗ I234 ⊗B>

= U3U5 ⊗B>.

(µ2 ⊗ IdM ) ◦ (IdA ⊗ d) ◦ d(B>) = (µ2 ⊗ IdM ) ◦ (IdA ⊗ d) (R5 × C>,1)

= R5L2U6 ⊗ C2c+1,1 +R5L5U3 ⊗B>

= I234 · L2R5U6 · I135 ⊗ C2c+1,1 + U3U5 ⊗B>

= 0⊗ C2c+1,1 + U3U5 ⊗B> = U3U5 ⊗B>.

5.4.3 Inductive assumption and argument

Assume for inductive purposes that the P2k+1 holds, in other words that

(
N 3
)2k+1

�X

has the form as described by the directed graph Figure 5.10, with the self-arrows coming

from the matching, i.e. d(X) 3 (C14 + C26 + C35) ⊗ X. Denote the Type D structure(
N 3
)2k+1

�X by Y .

Remark 5.3 Under taking the tensor product with N � N , the ‘right’ hand side of the

diagram is extended, i.e. one has new states A2k+2, A2k+3, D2k+2, D2k+3, Cr,2k+2, Cr,2k+3

and S2k+2, S2k+3. As can be seen in the calculation of the base case in Section 5.4.2, the

left hand side of the diagram does not change. Tensoring once by N swaps the role of U3

and U4, which is undone by the second tensor product. Moreover, since 3 belongs to all
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of the idempotents on the ‘left’ hand side of the diagram, the only compatible generator in

N �N is N ⊗N .

It is important to verify that more complicated behaviour on the left hand side is not

introduced by taking a tensor product with N . Usefully, this can be seen by checking that

there is no involvement of the δ13(N, a1, a2) arrow in the DA-bimodule. There is a finite

list of viable coefficients for such an arrow to be present, as described by [49, p. 21], and

one can easily check that taking the tensor product of the Type D structure with N does

not include maps with these algebra coefficients.

Hence, all the maps on the left hand side — i.e. originating from the states Bj for all j,

and the states Aj, Cij, Dj, Sj with j < 2k + 1 — arise from maps with δ12(N, a), since

δ11(N) = 0, and so every DA-bimodule map only takes a single algebra element as an input:

i.e. only one step is taken in the Type D structure to calculate the tensor product. Since

δ12(N, a) maps are very simple for the algebra elements a featured in the diagram, only the

calculation for the ‘right’ hand side of the diagram will be presented.

Calculation for N 3 � Y

Starting at the right hand side of the diagram (Figure 5.10) consider that in Y , one has

that

dY (A2k) = U1 ⊗A2k+1 + L3L4 ⊗D2k−1 + U3 ⊗A2k−1 +R5U1 ⊗ C2k+1,1.

One can then see that after taking tensor product by N , the map dN�Y (N ⊗ A2k) is

described by

d(N ⊗A2k) = U1 ⊗A2k+1 + L3L4 ⊗D2k−1 + U4 ⊗A2k−1 +R5U1 ⊗ C2k+1.

Taking the tensor product once more with N , one yields dN�N�Y (N ⊗N ⊗A2k) as

d(N ⊗N ⊗A2k) = U1 ⊗A2k+1 + L3L4 ⊗D2k−1 + U3 ⊗A2k−1 +R5U1 ⊗ C2k+1,1.

The calculation is nearly identical for D2k, Cr,2k and S2k. Hence, start with the right hand

edge of the diagram.

d(A2k+1) = d(N ⊗A2k+1)

= δ12(N,L3U5)⊗A> + δ12(N,U4)⊗A2k + δ12(N,R5R4U1)⊗ C1,>

+ δ12(N,L3L4)⊗D2k
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= U5 ⊗W ⊗A> + U3 ⊗N ⊗A2k +R5U1 ⊗ E ⊗ C1,>

+ L3L4 ⊗N ⊗D2k

= U5 ⊗A2k+2 + U3 ⊗A2k +R5U1 ⊗ C1,2k+2 + L3L4 ⊗D2k.

d(A2k+2) = d(W ⊗A>)

= δ12(W,R3)⊗A2k+1 + δ12(W,L4)⊗D2k+1 + δ12(W,C14)⊗A>

+ δ13(W,R3, R5R4U1)⊗ C1,>

= U4 ⊗N ⊗A2k+1 + L3L4 ⊗N ⊗D2k+1 + L3U1 ⊗ S ⊗A>

+R5R4U1 ⊗ S ⊗ C1,>

= U4 ⊗A2k+1 + L3L4 ⊗D2k+1 + L3U1 ⊗A> +R5R4U1 ⊗ C1,>.

d(D2k+1) = d(N ⊗D2k+1)

= δ12(N,R4R3)⊗A2k + δ12(N,U3)⊗D2k + δ12(N,R4U1)⊗A>

= R4R3 ⊗N ⊗A2k + U4 ⊗N ⊗D2k + U1 ⊗ E ⊗A>

= R4R3 ⊗A2k + U4 ⊗D2k + U1 ⊗D2k+2.

d(D2k+2) = d(E ⊗A>)

= δ12(E,L4)⊗D2k+1 + δ12(E,R3)⊗A2k+1 + δ12(E,C35)⊗A>

= U3 ⊗N ⊗D2k+1 +R4R3 ⊗N ⊗A2k+1 +R4U5 ⊗ I124 · S ⊗A>

= U3 ⊗D2k+1 +R4R3 ⊗A2k+1 + 0⊗A>.

d(A>) = d(S ⊗A>)

= δ11(S)⊗A> = L4 ⊗ E ⊗A> +R3 ⊗W ⊗A>

= L4 ⊗D2k+2 +R3 ⊗A2k+2.

d(C1,2k+1) = d(N ⊗ C1,2k+1)

= δ12(N,U3)⊗ C1,2k + δ12(N,U2)⊗ C2,2k+1 + δ12(N,R4U1)⊗ C1,>

+ δ12(N,L3L5)⊗A>

= U4 ⊗N ⊗ C1,2k + U2 ⊗N ⊗ C2,2k+1 + U1 ⊗ E ⊗ C1,> + L5 ⊗W ⊗A>

= U4 ⊗ C1,2k + U2 ⊗ C2,2k+1 + U1 ⊗ C1,2k+2 + L5 ⊗A2k+2.

d(C1,2k+2) = d(E ⊗ C1,>)

= δ12(E,L4)⊗ C1,2k+1 + δ12(E,U2)⊗ C2,> + δ12(E,C35)⊗ C1,>

+ δ13(E,L4, L3L5)⊗A>

= U3 ⊗N ⊗ C1,2k+1 + U2 ⊗ E ⊗ C2,> +R4U5 ⊗ S ⊗ C1,>
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+ L3L5 ⊗ S ⊗A>

= U3 ⊗ C1,2k+1 + U2 ⊗ C2,2k+2 +R4U5 ⊗ C1,> + L3L5 ⊗A>.

d(C1,>) = d(S ⊗ C1,>)

= δ11(S)⊗ C1,> + δ12(S,U2)⊗ C2,>

= L4 ⊗ E ⊗ C1,> + U2 ⊗ S ⊗ C2,>

= L4 ⊗ C1,2k+2 + U2 ⊗ C2,>.

d(C2r,2k+1) = d(N ⊗ C2r,2k+1)

= δ12(N,U3)⊗ C2r,2k + δ12(N,U6)⊗ C2r−1,2k+1 + δ12(N,U1)⊗ C2r+1,2k+1

+ δ12(N,R4U1)⊗ C2r,>

= U4 ⊗N ⊗ C2r,2k + U6 ⊗N ⊗ C2r−1,2k+1 + U1 ⊗N ⊗ C2r+1,2k+1

+ U1 ⊗ E ⊗ C2r,>

= U4 ⊗ C2r,2k + U6 ⊗ C2r−1,2k+1 + U1 ⊗ C2r+1,2k+1 + U1 ⊗ C2r,2k+2.

d(C2r,2k+2) = d(E ⊗ C2r,>)

= δ12(E,L4)⊗ C2r,2k+1 + δ12(E,U1)⊗ C2r+1,> + δ12(E,U6)⊗ C2r−1,>

+ δ12(E,C35)⊗ C2r,>

= U3 ⊗N ⊗ C2r,2k+1 + U1 ⊗ E ⊗ C2r+1,> + U6 ⊗ E ⊗ C2r−1,>

+R4U5 ⊗ S ⊗ C2r,>

= U3 ⊗ C2r,2k+1 + U1 ⊗ C2r+1,2k+2 + U6 ⊗ C2r−1,2k+2 +R4U5 ⊗ C2r,>.

d(C2r,>) = d(S ⊗ C2r,>)

= δ11(S)⊗ C2r,> + δ12(S,U1)⊗ C2r+1,> + δ12(S,U6)⊗ C2r−1,>

= L4 ⊗ E ⊗ C2r,> + U1 ⊗ S ⊗ C2r+1,> + U6 ⊗ S ⊗ C2r−1,>

= L4 ⊗ C2r,2k+2 + U1 ⊗ C2r+1,> + U6 ⊗ C2r−1,>.

d(C2r+1,2k+1) = d(N ⊗ C2r+1,2k+1)

= δ12(N,U3)⊗ C2r+1,2k + δ12(N,U2)⊗ C2r+2,2k+1

+ δ12(N,R4U1)⊗ C2r+1,> + δ13(N,U3, R4U5)⊗ C2r,>

= U4 ⊗N ⊗ C2r+1,2k + U2 ⊗N ⊗ C2r+2,2k+1 + U1 ⊗ E ⊗ C2r+1,>

+R4U5 ⊗ S ⊗ C2r,>

= U4 ⊗ C2r+1,2k + U2 ⊗ C2r+2,2k+1 + U1 ⊗ C2r+1,2k+2
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+R4U5 ⊗ C2r,>.

d(C2r+1,2k+2) = d(E ⊗ C2r+1,>)

= δ12(E,L4)⊗ C2r+1,2k+1 + δ12(E,U2)⊗ C2r+2,>

+ δ12(E,C35)⊗ C2r+1,>

= U3 ⊗N ⊗ C2r+1,2k+1 + U2 ⊗ E ⊗ C2r+2,> +R4U5 ⊗ S ⊗ C2r+1,>

= U3 ⊗ C2r+1,2k+1 + U2 ⊗ C2r+2,2k+2 +R4U5 ⊗ C2r+1,>.

d(C2r+1,>) = d(S ⊗ C2r+1,>)

= δ11(S)⊗ C2r+1,> + δ12(S,U2)⊗ C2r+2,>

= L4 ⊗ E ⊗ C2r+1,> + U2 ⊗ S ⊗ C2r+2,>

= L4 ⊗ C2r+1,2k+2 + U2 ⊗ C2r+2,>.

When r = c, the states in consideration are C2c+1,` at the bottom of Figure 5.10. The

only difference of the calculation of the dN�Y for these states rather than the calculation

of dN�Y (C2r+1, `) above is that one substitutes the ‘downward’ arrow with the associated

algebra element U2 for the algebra element R2. This is exactly as was remarked in the

verification of the base case in Section 5.4.2. Since both of these algebra elements have

weight outside of the span {e3, e4}, the changing U2 for R2 in the above gives the required

result.

Continuing with the calculation, one has that:

d(C>,2k+1) = d(N ⊗ C>,2k+1)

= δ12(N,U3)⊗ C>,2k + δ12(N,L2U6)⊗ C2c+1,2k+1 + δ12(N,R4U1)⊗ C>,>

+ δ12(N,R4R3)⊗ S2k

= U4 ⊗N ⊗ C>,2k + L2U6 ⊗N ⊗ C2c+1,2k+1 + U1 ⊗ I235 · E ⊗ C>,>

+R4R3 ⊗N ⊗ S2k

= U4 ⊗ C>,2k + L2U6 ⊗ C2c+1,2k+1 + 0⊗ C>,2k+2 +R4R3 ⊗ S2k.

d(C>,2k+2) = d(E ⊗ C>,>)

= δ12(E,L4)⊗ C>,2k+1 + δ12(E,L2U6)⊗ C2c+1,> + δ12(E,R3)⊗ S2k+1

+ δ12(E,C35)⊗ C>,>

= U3 ⊗N ⊗ C>,2k+1 + L2U6 ⊗ E ⊗ C2c+1,> +R4R3 ⊗N ⊗ S2k+1

+R4U5 ⊗ S ⊗ C>,>
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= U3 ⊗ C>,2k+1 + L2U6 ⊗ C2c+1,2k+2 +R4R3 ⊗ S2k+1 +R4U5 ⊗ C>,>.

d(C>,>) = d(S ⊗ C>,>)

= δ11(S)⊗ C>,> + δ12(S,L2U6)⊗ C2c+1,>

= R3 ⊗W ⊗ C>,> + L4 ⊗ E ⊗ C>,> + L2U6 ⊗ S ⊗ C2c+1,>

= R3 ⊗ S2k+2 + L4 ⊗ C>,2k+2 + L2U6 ⊗ C2c+1,>.

d(S2k+1) = d(N ⊗ S2k+1)

= δ12(N,U4)⊗ S2k + δ12(N,L3L4)⊗ C>,2k + δ12(N,L3U5)⊗ C>,>

= U3 ⊗N ⊗ S2k + L3L4 ⊗N ⊗ C>,2k + U5 ⊗W ⊗ C>,>

= U3 ⊗ S2k + L3L4 ⊗ C>,2k + U5 ⊗ S2k+2.

d(S2k+2) = δ12(W,R3)⊗ S2k+1 + δ12(W,L4)⊗ C>,2k+1 + δ12(W,L2U6)⊗ C2c+1,>

+ δ12(W,C14)⊗ C>,>

= U4 ⊗N ⊗ S2k+1 + L3L4 ⊗N ⊗ C>,2k+1 + L2U6 ⊗ 0⊗ C2c+1,>

+ L3U1 ⊗ I245 · S ⊗ C>,>

= U4 ⊗ S2k+1 + L3L4 ⊗ C>,2k+1 + 0⊗ C>,>

= U4 ⊗ S2k+1 + L3L4 ⊗ C>,2k+1.

5.4.4 Calculation for N 3 �N 3 � Y

As before, the only elements that have slightly more complicated maps in the Type D

structure to calculate are those at the end of the strand, or equivalently the right hand

side of the diagram. The calculation is similar to the above.

d(A2k+2) = d(N ⊗A2k+2)

= δ12(N,U4)⊗A2k+1 + δ12(N,L3L4)⊗D2k+1 + δ12(N,L3U1)⊗A>

+ δ12(N,R5R4U1)⊗ C1,>

= U3 ⊗N ⊗A2k+1 + L3L4 ⊗N ⊗D2k+1 + U1 ⊗W ⊗A>

+R5U1 ⊗ E ⊗ C1,>

= U3 ⊗A2k+1 + L3L4 ⊗D2k+1 + U1 ⊗A2k+3 +R5U1 ⊗ C1,2k+3.

d(A2k+3) = δ12(W,L4)⊗D2k+2 + δ12(W,R3)⊗A2k+2 + δ12(W,C45)⊗A>

+ δ13(W,R3, R5R4U1)⊗ C1,>

= L3L4 ⊗N ⊗D2k+2 + U4 ⊗N ⊗A2k+2 + L3U5 ⊗ S ⊗A>
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+R5R4U1 ⊗ S ⊗ C1,>

= L3L4 ⊗D2k+2 + U4 ⊗A2k+2 + L3U5 ⊗A> +R5R4U1 ⊗ C1,>.

d(D2k+2) = d(N ⊗D2k+2)

= δ12(N,U3)⊗D2k+1 + δ12(N,R4R3)⊗A2k+1

= U4 ⊗N ⊗D2k+1 +R4R3 ⊗N ⊗A2k+1

= U4 ⊗D2k+1 +R4R3 ⊗A2k+1.

d(D2k+3) = d(E ⊗A>)

= δ12(E,L4)⊗D2k+2 + δ12(E,R3)⊗A2k+2 + δ12(E,C13)⊗A>

= U3 ⊗N ⊗D2k+2 +R4R3 ⊗N ⊗A2k+2 +R4U1 ⊗ S ⊗A>

= U3 ⊗D2k+2 +R4R3 ⊗A2k+2 +R4U1 ⊗A>.

d(A>) = d(S ⊗A>)

= δ11(S)⊗A>

= L4 ⊗ E ⊗A> +R3 ⊗W ⊗A>

= L4 ⊗D2k+3 +R3 ⊗A2k+3.

d(C1,2k+2) = d(N ⊗ C1,2k+2)

= δ12(N,U3)⊗ C1,2k+1 + δ12(N,U2)⊗ C2,2k+2 + δ12(N,R4U5)⊗ C1,>

+ δ12(N,L3L5)⊗A>

= U4 ⊗N ⊗ C1,2k+1 + U2 ⊗N ⊗ C2,2k+2 + U5 ⊗ E ⊗ C1,>

+ L5 ⊗W ⊗A>

= U4 ⊗ C1,2k+1 + U2 ⊗ C2,2k+2 + U5 ⊗ C1,2k+3 + L5 ⊗A2k+3.

d(C1,2k+3) = d(E ⊗ C1,>)

= δ12(E,L4)⊗ C1,2k+2 + δ12(E,U2)⊗ C2,> + δ12(E,C13)⊗ C1,>

+ δ13(E,L4, L3L5)⊗A>

= U3 ⊗N ⊗ C1,2k+2 + U2 ⊗ E ⊗ C2,> +R4U1 ⊗ S ⊗ C1,>

+ L3L5 ⊗ S ⊗A>

= U3 ⊗ C1,2k+2 + U2 ⊗ C2,2k+3 +R4U1 ⊗ C1,> + L3L5 ⊗A>.

d(C1,>) = d(S ⊗ C1,>)

= δ11(S)⊗ C1,> + δ12(S,U2)⊗ C2,>

= L4 ⊗ E ⊗ C1,> + U2 ⊗ S ⊗ C2,>
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= L4 ⊗ C1,2k+3 + U2 ⊗ C2,>.

d(C2r,2k+2) = d(N ⊗ C2r,2k+2)

= δ12(N,U3)⊗ C2r,2k+1 + δ12(N,U1)⊗ C2r+1,2k+2 + δ12(N,U6)⊗ C2r−1,2k+2

+ δ12(N,R4U5)⊗ C2r,>

= U4 ⊗N ⊗ C2r,2k+1 + U1 ⊗N ⊗ C2r+1,2k+2 + U6 ⊗N ⊗ C2r−1,2k+2

+ U5 ⊗ E ⊗ C2r,>

= U4 ⊗ C2r,2k+1 + U1 ⊗ C2r+1,2k+2 + U6 ⊗ C2r−1,2k+2 + U5 ⊗ C2r,2k+3.

d(C2r,2k+3) = d(E ⊗ C2r,>)

= δ12(E,L4)⊗ C2r,2k+2 + δ12(E,U1)⊗ C2r+1,> + δ12(E,U6)⊗ C2r−1,>

+ δ12(E,C13)⊗ C2r,>

= U3 ⊗N ⊗ C2r,2k+2 + U1 ⊗ E ⊗ C2r+1,> + U6 ⊗ E ⊗ C2r−1,>

+R4U1 ⊗ S ⊗ C2r,>

= U3 ⊗ C2r,2k+2 + U1 ⊗ C2r+1,2k+3 + U6 ⊗ C2r−1,2k+3 +R4U1 ⊗ C2r,>.

d(C2r,>) = d(S ⊗ C2r,>)

= δ11(S)⊗ C2r,> + δ12(S,U1)⊗ C2r+1,> + δ12(S,U6)⊗ C2r−1,>

= L4 ⊗ E ⊗ C2r,> + U1 ⊗ S ⊗ C2r+1,> + U6 ⊗ S ⊗ C2r−1,>

= L4 ⊗ C2r,2k+3 + U1 ⊗ C2r+1,> + U6 ⊗ C2r−1,>.

d(C2r+1,2k+2) = d(N ⊗ C2r+1,2k+2)

= δ12(N,U3)⊗ C2r+1,2k+1 + δ12(N,U2)⊗ C2r+2,2k+2

+ δ12(N,R4U5)⊗ C2r+1,> + δ13(N,U3, R4U5)⊗ C2r,>

= U4 ⊗N ⊗ C2r+1,2k+1 + U2 ⊗N ⊗ C2r+2,2k+2 + U5 ⊗ E ⊗ C2r+1,>

+R4U5 ⊗ S ⊗ C2r,>

= U4 ⊗ C2r+1,2k+1 + U2 ⊗ C2r+2,2k+2 + U5 ⊗ C2r+1,2k+3 +R4U5 ⊗ C2r,>.

d(C2r+1,2k+3) = d(E ⊗ C2r+1,>)

= δ12(E,L4)⊗ C2r+1,2k+2 + δ12(E,U2)⊗ C2r+2,> + δ12(E,C13)⊗ C2r+1,>

= U3 ⊗N ⊗ C2r+1,2k+2 + U2 ⊗ E ⊗ C2r+2,> +R4U1 ⊗ S ⊗ C2r+1,>

= U3 ⊗ C2r+1,2k+2 + U2 ⊗ C2r+2,2k+3 +R4U1 ⊗ C2r+1,>.

d(C2r+1,>) = d(S ⊗ C2r+1,>)

= δ11(S)⊗ C2r+1,> + δ12(S,U2)⊗ C2r+2,>
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= L4 ⊗ E ⊗ C2r+1,> + U2 ⊗ S ⊗ C2r+2,>

= L4 ⊗ C2r+1,2k+3 + U2 ⊗ C2r+2,>.

As before, the difference between the calculations for C2c+1,` and C2r+1,` where 1 ≤ r < c

is simply changing the role of U2 and R2. Since the weight is outside the region of the

strands present in the crossing, these algebra elements commute with the map δ12 . So the

calculation will continue with C>,` and S`.

d(C>,2k+2) = d(N ⊗ C>,2k+2)

= δ12(N,U3)⊗ C>,2k+1 + δ12(N,L2U6)⊗ C2c+1,2k+2

+ δ12(N,R4R3)⊗ S2k+1 + δ12(N,R4U5)⊗ C>,>

= U4 ⊗N ⊗ C>,2k+1 + L2U6 ⊗N ⊗ C2c+1,2k+2

+R4R3 ⊗N ⊗ S2k+1 + U5 ⊗ E ⊗ C>,>

= U4 ⊗ C>,2k+1 + L2U6 ⊗ C2c+1,2k+2 +R4R3 ⊗ S2k+1 + U5 ⊗ C>,2k+3.

d(C>,2k+3) = d(E ⊗ C>,>)

= δ12(E,R3)⊗ S2k+2 + δ12(E,L4)⊗ C>,2k+2 + δ12(E,L2U6)⊗ C2c+1,>

+ δ12(E,C13)⊗ C>,>

= R4R3 ⊗N ⊗ S2k+2 + U3 ⊗N ⊗ C>,2k+2 + L2U6 ⊗ E ⊗ C2c+1,>

+R4U1 ⊗ S ⊗ C>,>

= R4R3 ⊗ S2k+2 + U3 ⊗ C>,2k+2 + L2U6 ⊗ C2c+1,2k+3 +R4U1 ⊗ C>,>.

d(C>,>) = d(S ⊗ C>,>)

= δ11(S)⊗ C>,> + δ12(S,L2U6)⊗ C2c+1,>

= R3 ⊗W ⊗ C>,> + L4 ⊗ E ⊗ C>,> + L2U6 ⊗ S ⊗ C>,>

= R3 ⊗ S2k+3 + L4 ⊗ C>,2k+3 + L2U6 ⊗ C2c+1,>.

d(S2k+2) = d(N ⊗ S2k+2)

= δ12(N,U4)⊗ S2k+1 + δ12(N,L3L4)⊗ C>,2k+1

= U3 ⊗N ⊗ S2k+1 + L3L4 ⊗N ⊗ C>,2k+1

= U3 ⊗ S2k+1 + L3L4 ⊗ C>,2k+1.

d(S2k+3) = d(W ⊗ C>,>)

= δ12(W,L4)⊗ C>,2k+2 + δ12(W,R3)⊗ S2k+2 + δ12(W,L2U6)⊗ C2c+1,>

+ δ12(W,C45)⊗ C>,>
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= L3L4 ⊗N ⊗ C>,2k+2 + U4 ⊗N ⊗ S2k+2 + L2U6 ⊗ 0⊗ C2c+1,>

+ L3U5 ⊗ S ⊗ C>,>

= L3L4 ⊗ C>,2k+2 + U4 ⊗ S2k+2 + L3U5 ⊗ C>,>.

This completes the calculation of the Type-D structure
(
N 3 �N 3 � Y, d

)
, and note that

this agrees with the weighted, directed graph in Figure 5.10. Hence, since the calculation

started from the inductive assumption that P2k+1 held, one has that P2k+1 ⇒ P2(k+1)+1.

Thus, by mathematical induction, the Type D structure of
(
N 3
)2b+1

�X is as described

by Figure 5.10, completing the inductive proof.

Remark 5.4 Note, the behaviour of the Type D structure does not depend on b or c,

merely the dimensions of the weighted, directed graph. As will be determined later, the

numerical invariants extracted from C(D) will depend on whether b ≤ c or b > c, but the

Type D structure determined in Figure 5.10 does not.

5.5 The third set of crossings

The next step in determining the Type D structure associated to the special upper knot

diagram of three strand pretzel knots – shown in Figure 5.1 – is to take the box-tensor

product of the Type D structure yielded above and 2a copies of the DA-bimodule P5. The

bimodule P5 for a positive crossing has already been considered: it is merely a relabelling

of the bimodule P1.

As noted by Ozsváth-Szabó in the definition in [49], algebra elements with weights outside

of the set span{e5, e6} commute with the map δ1k. Furthermore, since a crossing between

the fifth and sixth strands is at the ‘edge’ of the knot diagram, and so incident to the

exterior region also incident to the global maximum, it is enforced by the truncation of

the algebra that 6 does not belong to the idempotent of any generator of the Type D

structure or DA-bimodule. Hence, the permissible generators in the P5 tensor coordinate

are N , W and S, since the generator E would have 6 in its incoming idempotent.

This simplifies the calculation, as does the fact that the D, C and S-states only have a

non-zero tensor product with one element of the set {N,W,S}.

Specifically, since the generators Cij shown in Figure 5.8 have associated idempotent I135,

one must have that the P-tensor coordinate in any product with I135 · Cij must be I135 ·
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I135 · A31 I135 ·B22 I135 · C11

I123 ·D3 I345 · S1 I134 ·B3>

Figure 5.11: Diagram depicting some of the categories into which Kauffman states cor-

responding to generators of
(
P5
)2a

� Y may lie. States with > as an index indicate that

the marked point in the vacant interior region lies ‘below’ the current upper knot diagram.

N · I135. Likewise, the states of type S and D have associated idempotents I123 ·Di and

I345 ·Sk. As a consequence, the only non-zero tensor product in which these states appears

are I123 · S · I123 ⊗ I123 ·Di and I345 ·N · I345 ⊗ I345 · Sk.

Denote the Type D structure
(
N 3
)2b+1

�X by Y . The possible states and their associated

idempotents in
(
P5
)2a

�Y are displayed in Figure 5.11, where the indices in Ajk, Bik and

Cij denote the position of the marked points in the two interior regions. Where only

one index is present — for example in the case of Dk — the index gives the position

of the marked point in the region interior region that is not a value in the associated

idempotent.

The states that gain an extra index are the Bik states and Ajk. Hence, if one were to
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describe the associated Type D structure as a weighted directed graph as in Figure 5.10,

the B-states and A-states would now be squares of two dimensions, rather than lines of

one. Such a graph is difficult to display, and it is simpler to describe the Type D structure

separately based upon the type of state to which the map d in
(
P5
)�

�Y is applied.

5.5.1 C-states and S-states

The C-states, since they have only one permissible tensor product with P5 have a form

that is easy to determine inductively. Let P2k be the statement that the states Cij and

Sj in the Type D structure
(
P5
)2k

� Y have maps as displayed in Figure 5.12. The DA-

bimodule
(
P5, δ1k

)
is defined exactly as in Section 4.4.2, noting that elements with weights

outside of the strands concerned commute with the maps.

Base case: k = 1

As in the calculation presented in Section 5.4.3, the arrows for the states Cij depend on

the parity of i and j, and differ at the end of the strands. So, in P5 � Y , one has the

following.

d(N ⊗ C11) = d(C11)

= δ12(N,L5U3)⊗B1 + δ12(N,L5)⊗A2 + δ12(N,U1)⊗ C12

+ δ12(N,U2)⊗ C21

= U3U6 ⊗W ⊗B1 + U6 ⊗W ⊗A2 + U1 ⊗N ⊗ C12

+ U2 ⊗N ⊗ C21

= U3U6 ⊗B11 + U6 ⊗A21 + U1 ⊗ C12 + U2 ⊗ C21.

d(N ⊗ C1,2r) = d(C1,2r)

= δ12(N,U4)⊗ C1,2r−1 + δ12(N,L5)⊗A2r+1 + δ12(N,U5)⊗ C1,2r+1

+ δ12(N,U2)⊗ C2,2r

= U4 ⊗N ⊗ C1,2r−1 + U6 ⊗W ⊗A2r+1 + U6 ⊗N ⊗ C1,2r+1

+ U2 ⊗N ⊗ C2,2r

= U4 ⊗ C1,2r−1 + U6 ⊗A31 + U6 ⊗ C1,2r+1 + U2 ⊗ C2,2r.

d(N ⊗ C1,2r+1) = d(C1,2r+1)

= δ12(N,U3)⊗ C1,2r + δ12(N,L5)⊗A2r+2 + δ12(N,U1)⊗ C1,2r+2

+ δ12(N,U2)⊗ C2,2r+1
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= U3 ⊗N ⊗ C1,2r + U6 ⊗W ⊗A2r+2 + U1 ⊗N ⊗ C1,2r+2

+ U2 ⊗N ⊗ C2,2r+2

= U3 ⊗ C1,2r + U6 ⊗A2r+2 + U1 ⊗ C1,2r+2 + U2 ⊗ C2,2r+1.

d(N ⊗ C1,2b+1) = d(C1,2b+1)

= δ12(N,U3)⊗ C1,2b + δ12(N,L3L5)⊗A> + δ12(N,R4U1)⊗ C1,>

+ δ12(N,U2)⊗ C2,2b+1

= U3 ⊗N ⊗ C1,2b + L3U6 ⊗W ⊗A> +R4U1 ⊗N ⊗ C1,>

+ U2 ⊗N ⊗ C2,2b+1

= U3 ⊗ C1,2b + L3U6 ⊗A>,1 +R4U1 ⊗ C1,> + U2 ⊗ C2,2b+1.

d(N ⊗ C2`+1,>) = d(C2`+1,>)

= δ12(N,L4)⊗ C2`+1,2b+1 + δ12(N,U2)⊗ C2`+2,>

= L4 ⊗N ⊗ C2`+1,2b+1 + U2 ⊗N ⊗ C2`+2,>

= L4 ⊗ C2`+1,2b+1 + U2 ⊗ C2`+2,>.

d(N ⊗ C2`,1) = d(C2`,1)

= δ12(N,L5U3)⊗B2r + δ12(N,U6)⊗ C2r−1,1 + δ12(N,U1)⊗ C2r,2

+ δ12(N,U1)⊗ C2r+1,1

= U3U6 ⊗W ⊗B2r + U5 ⊗N ⊗ C2r−1,1 + U1 ⊗N ⊗ C2r,2

+ U1 ⊗N ⊗ C2r+1,1

= U3U6 ⊗B2r,1 + U5 ⊗ C2r−1,1 + U1 ⊗ C2r,2 + U1 ⊗ C2r+1,1.

d(N ⊗ C2`,2r) = d(C2`,2r)

= δ12(N,U4)× C2`,2r−1 + δ12(N,U6)⊗ C2`−1,2r

+ δ12(N,U5)⊗ C2`,2r+1 + δ12(N,U1)⊗ C2`+1,2r

= U4 ⊗N ⊗ C2`,2r−1 + U5 ⊗N ⊗ C2`−1,2r + U6 ⊗N ⊗ C2`,2r+1

+ U1 ⊗N ⊗ C2`+1,2r

= U4 ⊗ C2`,2r−1 + U5 ⊗ C2`−1,2r + U6 ⊗ C2`,2r+1 + U1 ⊗ C2`+1,2r.

d(N ⊗ C2`,2r+1) = d(C2`,2r+1)

= δ12(N,U3)⊗ C2`,2r + δ12(N,U6)⊗ C2`−1,2r+1

+ δ12(N,U1)⊗ C2`,2r+2 + δ12(N,U1)⊗ C2`+1,2r+1

= U3 ⊗N ⊗ C2`,2r + U5 ⊗N ⊗ C2`−1,2r+1
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+ U1 ⊗N ⊗ C2`,2r+2 + U1 ⊗N ⊗ C2`+1,2r+1

= U3 ⊗ C2`,2r + U5 ⊗ C2`−1,2r+1 + U1 ⊗ C2`,2r+2 + U1 ⊗ C2`+1,2r+1.

d(N ⊗ C2`,2b+1) = d(C2`,2b+1)

= δ12(N,U3)⊗ C2`,2b + δ12(N,U6)⊗ C2`−1,2b+1

+ δ12(N,R4U1)⊗ C2`,> + δ12(N,U1)⊗ C2`+1,2b+1

= U3 ⊗N ⊗ C2`,2b + U5 ⊗N ⊗ C2`−1,2b+1 +R4U1 ⊗N ⊗ C2`,>

+ U1 ⊗N ⊗ C2`+1,2b+1

= U3 ⊗ C2`,2b + U5 ⊗ C2`−1,2b+1 +R4U1 ⊗ C2`,> + U1 ⊗ C2`+1,2b+1.

d(N ⊗ C2`,>) = d(C2`,>)

= δ12(N,L4)⊗ C2`,2b+1 + δ12(N,U6)⊗ C2`−1,> + δ12(N,U1)⊗ C2`+1,>

= L4 ⊗N ⊗ C2`,2b+1 + U5 ⊗N ⊗ C2`−1,> + U1 ⊗N ⊗ C2`+1,>

= L4 ⊗ C2`,2b+1 + U5 ⊗ C2`−1,> + U1 ⊗ C2`+1,>.

d(N ⊗ C2`+1,1) = d(C2`+1,1)

= δ12(N,L5U3)⊗B2`+1 + δ12(N,U5)⊗ C2`,3

+ δ12(N,U1)⊗ C2`+1,2 + δ12(N,U2)⊗ C2`+2,1

= U3U6 ⊗W ⊗B2`+1 + U6 ⊗N ⊗ C2`,3 + U1 ⊗N ⊗ C2`+1,2

+ U2 ⊗N ⊗ C2`+2,1

= U3U6 ⊗B2`+1,1 + U6 ⊗ C2`,3 + U1 ⊗ C2`+1,2 + U2 ⊗ C2`+2,1.

d(N ⊗ C2`+1,2r) = d(C2`+1,2r)

= δ12(N,U4)⊗ C2`+1,2r−1 + δ12(N,U5)⊗ C2`,2r+2

+ δ12(N,U5)⊗ C2`+1,2r+1 + δ12(N,U2)⊗ C2`+2,2r

= U4 ⊗N ⊗ C2`+1,2r−1 + U6 ⊗N ⊗ C2`,2r+2 + U6 ⊗N ⊗ C2`+1,2r+1

+ U2 ⊗N ⊗ C2`+2,2r

= U4 ⊗ C2`+1,2r−1 + U6 ⊗ C2`,2r+2 + U6 ⊗ C2`+1,2r+1 + U2 ⊗ C2`+2,2r.

d(N ⊗ C2`+1,2r+1) = d(C2`+1,2r+1)

= δ12(N,U3)⊗ C2`+1,2r + δ12(N,U5)⊗ C2`,2r+3

+ δ12(N,U1)⊗ C2`+1,2r+2 + δ12(N,U2)⊗ C2`+2,2r+1

= U3 ⊗N ⊗ C2`+1,2r + U6 ⊗N ⊗ C2`,2r+3 + U1 ⊗N ⊗ C2`+1,2r+2

+ U2 ⊗N ⊗ C2`+2,2r+1
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= U3 ⊗ C2`+1,2r + U5 ⊗ C2`,2r+2 + U1 ⊗ C2`+1,2r+2 + U2 ⊗ C2`+2,2r+1.

d(N ⊗ C2`+1,2b) = d(C2`+1,2b)

= δ12(N,U4)⊗ C2`+1,2b−1 + δ12(N,R4U5)⊗ C2`,>

+ δ12(N,U5)⊗ C2`+1,2b+1 + δ12(N,U2)⊗ C2`+2,2b

= U4 ⊗N ⊗ C2`+1,2b−1 +R4U6 ⊗N ⊗ C2`,> + U6 ⊗N ⊗ C2`+1,2b+1

+ U2 ⊗N ⊗ C2`+2,2b

= U4 ⊗ C2`+1,2b−1 +R4U6 ⊗ C2`,> + U6 ⊗ C2`+1,2b+1 + U2 ⊗ C2`+2,2b.

d(N ⊗ C2`+1,2b+1) = d(C2`+1,2b+1)

= δ12(N,U3)⊗ C2`+1,2b + δ12(N,R4U1)⊗ C2`+1,>

+ δ12(N,U2)⊗ C2`+2,2b+1

= U3 ⊗N ⊗ C2`+1,2b +R4U1 ⊗N ⊗ C2`+1,> + U2 ⊗N ⊗ C2`+2,2b+1

= U3 ⊗ C2`+1,2b +R4U1 ⊗ C2`+1,> + U2 ⊗ C2`+2,2b+1.

d(N ⊗ C2`+1,>) = d(C2`+1,>)

= δ12(N,L4)⊗ C2`+1,2b+1 + δ12(N,U2)⊗ C2`+2,>

= L4 ⊗N ⊗ C2`+1,2b+1 + U2 ⊗N ⊗ C2`+2,>

= L4 ⊗ C2`+1,2b+1 + U2 ⊗ C2`+2,>.

As in the inductive proof presented in Section 5.4.3, the only change in the above calcula-

tion when ` = c is switching U2 for R2. Since the weight of both elements is outside of the

span{e5, e6}, both commute with the map δ12(N,−), so a practically identical calculation

to the above yields the following.

d(C2c+1,1) = U3U6 ⊗B2c+1,1 + U6 ⊗ C2c,3

+ U1 ⊗ C2c+1,2 +R2 ⊗ C>,1.

d(C2c+1,2r) = U4 ⊗ C2c+1,2r−1 + U6 ⊗ C2c,2r+2

+ U6 ⊗ C2c+1,2r+1 +R2 ⊗ C>,2r.

d(C2c+1,2r+1) = U3 ⊗ C2c+1,2r + U6 ⊗ C2c,2r+3

+ U1 ⊗ C2c+1,2r+2 +R2 ⊗ C>,2r+1.

d(C2c+1,2b) = U4 ⊗ C2c+1,2b−1 +R4U6 ⊗ C2c,>

+ U6 ⊗ C2c+1,2b+1 +R2 ⊗ C>,2b

d(C2c+1,2b+1) = U3 ⊗ C2c+1,2b +R4U1 ⊗ C2c+1,> +R2 ⊗ C>,2b+1.
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d(C2c+1,>) = L4 ⊗ C2c+1,2b+1 +R2 ⊗ C>,>.

Continuing with the calculation, the map for the states C>,k and Sk is very similar.

d(N ⊗ C>,1) = d(C>,1)

= δ12(N,L5U3)⊗B> + δ12(N,L2U6)⊗ C2c+1,1

= U3U6 ⊗W ⊗B> + L2U5 ⊗N ⊗ C2c+1,1

= U3U6 ⊗B>,1 + L2U6 ⊗ C2c+1,1.

d(N ⊗ C>,2r) = d(C>,2r)

= δ12(N,U4)⊗ C>,2r−1 + δ12(N,L2U6)⊗ C2c+1,2r

+ δ12(N,U5)⊗ C>,2r+1 + δ12(N,R4R3)⊗ S2r−1

= U4 ⊗N ⊗ C>,2r−1 + L2U5 ⊗N ⊗ C2c+1,2r + U6 ⊗ C>,2r+1

+R4R3 ⊗N ⊗ S2r−1

= U4 ⊗ C>,2r−1 + L2U5 ⊗ C2c+1,2r + U6 ⊗ C>,2r+1 +R4R3 ⊗ S2r−1.

d(N ⊗ C>,2r+1) = d(C>,2r+1)

= δ12(N,U3)⊗ C>,2r + δ12(N,L2U6)⊗ C2c+1,2r+1 + δ12(N,R4R3)⊗ S2r

= U3 ⊗N ⊗ C>,2r + L2U5 ⊗N ⊗ C2c+1,2r+1 +R4R3 ⊗N ⊗ S2r

= U3 ⊗ C>,2r + L2U5 ⊗ C2c+1,2r+1 +R4R3 ⊗ S2r.

d(N ⊗ C>,>) = d(C>,>)

= δ12(N,L4)⊗ C>,2b+1 + δ12(N,L2U6)⊗ C2c+1,> + δ12(N,R3)⊗ S2b+1

= L4 ⊗N ⊗ C>,2b+1 + L2U5 ⊗N ⊗ C2c+1,> +R3 ⊗N ⊗ S2b+1

= L4 ⊗ C>,2b+1 + L2U5 ⊗ C2c+1,> +R3 ⊗ S2b+1.

d(N ⊗ S1) = d(S1)

= δ12(N,L3L4L5)⊗B> + δ12(N,U5)⊗ S2

= L3L4U6 ⊗W ⊗B> + U6 ⊗N ⊗ S2

= L3L4U6 ⊗B>,1 + U6 ⊗ S2.

d(N ⊗ S2r) = d(S2r)

= δ12(N,U3)⊗ S2r−1 + δ12(N,L3L4)⊗ C>,2r−1

= U3 ⊗N ⊗ S2r−1 + L3L4 ⊗N ⊗ C>,2r−1

= U3 ⊗ S2r−1 + L3L4 ⊗ C>,2r−1.
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d(N ⊗ S2r+1) = d(S2r+1)

= δ12(N,U4)⊗ S2r + δ12(N,L3L4)⊗ C>,2r + δ12(N,U5)⊗ S2r+2

= U4 ⊗N ⊗ S2r + L3L4 ⊗N ⊗ C>,2r + U6 ⊗N ⊗ S2r+2

= U4 ⊗ S2r + L3L4 ⊗ C>,2r + U6 ⊗ S2r+2.

d(N ⊗ S2b+1) = d(S2b+1)

= δ12(N,U4)⊗ S2b + δ12(N,L3L4)⊗ C>,2b + δ12(N,L3U5)⊗ C>,>

= U4 ⊗N ⊗ S2b + L3L4 ⊗N ⊗ C>,2b + L3U6 ⊗N ⊗ C>,>

= U4 ⊗ S2b + L3L4 ⊗ C>,2b + L3U6 ⊗ C>,>.

The above calculates the map d for the Type D structure P5�Y with domain in the states

Cij or Sk. In order to complete the base case, one must take the box-tensor product with

P5 a second time. But, note that every algebra element a ∈ A appearing in d : P5 � Y →
A⊗P5 � Y has only integer weight in span{e5, e6}.

Then, observing that since all of the states I135 ·Bi,1, I235 ·B>,1, I135 ·Cij and I345 ·S` have

5 in their associated idempotents, the P5-tensor coordinate in P5 �
(
P5 � Y

)
must be N .

Hence, since in P5 only algebra inputs a ∈ A of half-integer weight result in N → W or

N → E, it is clear that the image of d for the states above must fix N in the P5 tensor

coordinate. So the effect of taking the second tensor product with P5 is to simply swap

U5 and U6. This yields a Type D structure matching that in Figure 5.12, and so P2, the

base case, holds.

Induction

Assume for inductive purposes that the statement P2k is true, so that the Type D structure(
P5
)2k

� Y has maps and states as shown in Figure 5.12.

Then, the same argument can be applied as when studying the base case. Since all of the

states shown in Figure 5.11 have 5 in their idempotent, the only generator of P5 to produce

a non-zero tensor product under taking the box-tensor product of the DA-bimodule and

Type D structure is N .

Since there are no algebra elements featuring L5, R5, L6 and R6, every algebra element

commutes with the maps δ1k, switching the role of e5 and e6. Then, taking the box-tensor

product with P5 twice thus leaves the module and associated map unchanged, hence
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Figure 5.12: This is a weighted, direted graph demonstrating the maps from Cij and Sk

states in the Type D structure
(
P5
)2k

� Y , where k ≥ 1.
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P2k ⇒ P2k+2. Consequently, the statement P2n is true by mathematical induction.

5.5.2 A-states and D-states

As seen when calculating the map in the Type D structure with domain in the Cij and

Sk states, since 5 does not belong to the idempotent of I134 · Ak ∈ (Y, d), there is more

than one valid cardinal generator in P5 that yields a non-zero tensor product in P5 � Y :

namely I135 ·W · I134 and I134 ·S · I134. But, as noted above, this is not the case for states

I123 ·Dk, which only has a valid tensor product with I123 · S · I123.

The generators for Type D structure for
(
P5
)2k

�Y that are Ajk and Dk states are featured

in Figure 5.14, with the associated maps and algebraic elements. So, define P2k as the

statement that the maps and generators are as displayed in Figure 5.14.

Base case: k = 1

The Type D structure P5 � Y has the following generators that are either Ajk states or

Dk states: i.e. have either Aj or Dk as their Y -tensor coordinate.

Aj1 = I135 ·W ⊗Aj

Aj,> = I134 · S ⊗Aj

A>,> = I124 · S ⊗A>

Dk = I123 · S ⊗Dk.

Then, the calculation of the map d in the Type D structure P5 � Y is as follows.

d(A11) = δ12(W,U5)⊗A2 + δ12(W,U1U4)⊗B1 + δ11(W )⊗A1

+ δ12(W,R5U1)⊗ C12

= U6 ⊗W ⊗A2 + U1U4 ⊗W ⊗B1 + L5 ⊗ S ⊗A1

+ U1 ⊗N ⊗ C12

= U6 ⊗A21 + U1U4 ⊗B11 + L5 ⊗A1,> + U1 ⊗ C12.

d(A2r,1) = δ12(W,U3)⊗A2r−1 + δ12(W,L3L4)⊗D2r−1 + δ12(W,U1)⊗A2r+1

+ δ12(W,R5U1)⊗ C1,2r+1 + δ11(W )⊗A2r

= U3 ⊗W ⊗A2r−1 + L3L4 ⊗ I135 ·W ⊗D2r−1 + U1 ⊗W ⊗A2r+1

+ U1 ⊗N ⊗ C1,2r+1 + L5 ⊗ S ⊗A2r
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= U3 ⊗A2r−1,1 + 0⊗D2r−1 + U1 ⊗A2r+1,1

+ U1 ⊗ C1,2r+1 + L5 ⊗A2r,>.

d(A2r+1,1) = δ12(W,U4)⊗A2r + δ12(W,L3L4)⊗D2r + δ12(W,U5)⊗A2r+2

+ δ12(W,R5U1)⊗ C1,2r+1 + δ11(W )⊗A2r+1

= U4 ⊗W ⊗A2r + 0⊗D2r + U6 ⊗W ⊗A2r+2

+ U1 ⊗N ⊗ C1,2r+2 + L5 ⊗ S ⊗A2r+1

= U4 ⊗A2r,1 + U6 ⊗A2r+2,1 + U1 ⊗ C1,2r+2 + L5 ⊗A2r+1,>.

d(A2b+1,1) = δ12(W,U4)⊗A2b + δ12(W,L3U5)⊗A> + δ12(W,R5R4U1)⊗ C1,>

+ δ11(W )⊗A2b+1

= U4 ⊗W ⊗A2b + L3U6 ⊗W ⊗A> +R4U1 ⊗N ⊗ C1,>

+ L5 ⊗ S ⊗A2b+1

= U4 ⊗A2b,1 + L3U6 ⊗A>,1 +R4U1 ⊗ C1,> + L5 ⊗A2b+1,>.

d(A>,1) = δ12(W,R3)⊗A2b+1 + δ12(W,L4)⊗D2b+1 + δ11(W )⊗A>

= R3 ⊗W ⊗A2b+1 + L4 ⊗W ⊗D2b+1 + L5 ⊗ S ⊗A>

= R3 ⊗A2b+1,1 + 0⊗D2b+1 + L5 ⊗A>>.

The matching terms in the outgoing algebra of the Type D structure are C14, C26 and C35.

These are algebraic inputs to the maps δ12(S,−), and so one yields the following.

d(A1,>) = δ12(S,U1U4)⊗B1 + δ12(S,U5)⊗A2 + δ12(S,R5U1)⊗ C12

+ δ12(S,C26)⊗A1

= U1U4 ⊗ S ⊗B1 + U6 ⊗ I134 · S ⊗A2 + 0⊗ C12 +R5U2 ⊗W ⊗A1

= U1U4 ⊗B1,> + 0⊗A2,> +R5U2 ⊗A11.

d(A2r,>) = δ12(S,U3)⊗A2r−1,> + δ12(S,L3L4)⊗D2r−1 + δ12(S,U1)⊗A2r+1

+ δ12(S,R5U1)⊗ C1,2r+1 + δ12(S,C26)⊗A2r

= U3 ⊗ S ⊗A2r−1 + L3L4 ⊗ S ⊗D2r−1 + U1 ⊗ S ⊗A2r+1

+ 0⊗ C1,2r+1 +R5U2 ⊗W ⊗A2r

= U3 ⊗A2r−1,> + L3L4 ⊗D2r−1 + U1 ⊗A2r+1,> +R5U2 ⊗A2r,1.

d(A2r+1,>) = δ12(S,U4)⊗A2r + δ12(S,L3L4)⊗D2r + δ12(S,U5)⊗A2r+2

+ δ2(S,R5U1)⊗ C1,2r+2 + δ12(S,C26)⊗A2r+1

= U4 ⊗ S ⊗A2r + L3L4 ⊗ S ⊗D2r + I134 · U6 ⊗ S ⊗A2r+2
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+ 0⊗ C1,2r+2 +R5U2 ⊗W ⊗A2r+1

= U4 ⊗A2r,> + L3L4 ⊗D2r +R5U2 ⊗A2r+1,1.

d(A2b+1,>) = δ12(S,U4)⊗A2b + δ12(S,L3L4)⊗D2b + δ12(S,C26)⊗A2b+1

= U4 ⊗ S ⊗A2b + L3L4 ⊗ S ⊗D2b +R5U2 ⊗W ⊗A2b+1

= U4 ⊗A2b,> + L3L4 ⊗D2b +R5U2 ⊗A2b+1,1.

d(A>,>) = δ2(S,R3)⊗A2b+1 + δ12(S,L4)⊗D2b+1 + δ12(S,C26)⊗A>

= R3 ⊗ S ⊗A2b+1 + L4 ⊗ S ⊗D2b+1 +R5U2 ⊗W ⊗A>

= R3 ⊗A2b+1,> + L4 ⊗D2b+1 +R5U2 ⊗A>,1.

d(D1) = δ12(S,R4R3U1)⊗B1 + δ12(S,U1)⊗D2

= R4R3U1 ⊗ S ⊗B1 + U1 ⊗ S ⊗D2

= R4R3U1 ⊗B1,> + U1 ⊗D2.

d(D2r) = δ12(S,U4)⊗D2r−1 + δ12(S,R4R3)⊗A2r−1

= U4 ⊗ S ⊗D2r−1 +R4R3 ⊗ S ⊗A2r−1

= U4 ⊗D2r−1 +R4R3 ⊗A2r−1,>.

d(D2r+1) = δ12(S,U3)⊗D2r + δ12(S,U1)⊗D2r+2 + δ12(S,R4R3)⊗A2r

= U3 ⊗ S ⊗D2r + U1 ⊗ S ⊗D2r+2 +R4R3 ⊗ S ⊗A2r

= U3 ⊗D2r + U1 ⊗D2r+2 +R4R3 ⊗A2r,>.

d(D2b+1) = δ12(S,U3)⊗D2b + δ12(S,R4U1)⊗A> + δ12(S,R4R3)⊗A2b

= U3 ⊗ S ⊗D2b +R4U1 ⊗ S ⊗A> +R4R3 ⊗ S ⊗A2b

= U3 ⊗D2b +R4U1 ⊗A>,> +R4R3 ⊗A2b.

This does not yet verify the base case, but do note that because of the idempotents I134

associated to states Aj,>, the ‘horizontal’ arrows in the picture differ between the bottom

row Aj1 and Aj,>.

Taking the second tensor product with P5, and noting that if 5 ∈ Ix for any associated

idempotent with a generator of the Type D structure
(
P5
)
� Y , the only non-zero tensor

product would be with the generator N ∈ P5. Hence, the module
(
P5
)2

� Y has the

following generators.

Ak1 = I135 ·N ⊗Ak1

A>,1 = I125 ·N ⊗A>,1
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Ak2 = I135 ·W ⊗Ak,>

A>> = I124 · S ⊗A>,>

Dr = I123 · S ⊗Dr.

The corresponding map d for the Type D structure
(
P5
)2

� Y are then as follows.

d(A11) = δ12(N,U6)⊗A21 + δ12(N,U1U4)⊗B11

+ δ12(N,L5)⊗A1,> + δ12(N,U1)⊗ C12

= U5 ⊗N ⊗A21 + U1U4 ⊗N ⊗B11 + U6 ⊗W ⊗A1,>

+ U1 ⊗N ⊗ C12

= U5 ⊗A21 + U1U4 ⊗B11 + U6 ⊗A12 + U1 ⊗ C12.

d(A2r,1) = δ12(N,U3)⊗A2r−1,1 + δ12(N,U1)⊗A2r+1,1

+ δ12(N,U1)⊗ C1,2r+1 + δ12(N,L5)⊗A2r,>

= U3 ⊗N ⊗A2r−1,1 + U1 ⊗N ⊗A2r+1,1

+ U1 ⊗N ⊗ C1,2r+1 + U6 ⊗W ⊗A2r,>

= U3 ⊗A2r−1,1 + U1 ⊗A2r+1,1 + U1 ⊗ C1,2r+1 + U6 ⊗A2r,2.

d(A2r+1,1) = δ12(N,U4)⊗A2r,1 + δ12(N,U6)⊗A2r+2,1 + δ12(N,U1)⊗ C1,2r+2

+ δ12(N,L5)⊗A2r+1,>

= U4 ⊗N ⊗A2r,1 + U5 ⊗N ⊗A2r+2,1 + U1 ⊗N ⊗ C1,2r+2

+ U6 ⊗W ⊗A2r+1,>

= U4 ⊗A2r,1 + U5 ⊗A2r+2,1 + U1 ⊗ C1,2r+2 + U6 ⊗A2r+1,2.

d(A2b+1,1) = δ12(N,U4)⊗A2b,1 + δ12(N,L3U6)⊗A>,1 + δ12(N,R4U1)⊗ C1,>

+ δ12(N,L5)⊗A2b+1,>

= U4 ⊗N ⊗A2b,1 + L3U5 ⊗N ⊗A>,1 +R4U1 ⊗N ⊗ C1,>

+ U6 ⊗W ⊗A2b+1,>

= U4 ⊗A2b,1 + L3U5 ⊗A>,1 +R4U1 ⊗ C1,> + U6 ⊗A2b+1,2.

d(A>,1) = δ12(N,R3)⊗A2b+1,1 + δ12(N,L5)⊗A>,>

= R3 ⊗N ⊗A2b+1,1 + U6 ⊗W ⊗A>,>

= R3 ⊗A2b+1,1 + U6 ⊗A>,2.

d(A12) = δ12(W,U1U4)⊗B1,> + δ12(W,R5U2)⊗A11 + δ11(W )⊗A1,>
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= U1U4 ⊗W ⊗B1,> + U2 ⊗N ⊗A11 + L5 ⊗ S ⊗A1,>

= U1U4 ⊗B12 + U2 ⊗A11 + L5 ⊗A1,>.

d(A2r,2) = δ12(W,U3)⊗A2r−1,> + δ12(W,L3L4)⊗D2r−1 + δ12(W,U1)⊗A2r+1,>

+ δ12(W,R5U2)⊗A2r,1 + δ11(W )⊗A2r,>

= U3 ⊗W ⊗A2r−1,> + L3L4 ⊗W ⊗D2r−1 + U1 ⊗W ⊗A2r+1,>

+ U2 ⊗N ⊗A2r,1 + L5 ⊗ S ⊗A2r,>

= U3 ⊗A2r−1,2 + 0⊗D2r−1 + U1 ⊗A2r+1,2 + U2 ⊗A2r,1 + L5 ⊗A2r,>.

d(A2r+1,2) = δ12(W,U4)⊗A2r,> + δ12(W,L3L4)⊗D2r + δ12(W,R5U2)⊗A2r+1,1

+ δ11(W )⊗A2r+1,>

= U4 ⊗W ⊗A2r,> + 0⊗D2r + U2 ⊗N ⊗A2r+1,1

+ L5 ⊗ S ⊗A2r+1,>

= U4 ⊗A2r,2 + U2 ⊗A2r+1,1 + L5 ⊗A2r+1,>.

d(A2b+1,2) = δ12(W,U4)⊗A2b,> + δ12(W,L3L4)⊗D2b + δ12(W,R5U2)⊗A2b+1,1

+ δ11(W )⊗A2b+1,>

= U4 ⊗W ⊗A2b,> + 0⊗D2b + U2 ⊗N ⊗A2b+1,1

+ L5 ⊗ S ⊗A2b+1,>

= U4 ⊗A2b,2 + U2 ⊗A2b+1,1 + L5 ⊗A2b+1,>.

d(A>,2) = δ12(W,R3)⊗A2b+1,> + δ12(W,R5U2)⊗A>,1 + δ12(W,L4)⊗D2b+1

+ δ11(W )⊗A>,>

= R3 ⊗W ⊗A2b+1,> + U2 ⊗N ⊗A>,1 + 0⊗D2b+1

+ L5 ⊗ S ⊗A>,>

= R3 ⊗A2b+1,2 + U2 ⊗A>,1 + L5 ⊗A>,>.

d(A1,>) = δ12(S,U1U4)⊗B1,> + δ2(S,C36)⊗A1,> + δ13(S,R5U2, U6)⊗A21

= U1U4 ⊗ S ⊗B1,> +R5U3 ⊗W ⊗A1,> +R5U2 ⊗N ⊗A21

= U1U4 ⊗B1,> +R5U3 ⊗A12 +R5U2 ⊗A21.

d(A2r,>) = δ12(S,U3)⊗A2r−1,> + δ12(S,L3L4)⊗D2r−1 + δ12(S,U1)⊗A2r+1,>

+ δ12(S,C36)⊗A2r,>

= U3 ⊗ S ⊗A2r−1,> + L3L4 ⊗ S ⊗D2r−1 + U1 ⊗ S ⊗A2r+1,>

+R5U3 ⊗W ⊗A2r,>
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= U3 ⊗A2r−1,> + L3L4 ⊗D2r−1 + U1 ⊗A2r+1,> +R5U3 ⊗A2r,2.

d(A2r+1,>) = δ12(S,U4)⊗A2r,> + δ12(S,L3L4)⊗D2r + δ12(S,C36)⊗A2r+1,>

+ δ13(S,R5U2, U6)⊗A2r+2,1

= U4 ⊗ S ⊗A2r,> + L3L4 ⊗ S ⊗D2r +R5U3 ⊗W ⊗A2r+1,>

+R5U2 ⊗N ⊗A2r+2,1

= U4 ⊗A2r,> + L3L4 ⊗D2r +R5U3 ⊗A2r+1,2 +R5U2 ⊗A2r+2,1.

d(A2b+1,>) = δ12(S,U4)⊗A2b,> + δ12(S,L3L4)⊗D2b + δ12(S,C36)⊗A2b+1,>

+ δ13(S,R5U2, L3U6)⊗A>,1

= U4 ⊗ S ⊗A2b,> + L3L4 ⊗ S ⊗D2b +R5U3 ⊗W ⊗A2b+1,>

+R5L3U2 ⊗N ⊗A>,1

= U4 ⊗A2b,> + L3L4 ⊗D2b +R5U3 ⊗A2b+1,2

+R5L3U2 ⊗A>,1.

d(A>,>) = δ12(S,C36)⊗A>,> + δ12(S,R3)⊗A2b+1,> + δ12(S,L4)⊗D2b+1

= R5U3 ⊗W ⊗A>,> +R3 ⊗ S ⊗A2b+1,> + L4 ⊗ S ⊗D2b+1

= R5U3 ⊗A>,2 +R3 ⊗A2b+1,> + L4 ⊗D2b+1.

d(D1) = δ12(S,R4R3U1)⊗B1,> + δ12(S,U1)⊗D2

= R4R3U1 ⊗ S ⊗B1,> + U1 ⊗ S ⊗D2

= R4R3U1 ⊗B1 + U1 ⊗D2.

d(D2r) = δ12(S,U4)⊗D2r−1 + δ12(S,R4R3)⊗A2r−1

= U4 ⊗ S ⊗D2r−1 +R4R3 ⊗ S ⊗A2r−1

= U4 ⊗D2r−1 +R4R3 ⊗A2r−1.

d(D2r+1) = δ12(S,U1)⊗D2r+2 + δ12(S,U3)⊗D2r + δ12(S,R4R3)⊗A2r

= U1 ⊗ S ⊗D2r+2 + U3 ⊗ S ⊗D2r +R4R3 ⊗ S ⊗A2r

= U1 ⊗D2r+2 + U3 ⊗D2r +R4R3 ⊗A2r.

d(D2b+1) = δ12(S,U3)⊗D2b + δ12(S,R4U1)⊗A> + δ12(S,R4R3)⊗A2b

= U3 ⊗ S ⊗D2b +R4U1 ⊗ S ⊗A> +R4R3 ⊗ S ⊗A2b

= U3 ⊗D2b +R4U1 ⊗A>,> +R4R3 ⊗A2b.

As can be seen through checking Figure 5.14, this matches the required form for Type D

structures according to the inductive statement, and so the inductive statement is true for
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k = 1, i.e. the base case P2 holds.

Remark 5.5 Before continuing by making the inductive assumption, note that under tak-

ing the next box tensor product with the DA-bimodule P5, one would have that

d(A2r+1,3) = d(W ⊗A2r+1,>)

3 δ12(W,R5U2)⊗A2r+2,1

= U2 ⊗N ⊗A2r+2,1.

This gives the red U2 arrows highlighted in Figure 5.14.

Induction

Assume for inductive purposes that P2k holds, i.e. that that the Type D structure
(
P5
)2k

�

Y has the form specified in Figure 5.14 when restricting to A and D states.

The effect of taking the tensor product with (P)2 leaves all arrows at the bottom of

Figure 5.14 unaffected. This is because all of the gold states — those with associated

idempotent I135, see Figure 5.11 — only have a valid tensor product with N ⊗ N in the(
P5
)2

tensor coordinate.

For every state A`,r with r ≤ 2k−1, the only algebra elements with weights in span{e5, e6}
are U5 and U6. Since δ12(N,U5) = U6 ⊗ N , and δ12(N,U6) = U5 ⊗ N , taking the tensor

product with P5 twice has no effect on this part of the Type D structure. More formally,

in the module (
P5
)2

�
((
P5
)2k

� Y
)
,

those generators with A`,r in the right tensor coordinate have maps to the other gener-

ators with the right tensor coordinate as described in Figure 5.14, since every arrow is

preserved (as δ12(N, a) 6= 0 for the algebra elements a in Figure 5.14), and U5 and U6

switch twice.

Furthermore, for the D-states, since the only valid tensor product is with S ⊗ S, and

the arrows from the D` states have weights outside span{e5, e6}, every algebra element

commutes with the map δ12 . Consequently, since B1,> ∈
(
P5
)2k+2

� Y is equal to S ⊗ S ⊗
B1,>, taking this tensor product twice yields identical generators with maps with identical

weights.



CHAPTER 5. INDUCTIVE ARGUMENTS 168

Then, consider the states A`,2k in
(
P5
)2k

� Y . Using the fact that δ12(N,L5) = U6 ⊗W ,

and that δ12(W,R5U3) = U3 ⊗ N , taking the tensor product with P5 once has the same

effect as in the first part of the proof of the base case. Namely:

d(A`,2k) = d(N ⊗A`,2k)

3 δ12(N,L5)⊗A`,>

= U6 ⊗W ⊗A`,> = U6 ⊗A`,2k+1.

The remaining arrows from this state exhibit the same behaviour as the other Ajk states,

since all other algebra elements on the edges starting at the vertex corresponding to A`,2k

have weight outside span{e5, e6}.

Likewise, for the states A`,2k+1 = W ⊗A`,>, the only edges in Figure 5.14 with weight in

span{e5, e6} are the R5U3 weighted edge to A`,2k and R5U2 weighted edge to A`+1,2k−1.

Every other edge has an algebra element that commutes with δ12 . The only edges left to

consider are thus:

d(A`,2k+1) = d(W ⊗A`,>)

3 δ12(W,R5U3)⊗A`,2k + δ12(W,R5U2)⊗A`+1,2k−1 + δ11(W )⊗A`,>

= U3 ⊗N ⊗A`,2k + U2 ⊗N ⊗A`+1,2k−1 + L5 ⊗ S ⊗A`,>

= U3 ⊗A`,2k + U2 ⊗A`+1,2k−1 + L5 ⊗A`,>.

Similarly, the same edges are of concern in the calculation of d(A`,>) for A`,> = S⊗A`,> ∈
P5�

(
P5
)2k

�Y . The calculation is nearly identical in form to the calculation of
(
P5
)2
�Y

from P5 � Y . There are two cases, depending on whether ` is even or odd.

d(A2r+1,>) = d(S ⊗A2r+1,>)

3 δ12(S,C26)⊗A2r+1,> + δ13(S,R5U2, U6)⊗A2r+2,2k

= R5U2 ⊗W ⊗A2r+1,> +R5U2 ⊗N ⊗A2r+2,2k

= R5U2 ⊗A2r+1,2k+1 +R5U2 ⊗A2r+2,2k.

d(A2r,>) = d(S ⊗A2r,>)

3 δ12(S,C26)⊗A2r,>

= R5U2 ⊗W ⊗A2r,>

= R5U2 ⊗A2r,2k+1.
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All other edges from these vertices have weights outside the span where δ1 has an action

that does not commute with the algebra element.

The Type D structure for these states is then shown in Figure 5.13.
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Figure 5.13: The weighted directed graph for the Type D structure showing the interme-

diate stage of the inductive proof of the statement P2k.

Continuing with the inductive proof, using the fact that the matching terms in the outgoing

algebra of the Type D structure
(
P5
)2k+1

� Y are now C14, C25 and C36, the maps

δ12(S,C36) = R5U3 ⊗W

δ12(W,R5U2) = U2 ⊗N

δ12(N,L5) = U6 ⊗W

δ12(N,U5) = U6 ⊗N

δ12(N,U6) = U5 ⊗N,

applied within the tensor products d(A`,2k+1) = d(N⊗A`,2k+1), d(A`,2k+2) = d(W ⊗A`,>)

and d(A`,>) = d(S ⊗A`,>) yield the maps in the bimodule
(
P5
)2k+2

� Y , which matches

the form described in Figure 5.14.

So, P2k implies P2k+2, and so by induction, since P2 holds, P2n holds for all n ∈ N. This

completes the determination of the Type D structure for these states by induction.

Remark 5.6 Note, applying Proposition 4.13, the algebra elements I134 ·R5U2 · I135 and
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I134 · U2R5 · I135 are equal because they have the same weight and idempotents. From the

original definition of δ12(S,Cp6) in [49, Sec. 3.2], the form given by Ozsváth-Szabó is that

the result is UpR5 ⊗W ∈ A ⊗ P5. But, in the above process p is either 2 or 3, and with

either value, UpR5 = [I134, I135,
1
2e5 + ep] = R5Up.

5.5.3 B-states

The remaining states to consider in the determination of the Type D structure for
(
P5
)2k

�

Y are the Bik states. Using the recently proven equivalence between the Ozsváth-Szabó

bordered construction of [49] and the classical knot Floer homology in the formulation

of [60, 62], Lemma 2.10 suggests that these are the states which may not lie in the kernel

of the chain complex C(D), where D is the diagram for P (2a,−2b− 1, 2c+ 1) with upper

knot diagrams as displayed in Figure 5.11.

Indeed, as will be shown, the maps d in the Type D structure
(
P5
)2k

�Y starting at Bik-

states do have representatives with 1 as the associated algebraic weight. The behaviour of

these states is slightly more complex than can be easily seen in a weighted graph similar

to Figure 5.12 and Figure 5.14.

In light of this, using the forms for the states Bik as shown in Figure 5.11, the following

lemma determines the less interesting behaviour of the Bik states. Recall that d(X) 3 b⊗Y
denotes that there is some weighted edge from X to Y with weight b in the corresponding

graph for the Type D structure.

Lemma 5.7 Where Bik is of the form as described in Figure 5.11, the map d(Bik) contains

the following terms.

d(B11) 3 1⊗ C11 + 1⊗A11 + U6 ⊗B12 + U2 ⊗B21.

d(B2r,1) 3 1⊗ C2r,1 + U1 ⊗B2r+1,1 + U6 ⊗B2r,2.

d(B2r+1,1) 3 1⊗ C2r+1,1 + 1⊗ C2r,2 + U2 ⊗B2r+2,1 + U6 ⊗B2r+1,2 + U4 ⊗B2r,1.

d(B2c+1,1) 3 1⊗ C2c+1,1 + 1⊗ C2c,2 +R2 ⊗B>,1 + U6 ⊗B2c+1,2 + U4 ⊗B2c,1.

d(B1,2r) 3 1⊗A1,2r + U2 ⊗B1,2r−1 + U2 ⊗B2,2r + U5 ⊗B1,2r+1.

d(B1,2r+1) 3 1⊗A1,2r+1 + U3 ⊗B1,2r + U2 ⊗B2,2r+1 + U6 ⊗B1,2r+2.

d(B1,2a) 3 1⊗A1,2a + U2 ⊗B1,2a−1 + U2 ⊗B2,2a + L5 ⊗B1,>.

d(B2r,2p) 3 U3 ⊗B2r−1,2p−2 + U2 ⊗B2r,2p−1 + U1 ⊗B2r+1,2p + U5 ⊗B2r,2p+1.

d(B2r,2p+1) 3 U3 ⊗B2r−1,2p−1 + U3 ⊗B2r,2p + U1 ⊗B2r+1,2p+1 + U6 ⊗B2r,2p+2.
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Figure 5.14: Weighted, directed graph describing the Type D structure for the module(
P5
)2k

� Y , where k ≥ 1, restricting to the case where the domain is either an A-state

or a D-state. Red arcs are highlighted to show that they have slightly unusual behaviour

relative to the other maps.
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d(B2r,2a) 3 U3 ⊗B2r−1,2a−2 + U2 ⊗B2r,2a−1 + U1 ⊗B2r+1,2a + L5 ⊗B2r,>.

d(B2r+1,2p) 3 U2 ⊗B2r+1,2p−1 + U2 ⊗B2r+2,2p + U5 ⊗B2r+1,2p+1 + U4 ⊗B2r−1,2p.

d(B2r+1,2p+1) 3 U3 ⊗B2r+1,2p + U2 ⊗B2r+2,2p+1 + U6 ⊗B2r+1,2p+2 + U4 ⊗B2r,2p+1.

d(B2c+1,2p) 3 U2 ⊗B2c+1,2p−1 +R2 ⊗B>,2p + U5 ⊗B2c+1,2p+1 + U4 ⊗B2c,2p.

d(B2c+1,2p+1) 3 U3 ⊗B2c+1,2p +R2 ⊗B>,2p+1 + U6 ⊗B2c+1,2p+2 + U4 ⊗B2c,2p+1.

d(B2r+1,2a) 3 U2 ⊗B2r+1,2a−1 + U2 ⊗B2r+2,2a + L5 ⊗B2r+1,> + U4 ⊗B2r,2a.

d(B2c+1,2a) 3 U2 ⊗B2c+1,2a−1 +R2 ⊗B>,2a + L5 ⊗B2c+1,> + U4 ⊗B2c,2a.

d(B1,>) 3 1⊗A1,> +R5U3 ⊗B1,2a + U2 ⊗B2,>.

d(B2r,>) 3 R5U3 ⊗B2r−1,2a−1 +R5U3 ⊗B2r,2a + U1 ⊗B2r+1,>.

d(B2r+1,>) 3 R5U3 ⊗B2r+1,2a + U2 ⊗B2r+2,> + U4 ⊗B2r,>.

d(B2c+1,>) 3 R5U3 ⊗B2c+1,2a +R2 ⊗B>,> + U4 ⊗B2c,>.

d(B>,1) 3 1⊗ C>,1 + U6 ⊗B>,2.

d(B>,2) 3 L2 ⊗ C2c+1,1 + U2 ⊗B>,1 + U5 ⊗B>,3.

d(B>,2r) 3 L2U3 ⊗B2c+1,2r−2 + U2 ⊗B>,2r−1 + U5 ⊗B>,2r+1.

d(B>,2r+1) 3 L2U3 ⊗B2c+1,2r−1 + U3 ⊗B>,2r + U6 ⊗B>,2r+2.

d(B>,2a) 3 L2U3 ⊗B2c+1,2a−2 + U2 ⊗B>,2a−1 + L5 ⊗B>,>.

d(B>,>) 3 L2R5U3 ⊗B2c+1,2a−1 +R5U3 ⊗B>,2a.

Proof of Lemma 5.7

The proof will be by induction, so let Q2t be the statement that the Type D structure(
P5
)2t

� Y has maps as described by the above.

Base case: k = 1

Using Figure 5.10, note that the idempotents associated with the B-states are I134 · Br
and I234 ·B>. Similar to the determination of the maps for the states Ajk, in P5 � Y one

thus has only states

Br,1 = I135 ·W ⊗Br

Br,> = I134 · S ⊗Br

B>,1 = I235 ·W ⊗B>

B>,> = I234 · S ⊗B>.
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The map d for the Type D structure P5 � Y is then given by the following.

d(B1,1) 3 δ12(W, 1)⊗A1 + δ12(W,R5)⊗ C11

+ δ12(W,U2)⊗B2 + δ11(W )⊗B1

= 1⊗W ⊗A1 + 1⊗N ⊗ C11

+ U2 ⊗W ⊗B2 + L5 ⊗ S ⊗B1

= 1⊗A1 + 1⊗ C11 + U2 ⊗B21 + L5 ⊗B1,>.

d(B2r,1) 3 δ12(W,R5)⊗ C2r,1 + δ12(W,U1)⊗B2r+1 + δ11(W )⊗B2r

= 1⊗N ⊗ C2r,1 + U1 ⊗W ⊗B2r+1 + L5 ⊗ S ⊗B2r

= 1⊗ C2r,1 + U1 ⊗B2r+1,1 + L5 ⊗B2r,>.

d(B2r+1,1) 3 δ12(W,U4)⊗B2r + δ12(W,R5)⊗ C2r,2 + δ12(W,R5)⊗ C2r+1,1

+ δ12(W,U2)⊗B2r+2 + δ11(W )⊗B2r+1

= U4 ⊗W ⊗B2r + 1⊗N ⊗ C2r,2 + 1⊗N ⊗ C2r+1,1

+ U2 ⊗W ⊗B2r+2 + L5 ⊗ S ⊗B2r+1

= U4 ⊗B2r,1 + 1⊗ C2r,2 + 1⊗ C2r+1,1 + U2 ⊗B2r+2,1 + L5 ⊗B2r+1,>.

d(B2c+1,1) 3 δ12(W,U4)⊗B2c + δ12(W,R5)⊗ C2c,2 + δ12(W,R5)⊗ C2c+1,1

+ δ12(W,R2)⊗B> + δ11(W )⊗B2c+1

= U4 ⊗W ⊗B2c + 1⊗N ⊗ C2c,2 + 1⊗N ⊗ C2c+1,1

+R2 ⊗W ⊗B> + L5 ⊗ S ⊗B2c+1

= U4 ⊗B2c,1 + 1⊗ C2c,2 + 1⊗ C2c+1,1 + +R2 ⊗B>,1 + L5 ⊗B2c+1,>.

d(B>,1) 3 δ12(W,R5)⊗ C>,1 + δ12(S,C26)⊗B>

= 1⊗N ⊗ C>,1 +R5U2 ⊗W ⊗B>

= 1⊗ C>,1 +R5U2 ⊗B>,1.

d(B1,>) 3 δ12(S, 1)⊗ C11 + δ12(S, 1)⊗1 +δ12(S,U2)⊗B2 + δ12(S,C26)⊗B1

= 1⊗ S ⊗ C11 + 1⊗ S ⊗A1 + U2 ⊗ S ⊗B2 +R5U2 ⊗W ⊗B1

= 0⊗ C11 + 1⊗A1,> + U2 ⊗B2,> +R5U2 ⊗B11.

d(B2r,>) 3 δ12(S,U1)⊗B2r+1 + δ12(S,C26)⊗B2r + δ13(S,R5, U6)⊗ C2r−1,1

= U1 ⊗ S ⊗B2r+1 +R5U2 ⊗W ⊗B2r +R5 ⊗N ⊗ C2r−1,1

= U1 ⊗B2r+1,> +R5U2 ⊗B2r,1 +R5 ⊗ C2r−1,1.

d(B2r+1,>) 3 δ12(S,U4)⊗B2r + δ12(S,U2)⊗B2r+2 + δ12(S,C26)⊗B2r+1
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= U4 ⊗ S ⊗B2r + U2 ⊗ S ⊗B2r+2 +R5U2 ⊗W ⊗B2r+1

= U4 ⊗B2r,> + U2 ⊗B2r+2,> +R5U2 ⊗B2r+1,1.

d(B2c+1,>) 3 δ12(S,U4)⊗B2c + δ12(S,R2)⊗B> + δ12(S,C26)⊗B2c+1

= U4 ⊗ S ⊗B2c +R2 ⊗ S ⊗B> +R5U2 ⊗W ⊗B2c+1

= U4 ⊗B2c,> +R2 ⊗B>,> +R5U2 ⊗B2c+1,1.

d(B>,>) 3 δ12(S,C26)⊗B> + δ13(S,R5, L2U6)⊗ C2c+1,1

= R5U2 ⊗W ⊗B> +R5L2⊗N ⊗ C2c+1,1

= R5U2 ⊗B>,1 + L2R5 ⊗ C2c+1,1.

Note that for any odd or even s, the state Bs,1 ∈
(
P5
)
� Y is such that the map d(Bs,1)

contains terms with weight outside span{e5, e6} which necessarily commute with δ12(N,−).

Since the associated idempotent to such states is I135·Bs,1, the only non-zero tensor product

in
(
P5
)2

� Y is N ⊗ Bs,1. If A is the collection of algebra elements in the image of d in

P5 � Y , and XA the collection of module elements in P5 � Y , then the calculation of

d(N ⊗Bs,1) is given by

d(N ⊗Bs,1) 3
∑
a∈A

δ12(N, a)⊗Xa

= δ12(N,L5)⊗Bs,> +
∑
a∈A

wt(a)/∈span{e5,e6}

a⊗N ⊗Xa

= U6 ⊗W ⊗Bs,> +
∑
a∈A

wt(a)/∈span{e5,e6}

a⊗Xa

= U6 ⊗Bs,2 +
∑
a∈A

wt(a)/∈span{e5,e6}

a⊗Xa.

The above calculation of d(Bs,1) for Bs,1 ∈ P5 � Y , and this observation, gives a calcu-

lation for d(Bs,1) with Bs,1 ∈
(
P5
)2

� Y , and this agrees with the statement as in the

lemma.

As an example, in P5 � Y , it is calculated that

d(B2r+1,1) = U4 ⊗B2r,1 + 1⊗ C2r,2 + 1⊗ C2r+1,1 + U2 ⊗B2r+2,1 + L5 ⊗B2r+1,>,

and so in P5 �
(
P5 � Y

)
one has that

d(N ⊗B2r+1,1) = ∂12(N,U4)⊗B2r,1 + ∂12(N, 1)⊗ C2r,2 + ∂12(N, 1)⊗ C2r+1,1
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+ ∂12(N,U2)⊗B2r+2,1 + ∂12(N,L5)⊗B2r+1,>

= U4 ⊗N ⊗B2r,1 + 1⊗N ⊗ C2r,2 + 1⊗N ⊗ C2r+1,1

U2 ⊗N ⊗B2r+2,1 + U6 ⊗W ⊗B2r+1,>

= U4 ⊗B2r,1 + 1⊗ C2r,2 + 1⊗ C2r+1,1 + U2 ⊗B2r+2,1 + U6 ⊗B2r+1,2.

Note that only the last term in each of the above has an algebraic input that is not outside

span{e5, e6}, and all other algebra elements commute with ∂12(N,−).

Using the above calculation, and the calculation of d(Cr,1) in P5 � Y from Section 5.5.1,

which states that d(Cr,1) 3 U3U6 ⊗ Br,1, the calculation of the remaining elements of

P5 � P5 � Y continues as follows.

d(B1,2) 3 δ12(W, 1)⊗A1,> + δ12(W,U2)⊗B2,>

+ δ12(W,R5U2)⊗B11 + δ11(W )⊗B1,>

= 1⊗W ⊗A1,> + U2 ⊗W ⊗B2,> + U2 ⊗N ⊗B11

+ L5 ⊗ S ⊗B1,>

= 1⊗A12 + U2 ⊗B22 + U2 ⊗B11 + L5 ⊗B1,>.

d(B2r,2) 3 δ12(W,U1)⊗B2r+1,> + δ12(W,R5U2)⊗B2r,1

+ δ12(W,R5)⊗ C2r−1,1 + δ11(W )⊗B2r,>

= U1 ⊗W ⊗B2r+1,> + U2 ⊗N ⊗B2r,1 + 1⊗N ⊗ C2r−1,1

+ L5 ⊗ S ⊗B2r,>

= U1 ⊗B2r+1,2 + U2 ⊗B2r,1 + 1⊗ C2r−1,1 + L5 ⊗B2r,>.

d(B2r+1,2) 3 δ12(W,U4)⊗B2r,> + δ12(W,U2)⊗B2r+2,>

+ δ12(W,R5U2)⊗B2r+1,1 + δ11(W )⊗B2r+1,>

= U4 ⊗W ⊗B2r,> + U2 ⊗W ⊗B2r+2,> + U2 ⊗N ⊗B2r+1,1

+ L5 ⊗ S ⊗B2r+1,>

= U4 ⊗B2r,2 + U2 ⊗B2r+2,2 + U2 ⊗B2r+1,1 + L5 ⊗B2r+1,>.

d(B2c+1,2) 3 δ12(W,U4)⊗B2c,> + δ12(W,R2)⊗B>,>

+ δ12(W,R5U2)⊗B2c+1,1 + δ11(W )⊗B2c+1,>

= U4 ⊗W ⊗B2c,> +R2 ⊗W ⊗B>,> + U2 ⊗N ⊗B2c+1,1

+ L5 ⊗ S ⊗Bcr+1,>

= U4 ⊗B2c,2 +R2 ⊗B>,2 + U2 ⊗B2c+1,1 + L5 ⊗B2c+1,>.
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d(B>,2) 3 δ12(W,R5U2)⊗B>,1 + δ12(W,L2R5)⊗ C2c+1,1 + δ11(W )⊗B>,>

= U2 ⊗N ⊗B>,1 + L2 ⊗N ⊗ C2c+1,1 + L5 ⊗ S ⊗B>,>

= U2 ⊗B>,1 + L2 ⊗ C2c+1,1 + L5 ⊗B>,>.

d(B1,>) = δ12(S, 1)⊗A1,> + δ12(S,U2)⊗B2,> + δ12(S,C36)⊗B1,>

= 1⊗ S ⊗A1,> + U2 ⊗ S ⊗B2,> +R5U3 ⊗W ⊗B1,>

= 1⊗A1,> + U2 ⊗B2,> +R5U3 ⊗B12.

d(B2r,>) 3 δ12(S,U1)⊗B2r+1,> + δ12(S,C36)⊗B2r,> + δ13(S,R5, U3U6)⊗B2r−1,1

= U1 ⊗ S ⊗B2r+1,> +R5U3 ⊗W ⊗B2r,> +R5U3 ⊗N ⊗B2r−1,1

= U1 ⊗B2r+1,> +R5U3 ⊗B2r,2 +R5U3 ⊗B2r−1,1.

d(B2r+1,>) 3 δ12(S,U4)⊗B2r,> + δ12(S,U2)⊗B2r+2,> + δ12(S,C36)⊗B2r+1,>

= U4 ⊗ S ⊗B2r,> + U2 ⊗ S ⊗B2r+2,> +R5U3 ⊗W ⊗B2r+1,>

= U4 ⊗B2r,> + U2 ⊗B2r+2,> +R5U3 ⊗B2r+1,2.

d(B>,>) 3 δ12(S,C36)⊗B>,> + δ13(S,L2R5, U3U6)⊗B2c+1,1

= R5U3 ⊗W ⊗B>,> + L2R5U3 ⊗N ⊗B2c+1,1

= R5U3 ⊗B>,2 + L2R5U3 ⊗B2c+1,1.

Comparing the above to the form stated in Lemma 5.7, and using the fact that a = 1

here, one sees that the Type D structure maps are of the required form, and hence the

base-case Q2 holds.

Remark 5.8 The full behaviour described in the lemma may appear to be absent here,

since for example B2r,2 = B2r,2a. In the statement of the lemma, one should make the

assumption that the if a state does not exist by virtue of the available index being less

than or equal to zero, then such a map does not exist. The lemma states that d(B2r,2a) 3
U3 ⊗B2r−1,2a−2, however where a = 1, the states B2r−1,0 does not exist.

Inductive Assumption:

Assume for inductive purposes that the statement Q2a holds. In a similar method to the

determination of the map d for the Cij states in Section 5.5.1, the states Bi,k with k < 2a

have only U5 and U6 algebra terms in d(Bik) within span{e5, e6}. The effect of taking

the box-tensor product with P5 twice is to switch U5 and U6 coefficients once, and then

switch back. Moreover, the associated idempotents for such states is I135 for Bi,k with
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1 ≤ i ≤ 2c + 1 and k < 2a, and I235 for B>,k, with k < 2a. Since 5 belongs to both

idempotents, the only non-zero tensor product with P � P contains the term N ⊗ N in

this tensor coordinate.

As a consequence, taking the box-tensor product with P � P yields the same number of

states, with maps with the same algebra elements as weights. So, the behaviour at the

end of the strand, where one can acquire new states is the only part left to study in the

inductive process.

Figures 5.15 and 5.16 are useful in the determination of the Type D structure for P�P�(
(P5)2t � Y

)
, as they display the weighted graphs corresponding to the end of the strand

after each tensor product with P is taken.

As displayed in Figure 5.15, the calculation of d(Br,2a) involves algebra elements with

weights outside of span{e5, e5}, excepting the term δ12(N,L5)⊗Br,>. Evaluating this, one

has that

d(B1,2a) 3 δ12(N, 1)⊗A1,2a + δ12(N,U2)⊗B1,2a−1 + δ12(N,U2)⊗B2,2a

+ δ12(N,L5)⊗B1,>

= 1⊗N ⊗A1,2a + U2 ⊗N ⊗B1,2a−1 + U2 ⊗N ⊗B2,2a

+ U6 ⊗W ⊗B1,>

= 1⊗A1,2a + U2 ⊗B1,2a−1 + U2 ⊗B2,2a + U6 ⊗B1,2a+1.

d(B2r,2a) 3 δ12(N,U3 ⊗B2r−1,2a−2 + δ12(N,U2)⊗B2r,2a−1 + δ12(N,U1)⊗B2r+1,2a

+ δ12(N,L5)⊗B2r,>

= U3 ⊗N ⊗B2r−1,2a−2 + U2 ⊗N ⊗B2r,2a−1 + U1 ⊗N ⊗B2r+1,2a

+ U6 ⊗W ⊗B2r,>

= U3 ⊗B2r−1,2a−2 + U2 ⊗B2r,2a−1 + U1 ⊗B2r+1,2a + U6 ⊗B2r,2a+1.

d(B2r+1,2a) 3 δ12(N,U2)⊗B2r+1,2a−1 + δ12(N,U2)⊗B2r+2,2a + δ12(N,L5)⊗B2r+1,>

+ δ12(N,U4)⊗B2r,2a

= U2 ⊗N ⊗B2r+1,2a−1 + U2 ⊗N ⊗B2r+2,2a + U6 ⊗W ⊗B2r+1,>

+ U4 ⊗N ⊗B2r,2a

= U2 ⊗B2r+1,2a−1 + U2 ⊗B2r+2,2a + U6 ⊗B2r+1,2a+1 + U4 ⊗B2r,2a.

d(B2c+1,2a) 3 δ12(N,U2)⊗B2c+1,2a−1 + δ12(N,R2)⊗B>,2a + δ12(N,L5)⊗B2c+1,>
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Figure 5.15: Part of the Type D structure for P5 �
(
(P5)2a � Y

)
, represented by a

weighted directed graph.

+ δ12(N,U4)⊗B2c,2a

= U2 ⊗N ⊗B2c+1,2a−1 +R2 ⊗N ⊗B>,2a + U6 ⊗W ⊗B2c+1,>

+ U4 ⊗N ⊗B2c,2a

= U2 ⊗B2r+1,2a−1 +R2 ⊗B>,2a + U6 ⊗B2r+1,2a+1 + U4 ⊗B2r,2a.

d(B>,2a) 3 δ12(N,L2U3)⊗B2c+1,2a−2 + δ12(N,U2)⊗B>,2a−1 + δ12(N,L5)⊗B>,>

= L2U3 ⊗N ⊗B2c+1,2a−2 + U2 ⊗N ⊗B>,2a−1 + U6 ⊗W ⊗B>,>
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= L2U3 ⊗B2c+1,2a−2 + U2 ⊗B>,2a−1 + U6 ⊗B>,2a+1.

For the sake of brevity, in the calculation of d(W ⊗ Br,>) and d(S ⊗ Br,>), only those

calculations with algebra elements that have weight within span{e5, e6} will be expanded.

Hence, the calculation of P �
(
(P5)2a � Y

)
proceeds as follows.

d(B1,2a+1) 3 δ12(W, 1)⊗A1,> + δ12(W,R5U3)⊗B1,2a + δ12(W,U2)⊗B2,>

+ δ11(W )⊗B1,>

= 1⊗A1,2a+1 + U3 ⊗N ⊗B1,2a + U2 ⊗B2,2a+1 + L5 ⊗ S ⊗B1,>

= 1⊗A1,2a+1 + U3 ⊗B1,2a + U2 ⊗B2,2a+1 + L5 ⊗B1,>.

d(B2r,2a+1) 3 δ12(W,R5U3)⊗B2r−1,2a + δ12(W,R5U3)⊗B2r,2a + δ12(W,U1)⊗B2r+1,>

+ δ11(W )⊗B2r,>

= U3 ⊗N ⊗B2r−1,2a + U3 ⊗N ⊗B2r,2a + U1 ⊗B2r,2a+1

+ L5 ⊗ S ⊗B2r,>

= U3 ⊗B2r−1,2a + U3 ⊗B2r,2a + U1 ⊗B2r,2a+1 + L5 ⊗B2r,>.

d(B2r+1,2a+1) 3 δ12(W,R5U3)⊗B2r+1,2a + δ12(W,U2)⊗B2r+2,> + δ12(W,U4)⊗B2r,>

+ δ11(W )⊗B2r+1,>

= U3 ⊗N ⊗B2r+1,2a + U2 ⊗B2r+2,2a+1 + U4 ⊗B2r,2a+1 + L5 ⊗ S ⊗B2r+1,>

= U3 ⊗B2r+1,2a + U2 ⊗B2r+2,2a+1 + U4 ⊗B2r,2a+1 + L5 ⊗B2r+1,>.

d(B2c+1,2a+1) 3 δ12(W,R5U3)⊗B2c+1,2a + δ12(W,R2)⊗B>,> + δ12(W,U4)⊗B2c,>

+ δ11(W )⊗B2c+1,>

= U3 ⊗N ⊗B2c+1,2a +R2 ⊗B>,2a+1 + U4 ⊗B2c,2a+1 + L5 ⊗ S ⊗B2c+1,>

= U3 ⊗B2c+1,2a +R2 ⊗B>,2a+1 + U4 ⊗B2c,2a+1 + L5 ⊗B2c+1,>.

d(B>,2a+1) 3 δ12(W,L2R5U3)⊗B2c+1,2a + δ12(W,R5U3)⊗B>,2a + δ11(W )⊗B>,>

= L2U3 ⊗N ⊗B2c+1,2a + U3 ⊗N ⊗B>,2a + L5 ⊗ S ⊗B>,>

= L2U3 ⊗B2c+1,2a + U3 ⊗B>,2a + L5 ⊗B>,>.

d(B1,>) 3 δ12(S, 1)⊗A1,> + δ12(S,U2)⊗B2,> + δ12(S,C26)⊗B1,>

= 1⊗A1,> + U2 ⊗B2,> +R5U2 ⊗W ⊗B1,>

= 1⊗A1,> + U2 ⊗B2,> +R5U2 ⊗B1,2a+1.

d(B2r,>) 3 δ13(S,R5U3, U6)⊗B2r−1,2a + δ12(S,C26)⊗B2r,> + δ12(S,U1)⊗B2r+1,>

= R5U3 ⊗N ⊗B2r−1,2a +R5U2 ⊗W ⊗B2r,> + U1 ⊗B2r+1,>
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= R5U3 ⊗B2r−1,2a +R5U2 ⊗B2r,2a+1 + U1 ⊗B2r+1,>.

d(B2r+1,>) 3 δ12(S,C26)⊗B2r+1,> + δ12(S,U2)⊗B2r+2,> + δ12(S,U4)⊗B2r,>

= R5U2 ⊗W ⊗B2r+1,> + U2 ⊗B2r+2,2a+1 + U4 ⊗B2r,>

= R5U2 ⊗B2r+1,2a+1 + U2 ⊗B2r+2,> + U4 ⊗B2r,>.

d(B2c+1,>) 3 δ12(S,C26)⊗B2c+1,> + δ12(S,R2)⊗B>,> + δ12(S,U4)⊗B2c,>

= R5U2 ⊗W ⊗B2c+1,> +R2 ⊗B>,> + U4 ⊗B2c,>

= R5U2 ⊗B2c+1,2a+1 +R2 ⊗B>,> + U4 ⊗B2c,>.

d(B>,>) 3 δ13(S,L2R5U3, U6)⊗B2c+1,2a + δ12(S,C26)⊗B>,>

= L2R5U3 ⊗N ⊗B2c+1,2a +R5U2 ⊗W ⊗B>,>

= L2R5U3 ⊗B2c+1,2a +R5U2 ⊗B>,2a+1.

This agrees with the part of the Type D structure displayed in Figure 5.15. An almost

identical calculation yields the result displayed in Figure 5.16, where now the matching

elements C14, C25 and C36 mean that the calculation of d(S ⊗ Br,>) includes the term

δ12(S,C36) = R5U3 ⊗W. Because the process is so similar, it is not presented here, as the

required maps are nearly identical to those taken when calculation P5 � P5 � Y from

P5 � Y .

More visually, to pass from Figure 5.15 to Figure 5.16 involves:

� Swapping U6 for U5 with arrows Br,2a → Br,2a+1, since δ12(N,U6) = U5 ⊗N .

� A map Br,2a+1 → Br,2a+2 with weight U6, from δ12(N,L5) = U6 ⊗W and Br,2a+2 =

W ⊗Br,>.

� A map Br,2a+2 → Br,2a+1 with weight U2, from δ12(W,R5U2) = U2 ⊗N .

� Maps Br,> → Br,2a+2 with weights U3R5 since δ12(S,C36) = R5U3⊗W = U3R5⊗W .

Note, U3 and R5 commute, since 3 and 5 are sufficiently ‘far’ from each other.

� Maps Br,2a+2 → Br,> with weights L5, from δ11(W ) = L5 ⊗ S.

� Using δ13(S,R5U3, U6) = R5U3 ⊗ N , and δ13(S,L2R5U3, U6) = L2R5U3 ⊗ N , one

yields the maps B2r,> → B2r−1,2a+1 and B>,> → B2c+1,2a+1 with the corresponding

weights.

Hence, since the rest of the diagram is determined, and Figure 5.16 describes a Type
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Figure 5.16: Part of the Type D structure for P5 �
(
(P5)2a+1 � Y

)
, represented by a

weighted directed graph.

D structure matches the statement of the lemma, Q2a implies Q2a+2. By induction,

Lemma 5.7 then holds for all t ∈ N.

5.5.4 The remaining maps in the Type D structure

As seen in the statement of Lemma 5.7, only some of the maps from the states Bik have

been determined so far. The remaining maps are maps with weight R5 and 1, which will

play a key role in the determination of H∗(Ĉ(D)) for these knots.
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In the above calculation, a map d :
(
P5
)2a

�Y → A⊗
(
P5
)2a

�Y has an algebra weight of

1 arising from either an arrow in Figure 5.10 that already has 1 as a weight — for example

the arrow B1 → A1 in AY — or from a term featuring δ12(W,R5) = 1 ⊗ N in P5. It is

then useful to track where arrows with R5 as a weight appear in
(
P5
)2a

� Y in order to

complete the determination of the Type D structure.

However, a complication is that R5 is an algebraic input to a δ13 term that is non-zero,

namely δ13(S,R5, U6) = R5 ⊗ N . This also yields R5 as an output algebra element of

the map. To fully calculate the map d in the Type D structure one thus needs to track

wherever U6 is the weight on an outward edge at a vertex to which R5 is the weight on an

inward edge.

Remark 5.9 From Sections 5.5.1, 5.5.2 and 5.5.3, it has been shown that the U6 arrows

are as follows in the Type D structure
(
P5
)t

� Y :

� When t is even:

+ C2r,` → C2r−1,` has weight U6.

+ A`,2r+1 → A`,2r+2 has weight U6.

� When t is odd:

+ C2r+1,` → C2r,`+2 has weight U6.

+ C`,2r → C`,2r+1 has weight U6.

+ C1,` → A`+1,1 has weight U6.

+ A`,2r → A`,2r+1 has weight U6.

+ A2r+1,1 → A2r+2,1 has weight U6.

With the positions of the U6-weighted arrows determined, it remains to determine the R5

arrows from the B-states.

Lemma 5.10 In the Type D structure P5 � Y , one has that

d(B2r,>) 3 R5 ⊗ C2r−1,1

d(B2r+1,>) 3 R5 ⊗ C2r−1,2.

Proof This is relatively simple to see from Figure 5.10. Since d(B2r) 3 R5 ⊗ C2r,1 and
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d(C2r,1) = U6 ⊗ C2r−1,1 in Y , one has that

d(S ⊗B2r) 3 δ13(S,R5, U6)⊗ C2r−1,1

= R5 ⊗N ⊗ C2r−1,1.

Furthermore, since in Y one can observe that d(B2r+1) 3 R5 ⊗ C2r,2, and d(C2r,2) =

U6 ⊗ C2r−1,2, the same procedure gives

d(S ⊗B2r+1) 3 δ13(S,R5, U6)⊗ C2r−1,2

= R5 ⊗N ⊗ C2r−1,2.

Since all N ⊗ Cij are relabelled as Cij in P5 � Y , this completes the proof of the lemma.

From Lemma 5.10, one can then deduce that in
(
P5
)2

� Y the states W ⊗ B2r,> and

W ⊗B2r+1,> have maps

d(W ⊗B2r,>) 3 δ12(W,R5)⊗ C2r−1,1

= 1⊗N ⊗ C2r−1,1.

d(W ⊗B2r+1,>) 3 δ12(W,R5)⊗ C2r−1,2

= 1⊗N ⊗ C2r−1,2.

In this way, it is the determination of the R5 arrows that yield the arrows with algebra

weight 1 after taking the tensor product with the DA-bimodule P5 corresponding with

the next half-twist.

Lemma 5.11 In the Type D structure
(
P5
)2n

� Y , the arrows with weight R5 from the

states Bi,> are:

d(B2r,>) 3 R5 ⊗ (C2r−2n,2n+1 +A2r,2n−2r+1)

d(B2r+1,>) 3 R5 ⊗ (C2r−2n,2n+2 + C2r−2n+1,2n+1 +A2r+1,2n−2r+1) .

Proof Again, the proof proceeds by induction, so let Pt be the statement that the lemma

holds for n = t.

Then, Remark 5.9 and Lemma 5.10 imply the base case t = 1. Lemma 5.10 proves that

there is an arrow B2,> → C1,1 with weight R5 in P5�Y , and the remark shows that there

is a U6 weighted arrow C1,1 → A2,1. Applying these, and the observation from the remark
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that there is a U6 weighted arrow C2r−1,1 → C2r−2,3 in P5 � Y , one has that

d(B2,>) 3 δ13(S,R5, U6)⊗A2,1

= R5 ⊗N ⊗A2,1 = R5 ⊗A2,1

d(B2r,>) 3 δ13(S,R5, U6)⊗ C2r−2,3

= R5 ⊗N ⊗ C2r−2,3 = R5 ⊗ C2r−2,3.

Furthermore, d(B3,>) and d(B2r+1,>) for r > 1 are then

d(B3,>) 3 δ13(S,R5, U6)⊗A3,1 + δ13(S,R5, U6)⊗ C1,3

= R5 ⊗N ⊗A3,1 +R5 ⊗N ⊗ C1,3

= R5 ⊗A3,1 +R5 ⊗ C1,3

d(B2r+1,>) 3 δ13(S,R5, U6)⊗ C2r−2,4 + δ13(SR5, U6)⊗ C2r−1,3

= R5 ⊗N ⊗ C2r−2,4 +R5 ⊗N ⊗ C2r−1,3

= R5 ⊗ C2r−2,4 +R5 ⊗ C2r−1,3.

Hence P1 is true, so the base case of the induction holds.

Assume for inductive purposes that Pt holds. For ease of calculation, divide the states

Bi,> into three categories: B2r,> and B2r+1,> with r < t; B2t,> and B2t+1,>; and the states

B2r,> and B2r+1,> with r > t.

When r < t, the inductive assumption states that d(B2r,>) = R5 ⊗ A2r,2t−2r+1 and

d(B2r+1,>) = R5 ⊗ A2r+1,2t−2r+1. From Remark 5.9, since the second index in each Ajk

term is odd, one has that there is a U6 weighted arrow A`,2t−2r+1 → A`,2t−2r+2.

Combining δ13(S,R5, U6) = R5 ⊗ N with this information implies that in
(
P5
)2t+1

� Y ,

one has the terms

d(B2r,>) 3 R5 ⊗A2r,2(t+1)−2r

d(B2r+1,>) 3 R5 ⊗A2r+1,2(t+1)−2r.

As t > r by assumption, and so 2(t + 1) − 2r > 1, using Remark 5.9 once more implies

that

d(S ⊗B2r,>) 3 δ13(S,R5, U6)⊗A2r,2(t+1)−2r+1

= R5 ⊗N ⊗A2r,2(t+1)−2r+1
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d(S ⊗B2r+1,>) 3 δ13(S,R5, U6)⊗A2r+1,2(t+1)−2r+1

= R5 ⊗N ⊗A2r+1,2(t+1)−2r+1.

This matches the form given in the statement of the lemma.

When r = t+1, the inductive assumption implies that in the Type D structure
(
P5
)2t

�Y ,

one has that d(B2t+2,>) 3 R5 ⊗ C2,2t+1 and d(B2t+3,>) 3 R5 ⊗ C2,2t+2 +R5 ⊗ C3,2t+1.

From Remark 5.9, the only U6 arrows starting at Cij states in
(
P5
)2t

� Y are those from

C2r,` → C2r−1,`. Hence, combining these terms with the term δ13(S,R5, U6) term in P5

yields

d(B2t+2,>) 3 R5 ⊗ C1,2t+1

d(B2r+3,>) 3 R5 ⊗ C1,2t+2.

In
(
P5
)2t+1

� Y , the only U6 weighted arrows from the states C1,2t+1 and C1,2t+2 are:

C1,2t+1 → A2t+2,1; C1,2t+2 → A2t+3,1; and C1,2t+2 → C1,2t+3. Once more combining this

with the δ13(S,R5, U6) map yields

d(B2t+2,>) 3 R5 ⊗A2t+2,1

d(B2r+3,>) 3 R5 ⊗A2t+3,1 +R5 ⊗ C1,2t+3.

Once more since these are now maps within the Type D structure
(
P5
)2(t+1)

� Y , these

maps match those presented in the lemma.

When r > t + 1, the inductive assumption states that d(B2r,>) 3 R5 ⊗ C2r−2t,2t+1 and

d(B2r+1,>) 3 R5⊗C2r−2t,2t+2 +R5⊗C2r−2t+1,2t+1. From Remark 5.9, the only U6 arrows

from Cij states in this Type D structure are C2r,` → C2r−1,`. Hence, in
(
P5
)2t+1

�Y , one

has that

d(B2r,>) 3 δ13(S,R5, U6)⊗ C2r−2t−1,2t+1

= R5 ⊗ C2r−2t−1,2t+1

d(B2r+1,>) 3 δ13(S,R5, U6)⊗ C2r−2t−1,2t+2

= R5 ⊗ C2r−2t−1,2t+2.

Using Remark 5.9 once more, in
(
P5
)2(t+1)

� Y , one thus has:

d(B2r,>) 3 δ13(S,R5, U6)⊗ C2r−2t−2,2t+3
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= R5 ⊗ C2r−2(t+1),2(t+1)+1

d(B2r+1,>) 3 δ13(S,R5, U6)⊗ C2r−2t−2,2t+4 + δ13(S,R5, U6)⊗ C2r−2t−1,2t+3.

= R5 ⊗ C2r−2(t+1),2(t+1)+2 +R5 ⊗ C2r−2(t+1)+1,2(t+1)+1.

Since r > t + 1, all of the indices in the Cij terms exist, and match the statement of the

lemma. Hence, Pt being true implies that Pt+1 is true, and so by induction Lemma 5.11

holds for all n ∈ N.

Lemma 5.11 holds for any n ∈ N, and so, using the fact that in P�
(
P5
)2n

�Y , the states

Br,2n+1 = W ⊗ Br,>, one can calculate arrows with 1 as the associated algebraic weight

from δ12(W,R5) = 1⊗N .

Moreover, a quick inspection of the definition of the bimodule P5 shows that the only

other possible maps that yield 1 as a weight are either δ12(X, 1) = 1⊗X for X a cardinal

direction, or δ12(E,L6) = 1 ⊗ N . Since for three strand pretzel knots in this form the

idempotents are truncated as specified in Definition 4.6, and no state in the Type D

structure has an associated idempotent Ix with 6 ∈ x, then the only δ12-maps in P5 that

contribute an algebraic weight of 1 are the δ12(W,R5) and δ12(X, 1).

Corollary 5.12 The maps d in the type D structure
(
P5
)2a

� Y with 1 as the algebraic

weight are as follows.

d(B2r,2n+1) 3 1⊗ C2r−2n,2n+1 + 1⊗A2r,2n−2r+1

d(B2r+1,2n+1) 3 1⊗ C2r−2n,2n+2 + 1⊗ C2r−2n+1,2n+1 + 1⊗A2r+1,2n−2r+1

d(B2r,2n+2) 3 1⊗ C2r−2n−1,2n+1 + 1⊗A2r,2n−2r+2

d(B2r+1,2n+2) 3 1⊗ C2r−2n−1,2n+2 + 1⊗A2r+1,2n−2r+2.

Proof From the above observation, and the fact that the Type D structure
(
P5
)2a

� Y

is built up by tensoring with P5 consecutively, when determining
(
P5
)2n+1

� Y from(
P5
)2n

� Y , one has the following maps:

d(B2r,2n+1) = d(W ⊗B2r,>)

3 δ12(W,R5)⊗ (C2r−2n,2n+1 +A2r,2n−2r+1)

3 1⊗ (C2r−2n,2n+1 +A2r,2n−2r+1) .

d(B2r+1,2n+1) = d(W ⊗B2r+1,>)

3 δ12(W,R5)⊗ (C2r−2n,2n+2 + C2r−2n+1,2n+1 +A2r+1,2n−2r+1)
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= 1⊗ (C2r−2n,2n+2 + C2r−2n+1,2n+1 +A2r+1,2n−2r+1) .

Since these are maps with algebraic weight 1, and the associated idempotent to B2r,2n+1

and B2r+1,2n+1 in
(
P5
)2n+1

� Y is I135, under taking more box-tensor products with P5,

the only non-zero tensor product is with N ∈ P5. Since δ12(N, 1) = 1 ⊗ N , these arrows

are preserved under taking further box-tensor products with P5.

Likewise, using Remark 5.9, it is simple to see that in
(
P5
)2n+1

� Y , one has the R5-

weighted arrows:

d(B2r,>) 3 R5 ⊗ (C2r−2n−2,2n+1 +A2r,2n−2r+2)

d(B2r+1,>) 3 R5 ⊗ (C2r−2n−1,2n+2 +A2r+1,2n−2r+2) .

Under taking the next box-tensor product with P5 to yield
(
P5
)2n+2

� Y , the same

application of δ12(W,R5) = 1⊗N gives arrows of weight 1 to the above states from B2r,2n+2

and B2r+1,2n+2. Again, these arrows are preserved under further box-tensor products with

P5 due to the only non-zero tensor products with these coordinates being N ⊗ B2r,2n+2

and N ⊗B2r+1,2n+2, with the same weight since δ12(N, 1) = 1⊗N .

The only remaining behaviour to determine are those maps from B>,k not shown in

Lemma 5.7. These arise in a very similar way to the maps presented in Lemma 5.11,

from the map δ13(S,R5, U6) = R5 ⊗N in P5.

Lemma 5.13 In the Type D structure
(
P5
)2a

�Y , the states B>,k has the following maps:

d(B>,2n) 3 L2 ⊗ C2c+3−2n,2n−1

d(B>,2n+1) 3 L2 ⊗ C2c+2−2n,2n+1

d(B>,>) 3 L2R5 ⊗ C2c+2−2a,2a+1.

Proof In P5 � Y , using Figure 5.10, one has that

d(B>,>) = d(S ⊗B>)

3 δ13(S,R5, L2U6)⊗ C2c+1,1

= L2R5 ⊗ C2c+1,1.

Then, using Remark 5.9, the only U6 arrow from the state C2c+1,1 is C2c+1,1 → C2c−1,1+2 =

C2c−1,3. This implies that after taking the box-tensor product with P5 once more, the

same δ13 map will yield d(B>,>) 3 L2R5 ⊗ C2c−1,3 = C2c+1−(2a)+1,2a+1, where a = 1 here.
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Using similar logic to the proof of Corollary 5.12, one yields the result, since one pairs this

map with δ12(W,L2R5) = L2 ⊗ N for the odd case, and the U6 arrows from Remark 5.9.

This completes the determination of the map d acting on the B-states within the Type D

structure
(
P5
)2a

�Y , as can be seen through a careful examination of the Type D structure

for Y in Figure 5.13, and noting that all of the possible maps have been considered in the

inductive methods presented in Lemma 5.7 and Corollary 5.12. Hence, combining this

with the results of Sections 5.5.1 and 5.5.2 the entire Type D structure corresponding

to the upper knot diagrams in Figure 5.11 is determined. In order to determine the full

bordered invariant C(D) of Ozsváth-Szabó defined in [49], one then needs to tensor with

the A∞-module associated to the three minima, as presented in Definition 4.57.



Chapter 6

Results and the full invariant

Following Section 4.5.2, one can take the product of the Type D structure determined in

Section 5.5 with the A∞-module Y ′� f̃2� f̃2
A(3) to yield a chain complex over R′. Within

this chapter, the full structure of C(D) is determined, together with the determination of

associated homology theories and associated numerical invariants.

6.1 The determination of C(D)

As described in Section 5.5, define the Type D structure associated to the upper knot

diagram of P (2c+ 1,−2b− 1, 2a) to be

A(3)T :=
(
P5
)2a

�
(
N 3
)2b+1

� Ω4 �
(
P1
)2c+1

� Ω2 � Ω1.

The maps ∂ : T → A(3) ⊗ T for this Type D structure were calculated in Section 5.5.1,

Section 5.5.2 and Section 5.5.3, and no application of this map upon any of the generators

(in correspondence with upper Kauffman states) can yield the sequence of algebra elements

L3, U2, R3. However, starting at some states, one can yield the the algebra elements L5,

U4 and R5 from applying the map ∂ thrice. Namely, such a sequence of algebra elements

originates from B2r+1,2a for 0 ≤ r ≤ c.

As a consequence, excepting at these states B2r+1,2a, only integer weight algebra elements

in A(3) contribute to the tensor product, since the remaining maps m1+j in Y ′� f̃2 � f̃2

take integer weight inputs.

What is more, since all of the generators in the A∞-module Y ′ � f̃2 � f̃2 have incoming

189
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idempotent I135, the chain complex Y ′ � f̃2 � f̃2 � T arises from the tensor product of

generators in T with I135 as the outgoing idempotent.

This is as expected, since the familiar Kauffman states for P (2a,−2b−1, 2c+ 1) ∼= P (2c+

1,−2b − 1, 2a) depicted in Figure 2.8 arise from the partial Kauffman states with this

idempotent. The use of the DA-bimodule f̃2 in preference to f2 gives a correspondence

between the Kauffman states of the standard knot diagram for this family of three strand

pretzel knots, as used in [5], and the generators of Y ′ � f̃2 � f̃2 � T ∼= C(D).

Informally, maps with weights U1 and U5 in the Type D structure T contribute to increase

the power of U in the chain complex, fromm2(X,U
`
1) = U `⊗X andm1+1+n(X,Un5 , C

⊗n
14 ) =

Un ⊗ X in Y ′ � f̃2 � f̃2. Similarly, maps with weights U3 and U6 contribute to in-

crease the power of V in the chain complex, from the maps m2(X,U
k
6 ) = V k ⊗ X and

m1+1+r(X,U
r
3 , C

⊗r
26 ) = V r ⊗ X. By inspection, these are all maps taking only integer

weight elements in Definition 4.57.

Although Ozsváth-Szabó equip the complex C(D) with two integer-valued gradings (∆, A),

one can use the relation ∆ = M − A to recover the Maslov grading for every Kauffman

state for the knot P (2c + 1,−2b − 1, 2a). However, although an integer valued grading

∆ on T has been described, through compatibility with the associated one-manifold with

boundary, the Type D structure is currently only equipped with an Alexander multi-

grading in
(
1
2Z
)6

. However, from the local contributions to ∆ and A in Figure 4.1, every

upper Kauffman state can be equipped with an integer-valued grading.

Moreover, this can be recovered from the multi-grading, as highlighted by [46, Sec. 1.1].

Within the computer implementation of the calculation of C(D) in [47] the determination

of the Alexander grading associated to each upper Kauffman state is made through the

formula

A(X) =
∑
s/∈S

ws(X)−
∑
s∈S

ws(X).

Here, S are the upwards oriented strands at the boundary of the one-manifold associated to

a Type D structure. In order to agree with the gradings in Figure 4.1, the global minimum

is assumed to be oriented right to left. As described in Section 4.6.1, if the global minimum

has the reverse orientation, the roles of U and V in the R′ are switched.

Using these gradings, the correspondence between generators and Kauffman states, and

the well-defined tensor product between Type D structures and A∞-modules outlined in
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Section 4.5.2, one yields the following theorem.

Theorem 6.1 Let D be the special knot diagram associated to the three strand pretzel

knot P (2c+ 1,−2b− 1, 2a) depicted in Figure 6.1, with a, b, c ≥ 1. The bordered invariant

C(D) is the chain complex over R′ generated by elements corresponding to the Kauffman

states pictured in Figure 2.8, with associated Maslov and Alexander gradings as presented

in Table 2.2.

For the states Ajk with 1 ≤ j ≤ 2b + 1, 1 ≤ k ≤ 2a, the differential d : C(D) → C(D) is

given by the following.

d(A11) = U(A21 + C12) + V A12

d(A2r,1) = U(A2r+1,1 + C1,2r+1) + V (A2r−1,1 +A2r,2) r ∈ N

d(A2r+1,1) = U(A2r+2,1 + C1,2r+2) + V A2r+1,2 r ∈ N

d(A2b+1,1) = V A2b+1,2

d(A1,2p) = UA1,2p+1 p ∈ N

d(A2r,2p) = U(A2r+1,2p +A2r,2p+1) + V A2r−1,2p r, p ∈ N

d(A2r+1,2p) = UA2r+1,2p+1 r, p ∈ N

d(A2r,2p+1) = UA2r+1,2p+1 + V (A2r−1,2p+1 +A2r,2p +A2r,2p+2) r, p ∈ N

d(A2r+1,2p+1) = V (A2r+1,2p +A2r+1,2p+2) r ∈ Z≥0, p ∈ N

d(A2r+1,2a) = 0 r ∈ Z≥0

d(A2r,2a) = UA2r+1,2a + V A2r−1,2a r ∈ N

Similarly, the differential map has the following action on the Cij states, for 1 ≤ i ≤ 2c+1,

1 ≤ j ≤ 2b+ 1.

d(C11) = U(C12 +A21)

d(C1,2r) = U(C1,2r+1 +A2r+1,1) r ∈ N

d(C1,2r+1) = U(C1,2r+2 +A2r+2,1) + V C1,2r r ∈ Z≥0

d(C1,2b+1) = V C1,2b

d(C2s,1) = U(C2s,2 + C2s+1,1) + V C2s−1,1 s ∈ N

d(C2s,2r) = U(C2s,2r+1 + C2s+1,2r) + V C2s−1,2r s, r ∈ N

d(C2s,2r+1) = U(C2s,2r+2 + C2s+1,2r+1) + V (C2s,2r + C2s−1,2r+1) s, r ∈ N

d(C2s,2b+1) = UC2s+1,2b+1 + V (C2s,2b + C2s−1,2b+1) s ∈ N
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d(C2s+1,1) = U(C2s+1,2 + C2s,3) s ∈ N

d(C2s+1,2r) = U(C2s+1,2r+1 + C2s,2r+2) s, r ∈ N

d(C2s+1,2r+1) = U(C2s+1,2r+2 + C2s,2r+3) + V C2s+1,2r s, r ∈ N

d(C2s+1,2b) = UC2s+1,2b+1 s ∈ N

d(C2s+1,2b+1) = V C2s+1,2b s ∈ N.

For the states Bik, with 1 ≤ i ≤ 2c + 1 and 1 ≤ k ≤ 2a, the differential map d acts as

follows.

d(B11) = (A11 + C11) + V B12

d(B1,2p) = A1,2p + UB1,2p+1 p ∈ N

d(B1,2p+1) = A1,2p+1 + V B1,2p+2 p ∈ N

d(B1,2a) = A1,2a

d(B2s,1) = C2s,1 + UB2s+1,1 + V B2s,2 s ∈ N

d(B2s,2p) = (C2s−2p+1,2p−1 +A2s,2p−2s) + U(B2s+1,2p +B2s,2p+1) + V B2s−1,2p−2 s, p ∈ N

d(B2s,2p+1) = (C2s−2p,2p+1 +A2s,2p−2s+1) + UB2s+1,2p+1

+ V (B2s,2p +B2s,2p+2 +B2s−1,2p−1) s, p ∈ N

d(B2s,2a) = (C2s−2a+1,2a−1 +A2s,2a−2s) + UB2s+1,2a + V B2s−1,2a−2 s ∈ N

d(B2s+1,1) = (C2s,2 + C2s+1,1) + V B2s+1,2 s ∈ N

d(B2s+1,2p) = (C2s−2p+1,2p +A2s+1,2p−2s) + UB2s+1,2p+1 s, p ∈ N

d(B2s+1,2p+1) = (C2s−2p,2p+2 + C2s−2p+1,2p+1 +A2s+1,2p−2s+1) + V (B2s+1,2p+2 +B2s+1,2p) s, p ∈ N

d(B2s+1,2a) = (C2s−2a+1,2a +A2s+1,2a−2s) + (C2s−2a,2a+1 +A2s,2a−2s+1) s ∈ N

Proof The above are simple applications of the definition of tensor product between a

Type D structure and A∞-module as presented in Section 4.5.2. The fact that this box-

tensor product is indeed a chain complex is a consequence of [25, Lem. 2.30] for general

Type D structures and A∞-modules, and more specifically for C(D) from [49, Sec. 8.2].

Recall, the maps in the Type D structure used within this calculation are determined in

Section 5.5.

The differential map drops the ∆ (and Maslov) integer gradings by the fact that the Type

D structure and A∞-modules are adapted to their respective one-manifolds. As a graded
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module, the map ∂ in the Type D structure drops the Maslov and Alexander gradings

appropriately, as defined in Section 4.3.1.

As a special case, the states B2r+1,2a have a differential that is separable into two sets.

The first set arises from pairing the map ∂(B2r+1,2a) 3 1⊗(C2r−2a+1,2a+A2r+1,2a−2r) with

the map m2(Q,U
0
1 ) = U0⊗Q for Q any generator of Y ′� f̃2� f̃2. The second arises from

the only sequence of algebra elements with non-integer weights. Specifically, the maps

∂(B2r+1,2a) 3 L5 ⊗B2r+1,>

∂(B2r+1,>) 3 U4 ⊗B2r,>

∂(B2r,>) 3 R5 ⊗ (C2r−2a,2a+1 + C2r,2a−2s+1)

as determined in Lemma 5.7, Lemma 5.11 and Corollary 5.12 are paired with the map

m4(Q,L5, U4, R5) = 1 ⊗ Q to yield the result. Note, that not all four terms can exist at

the same time, due to the fact that the map only exists if the indices on Ajk and Cij are

in the required ranges.

The differential in the chain complex for the generators corresponding to other Kauffman

states arise from maps in the Type D structure with integer weight algebra elements,

pairing with the respective maps in Definition 4.57.

The fact that filtered chain homotopy type C(D) is an oriented knot invariant is a con-

sequence of the construction by Ozsváth-Szabó. In [49, Thm. 1.1], they prove that for

any special knot diagram D, the Type D structure associated to the upper knot diagram

arising from excluding only the global minimum is invariant under bridge moves and Reide-

meister moves. Although [49, Thm. 1.1] is stated only in terms of homology H∗(C(D)), the

equivalence of graded modules is proved for the Type D structures, and then there is only

a single way to tensor with the A∞-module corresponding to the global minimum.

The construction of the C(P (2c + 1,−2b − 1, 2a)) within this thesis follows exactly the

construction of [47, 49], and so the filtered chain-homotopy type of this bigraded chain

complex is an invariant of the three strand pretzel knot.

As in classical knot Floer homology, one can construct subcomplexes and quotient com-

plexes from C(D), and extract information from these. Motivated by ĤFK(K) and

HFK−(K), one has the following.

Definition 6.2 Define Ĉ(D) to be the bigraded module over F2 resulting from setting
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2c + 1

−2b− 1

2a

Figure 6.1: The special knot diagram for the knot P (2c + 1,−2b − 1, 2a). The complex

C(D) corresponding to this knot diagram is Y ′� f̃2 � f̃2 � T , where the Type D structure

T is as defined on page 189.

U = 0 = V in C(D). It is thus a chain complex over F2 generated by Kauffman states

associated to a special knot diagram, with differential ∂̂ : Ĉ(D)d,s → Ĉ(D)d−1,s defined by:

∂̂(x) = d(x)/(U = 0 = V ),

where d is the differential map in C(D).

Likewise, define C−(D) to be the bigraded module over F[U ] resulting from setting V = 0 in

C(D). Hence, as a chain complex, it is generated over F[U ] by Kauffman states associated

to a special knot diagram, with differential ∂− defined by ∂−(x) = d(x)/(V = 0).

From both of these chain complexes, one can define the associated homology theories

Ĥ(D) := H∗(Ĉ(D)) and H−(D) := H∗(C−(D)), which are respectively bigraded F and

F[U ]-modules recently identified with ĤFK(D) and HFK−(D) in [48, Thm. 1.1].

Using Theorem 6.1, setting U = V = 0, one arrives at the following.

Theorem 6.3 For the three-strand pretzel knot P (2c+ 1,−2b− 1, 2a) with oriented knot

diagram as depicted in Figure 6.1, the bigraded group Ĥ(D) decomposes as Ĥ(D) =
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⊕
d,s Ĥ(D)d,s. Here, let d be the Maslov grading ∆ − A, and s the Alexander grading

A.

If a ≤ b ≤ c, one has that:

Ĥ(D)d,s =



F2b−2a+1
d=s+b−c b− c+ 1 ≤ s ≤ c− b− 1

F2b−a+1
d=0 s ∈ {c− b, b− c}

F2b−n+1
d=s+b−c s = c− b+ n, 1 ≤ n ≤ 2b

F2b−n+1
d=s+b−c s = b− c− n, 1 ≤ n ≤ 2b.

Similarly, when b < c and a > b, one has that:

Ĥ(D)d,s =



F2a−2b−1
d=s+b−c+1 b− c+ 1 ≤ s ≤ c− b− 1

Fbd=0 s ∈ {c− b, b− c}

Fa−b−1d=1 s ∈ {c− b, b− c}

F2b−n+1
d=s+b−c s = c− b+ n, 1 ≤ n ≤ 2b

F2b−n+1
d=s+b−c s = b− c− n, 1 ≤ n ≤ 2b.

Hence, when a ≤ b, the complex Ĥ(D) is homologically thin (contained in one diagonal

M −A), and not if a > b.

Proof Using the map d as given in Theorem 6.1, it is simple to see that Ajk and Cij are

in ker(∂̂) for all possible values of i, j and k.

Furthermore, as proven in [49, Prop. 1.2], as a bigraded module C(D) is symmetric, i.e.

Ĥ(D)d,s ∼= Ĥ(D)d−2s,−s. This matches the symmetry for ĤFK(D) in classical knot Floer

homology, see [39].

As a consequence, one need only determine the groups in non-negative Alexander grading

s, and use the symmetry to determine the remaining groups.

Case 1: a ≤ b < c

Using Table 2.2, the states with non-negative Alexander grading are states Bik with 0 ≤
A(Bik) ≤ c− b, and Cij with 0 ≤ A(Cij) ≤ b+ c.

Consequently, since the differential ∂̂ preserves the Alexander grading, every state Cij

with A(Cij) > c− b must be in ker(∂̂)/im(∂̂). There are no states Bik in these Alexander

gradings, so in this range no state Cij can appear in im(∂̂).
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The Alexander grading of a state Cij is given by A(Cij) = i + j − b − c − 2. Hence, if

A(Cij) = c− b+ n, then i+ j = 2c+ 2 + n. By assumption, one has that 1 ≤ i ≤ 2c+ 1

and 1 ≤ j ≤ 2b+ 1. The maximal Alexander grading of any state Cij is thus 2c+ 2b+ 2 =

A(C2c+1,2b+1). This is the unique maximal state, and corresponds to n = 2b.

For any n such that 1 ≤ n ≤ 2b, one has that the states

{C2c+1,n+1, C2c,n+2, · · · , C2c−2b+n+1,2b+1}

have Alexander grading equal to c − b + n. The cardinality of this set is 2b − n + 1, and

this set provides a basis for Ĥ(D)d,c−b+n. From Table 2.2, d = s+ b− c for all states Cij ,

and so this is the corresponding Maslov grading for these generators.

The only states in Alexander grading c− b are the states Cij with i+ j = 2c+ 2 and the

states Bik with i = 2c + 1 and k odd. The set of all states in this Alexander grading are

thus:

{C2c+1,1, C2c,2, · · · , C2c−2b+1,2b+1} ∪ {B2c+1,1, B2c+1,3 . . . B2c+1,2a−1}.

From Theorem 6.1, one can deduce that ∂̂(B2c+1,2p+1) = C2c−2p,2p+2 + C2s−2p+1,2p+1.

Enumerating over the possible states B2c+1,2p+1, one has that:

∂̂(B2c+1,1) = C2c,2 + C2c+1,1

∂̂(B2c+1,3) = C2c−2,4 + C2c−1,3

...

∂̂(B2c+1,2a−3) = C2c−2a+4,2a−2 + C2c−2a+5,2a−3

∂̂(B2c+1,2a−1) = C2c−2a+2,2a + C2c−2a+3,2a−1

By assumption, a ≤ b, and so all of the indices for the Cij terms in the image are well

defined. Hence, no state Bij with i + j = 2c + 2 lies in ker(∂̂). A basis for the homology

in Alexander grading c− b is then given by

{C2c+1,1, C2c−1,3, · · · , C2c−2a+3,2a−1} ∪ {C2c−2a+1,2a+1, C2c−2a,2a+2, · · · , C2c−2b+1,2b+1},

which has cardinality 1
2(2a) + (2b− 2a+ 1) = 2b− a+ 1.

In Alexander grading s for 0 ≤ s ≤ c−b−1, one has the states Cij with i+j = s+b+c+2,

and states Bik with i = s+ b+ c+ 2 with k even, or i = s+ b+ c+ 1 with k odd.
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With s = c− b− 1, these states are:

{C2c,1, C2c−1,2, · · · , C2c−2b,2b+1} ∪ {B2c+1,2, B2c+1,4 · · · , B2c+1,2a}

∪ {B2c,1, B2c,3, · · · , B2c,2a−1}.

Applying Theorem 6.1 once more, the maps ∂̂ in this Alexander grading are as follows.

∂̂(B2c+1,2) = C2c−1,2

∂̂(B2c+1,4) = C2c−3,4

...

∂̂(B2c+1,2a−2) = C2c−2a+3,2a−2

∂̂(B2c+1,2a) = C2c−2a+1,2a + C2c−2a,2a+1

∂̂(B2c,1) = C2c,1

∂̂(B2c,3) = C2c−2,3

...

∂̂(B2c,2a−3) = C2c−2a+4,2a−3

∂̂(B2c,2a−1) = C2c−2a+2,2a−1.

Consequently, in Alexander grading c− b− 1, a basis for the homology is given by

{C2c−2a,2a+1, C2c−2a−2,2a+2, · · · , C2c−2b,2b+1},

which has cardinality 2b− 2a+ 1, as specified in the statement of the theorem.

The calculation of homology is very similar in Alexander grading c−b−3, where the states

in this Alexander grading are now those Cij with i+ j = 2c− 1, those Bik with i = 2c− 1

and k even, and those Bik with i = 2c − 2, with k odd. The maps ∂̂ in this Alexander

grading are given by:

∂̂(B2c−1,2) = C2c−3,2

∂̂(B2c−1,4) = C2c−5,4

...

∂̂(B2c−1,2a−2) = C2c−2a+1,2a−2

∂̂(B2c−1,2a) = C2c−2a−1,2a + C2c−2a−2,2a+1



CHAPTER 6. RESULTS AND THE FULL INVARIANT 198

∂̂(B2c−2,1) = C2c−2,1

∂̂(B2c−2,3) = C2c−4,3

...

∂̂(B2c−2,2a−3) = C2c−2a+2,2a−3

∂̂(B2c−2,2a−1) = C2c−2a,2a−1.

Once more, a basis for the homology in this Alexander grading is then

{C2c−2a−2,2a+1, C2c−2a−3,2a+2, · · · , C2c−2b−2,2b+1}.

This set has cardinality 2b− 2a+ 1, as required. It is then simple to see that the situation

is the same in Alexander grading c− b− (2r + 1), where this is greater than 0. To adapt

the calculation, simply decrease the i index on all terms Cij and Bik by 2.

Now, consider the states with Alexander grading c − b − 2, namely Cij with i + j = 2c,

and Bik with i = 2c, k even, or i = 2c− 1 and k odd. Once more, all Cij-states are in the

kernel of ∂̂. The maps ∂̂ in this Alexander grading are as follows.

∂̂(B2c−1,1) = C2c−2,2 + C2c−1,1

∂̂(B2c−1,3) = C2c−4,4 + C2c−3,3

...

∂̂(B2c−1,2a−3) = C2c−2a+2,2a−2 + C2c−2a+3,2a−3

∂̂(B2c−1,2a−1) = C2c−2a,2a + C2c−2a+1,2a−1

∂̂(B2c,2) = C2c−1,1

∂̂(B2c,4) = C2c−3,3

...

∂̂(B2c,2a−2) = C2c−2a+3,2a−3

∂̂(B2c,2a) = C2c−2a+1,2a−1.

Using a simple linear combination of the above states, one sees that the states Cij with

i + j = 2c and j ≤ 2a all lie in im(∂̂). The remaining Cij states provide a basis for the

homology, namely

{C2c−2a−1,2a+1, C2c−2a−2,2a+2, · · · , C2c−2b−1,2b+1}.

This is a set that has cardinality 2b− 2a+ 1, as required.
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Likewise, to yield the states in Alexander grading c− b− (2r) when this quantity is non-

negative, decrease all of the i indices by 2 in the terms Cij and Bik above. This gives a

set of the same cardinality, namely

{C2c−2a−2r+1,2a+1, C2c−2a−2r,2a+2, · · · , C2c−2b−2r+1,2b+1}.

Hence, in case 1, one has the required ranks in each Alexander grading, and since all of

the generators are states Cij , one has that d− s = b− c.

Case 2: b < c, b < a

In this case, the calculation is similar to that of Case 1. Since the maximal Alexander

grading for any of the states Bik is c−b, for all states Cij with Alexander grading c−b+1 ≤
A(Cij) ≤ b + c the calculation remains exactly the same as presented above. Each state

Cij satisfying these bounds represents a generator in homology, and so the rank of the

homology in Alexander grading s = c− b+ n is 2b− n+ 1 for 1 ≤ n ≤ 2b.

The possible states with Alexander grading equal to c − b are Bik with i = 2c + 1 and k

odd, and Cij with i+ j = 2c+ 2:

{C2c+1,1, C2c,2, · · · , C2c−2b+1,2b+1} ∪ {B2c+1,1, B2c+1,3 . . . B2c+1,2a−1}.

Enumerating over the possible states B2c+1,2p+1 one has the following calculation for ∂̂.

∂̂(B2c+1,1) = C2c,2 + C2c+1,1

∂̂(B2c+1,3) = C2c−2,4 + C2c−1,3

...

∂̂(B2c+1,2b−1) = C2c−2b+2,2b + C2c−2b+3,2b−1

∂̂(B2c+1,2b+1) = C2c−2b+1,2b+1

∂̂(B2c+1,2b+3) = 0

...

∂̂(B2c+1,2a−1) = 0

A basis for homology in this Alexander grading is then given by the set

{C2c,2, C2c−2,4, · · · , C2c−2b+2,2b} ∪ {B2c+1,2b+3, B2c+1,2b+5, · · · , B2c+1,2a−1}.

The subset of the above with only Cij states has cardinality b, and Maslov grading equal

to 0, while the subset with only Bik states has cardinality a− b− 1, and Maslov grading

1. This is precisely as required.
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The calculation for states with Alexander grading c− b−1 is similar to Case 1. The states

in this Alexander grading are as enumerated on page 197, with the differential ∂̂ as follows.

∂̂(B2c+1,2) = C2c−1,2

∂̂(B2c+1,4) = C2c−3,4

...

∂̂(B2c+1,2b) = C2c−2b+1,2b

∂̂(B2c+1,2b+2) = 0

...

∂̂(B2c+1,2a) = 0

∂̂(B2c,1) = C2c,1

∂̂(B2c,3) = C2c−2,3

...

∂̂(B2c,2b−1) = C2c−2b+2,2b−1

∂̂(B2c,2b+1) = C2c−2b,2b+1

∂̂(B2c,2b+3) = 0

...

∂̂(B2c,2a−1) = 0.

A basis for the homology in this Alexander grading is then given by

{B2c+1,2b+2, B2c,2b+3, B2c+1,2b+4, · · · , B2c,2a−1, B2c+1,2a},

which has cardinality 2a− 2b− 1, as required.

Likewise, similarly to Case 1, the calculation of ∂̂ for those states in Alexander grading

c− b− (2r + 1) proceeds in exactly the same fashion, with all of the i indices in Cij and

Bik decreased by 2. In particular, a basis for the homology is given by the following set,

with cardinality 2a− 2b− 1:

{B2c−2r+1,2b+2, B2c−2r,2b+3, B2c−2r+1,2b+4, · · · , B2c−2r,2a−1, B2c−2r+1,2a}.

Similarly, consider those states with Alexander grading c− b− 2. These are once more as

stated in Case 1. The calculation of the map ∂̂ is as follows:

∂̂(B2c−1,1) = C2c−2,2 + C2c−1,1
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∂̂(B2c−1,3) = C2c−4,4 + C2c−3,3

...

∂̂(B2c−1,2b−1) = C2c−2b,2b + C2c−2b+1,2b−1

∂̂(B2c−1,2b+1) = C2c−2b−1,2b+1

∂̂(B2c−1,2b+3) = 0

...

∂̂(B2c−1,2a−1) = 0

∂̂(B2c,2) = C2c−1,1

∂̂(B2c,4) = C2c−3,3

...

∂̂(B2c,2b−2) = C2c−2b+3,2b−3

∂̂(B2c,2b) = C2c−2b+1,2b−1

∂̂(B2c,2b+2) = C2c−2b−1,2b+1

∂̂(B2c,2b+4) = 0

...

∂̂(B2c,2a) = 0.

A basis for the homology is then given by the set

{(B2c−1,2b+1 +B2c,2b+2), B2c−1,2b+3, B2c,2b+4, · · · , B2c,2a}.

Note, this set includes a term that is the sum of two Bik states, but as a generating set

this has cardinality 2a − 2b − 1. Similarly, one can adapt the calculation to states with

Alexander grading c− b− (2r) by the same method as before. The generating set for the

homology in this Alexander grading has cardinality 2a− 2b− 1, namely:

{(B2c−2r+1,2b+1 +B2c−2r+2,2b+2), B2c−2r+1,2b+3, B2c−2r+2,2b+4, · · · , B2c−2r+2,2a}.

Hence, in Cases 1 and 2, generating sets for the homology have been given, and they match

the statement in the theorem.

For specific values of a, b, c, it is easy to verify the above using the computer implementation

of the construction [47], and the wrapper for this written by the author [58]. The output

of the program are the ranks of the homology groups in each Maslov and Alexander

grading.
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Remark 6.4 As noted in Section 1.1, in [5] Eftekhary calculated the hat version of the

knot Floer homology ĤFK(K) for the above family of pretzel knots. In [5, Thm. 2], it

is stated that the hat version of the knot Floer homology is contained in precisely two

diagonals: d − s = b − c and d − s = b − c + 1, and for each value of s is non-zero in at

most one of these diagonals.

Since the conjectural equivalence between the theory of the bordered invariant C(D) and

classical knot Floer homology holds, as recently proven in [48, Thm. 1.1], then there is a

contradiction with this result. In particular, Theorem 6.3 states that in Alexander grading

2, the homology group Ĥ(P (7,−3, 6))d,2 is Fd=1 ⊕ Fd=0. For this three strand pretzel knot

P (2c+ 1,−2b− 1, 2a), the coefficients describing the knot are c = 3 = a and b = 1.

So a−b−1 = 1 = b, and in Alexander grading c−b = 2, one has a direct summand F with

Maslov grading equal to 0, and a direct summand F with Maslov grading equal to 1. Using

the bimodule f2 as defined by Ozsváth and Szabó in [49], the computer implementation

[47] verifies this calculation, with the homology having the same ranks as described in

Theorem 6.3.

Using Theorem 6.1, one can also determine the ranks of the homology groups Ĥ(D) for D

a special knot diagram of the three strand pretzel knot P (2c+ 1,−2b− 1, 2a) with b ≥ c.
However, this is a less interesting case, since it has already been demonstrated that this

knot has τ(D) = ν(D) = b− c = g4(D) from Lemma 3.19. However, for completeness, the

ranks of the homology groups Ĥ(D)d,s are presented in Corollary 6.5.

Corollary 6.5 Let D be a special knot diagram of the three strand pretzel knot P (2c +

1,−2b− 1, 2a) with b ≥ c, as presented in Figure 6.1. Then, the bigraded homology groups

Ĥ(D) = ⊕d,s∈ZĤ(D)d,s are given as follows. When b > c, one has that:

Ĥ(D)d,s =



F2a+2c+1
d=s+b−c c− b+ 1 ≤ s ≤ b− c− 1

Fa+2c+1
d=0 s ∈ {c− b, b− c}

F2c−n+1
d=s+b−c s = b− c+ n, 1 ≤ n ≤ 2c

F2c−n+1
d=s+b−c s = c− b− n, 1 ≤ n ≤ 2c.
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When b = c, one has that the homology groups are given by:

Ĥ(D)d,s =


F2b+1
d=0 s = 0

F2c−n+1
d=s+b−c s = n, 1 ≤ n ≤ 2c

F2c−n+1
d=s+b−c s = −n, 1 ≤ n ≤ 2c.

Proof As in the proof of Theorem 6.3, one can exploit the symmetry of C(D) proven

in [49, Prop. 1.2], and examine only non-negative Alexander gradings.

Furthermore, all of the states Cij and Ajk are in ker(∂̂). From Table 2.2, any state Cij or

Ajk with Alexander grading greater than the maximum Alexander grading of some state

Bik cannot appear in im(∂̂), and hence provide generators of homology.

Consequently, it is simple to see that for any n in the range 1 ≤ n ≤ 2c, the states

{Cn+1,2b+1, Cn+2,2b, · · · , C2c+1,2b−2c+n+1}

have Alexander grading equal to b − c + n, and provide a basis for Ĥ(D)d,b−c+n ∼=
F2c−n+1
d=2b−2c+n.

Case 1: b > c

When b > c, there are no states Bik with non-negative Alexander grading. Hence, all of

the states Cij and Ajk with non-negative Alexander are generators of homology.

In Alexander grading b− c, the generators of the homology group Ĥ(Dd,s) are then

{C1,2b+1, C2,2b, · · · , C2c+1,2b−2c+1} ∪ {A2b+1,1, A2b+1,3, · · · , A2b+1,2a−1},

which is a set of cardinality 2c+ a+ 1.

For Alexander grading 0 ≤ k ≤ b− c− 1, the homology group has rank 2a+ 2c+ 1, as it

is generated by the set

{C1,b+c+k+1, C2,b+c+k, · · · , C2c+1,b−c+k+1} ∪ {Ab+c+k+1,2r+1}a−1r=0 ∪ {Ab+c+k+2,2r}2ar=1.

Since these are all of the states in the non-negative Alexander gradings, this completes the

calculation of the homology groups when b > c.

Case 2: b = c

In this case, one has that b − c = 0 = c − b. The only states with positive Alexander

grading are the states Cij with i + j > b + c + 2. All of these states are generators of

homology, and the calculation of the ranks is the same as in Case 1.
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In Alexander grading 0, the generating sets for the homology depend on whether a < b,

a = b or a > b, however the rank doesn’t change.

Using the fact that ∂̂(B2c+1,2p+1) = C2c−2p,2p+2 + C2c−2p+1,2p+1 + A2c+1,2p−2s+1, one can

easily check that a generating set is given by

{A2b+1,2r+1}a−1r=0 ∪ {C2c−2r+1,2r+1}a−1r=0 ∪ {C2c−2a+1,2a+1, C2c−2a,2a+2, · · · , C1,2b+1} a < c = b

{C2c+1,1, C2c−1,3, · · · , C2c−2a+1,2a+1} ∪ {A2b+1,1, A2b+1,3, · · · , A2b+1,2a−1} a = c = b

{C2c−2r+1,2r+1}br=0 ∪ {A2b+1,2a−2b+1, A2b+1,2a−2b+3, · · · , A2b+1,2a−1} a > c = b,

all of which are sets of cardinality 2b+ 1 = 2c+ 1. Note, the only states Bik in Alexander

grading 0 are B2c+1,2p+1 for 0 ≤ p ≤ a− 1, none of which lie in ker(∂̂).

For the family of three strand pretzel knots given by P (2c + 1,−2b − 1, 2a), the hat

version of the homology Ĥ(P (2c+ 1,−2b− 1, 2a)) is thin (contained in a single diagonal

M − A) when b ≥ c, and when c > b ≥ a. Using the equivalence between ĤFK(D)

and Ĥ(D) from [48, 49], in these cases the classical knot Floer complex CFK∞(D) is

completely determined by the concordance invariant τ and the Alexander polynomial, as

proven by [52]. Applying Proposition 3.18 and Lemma 3.19 allows for the determination of

τ , which is equal to −σ
2 , where σ is signature of these knots. This signature is calculable

using the techniques of [7]. These knots are called σ-thin, following the terminology

of [52].

However, in remaining case when c > b and a > b, the homology groups Ĥ(D) are not

thin, and so HFK−(D) and CFK∞(D) are not directly calculable simply from τ and the

Alexander polynomial.

6.2 Calculation of H−(D)

The determination of H−(D), when D is a special knot diagram of P (2c+ 1,−2b− 1, 2a)

with min(a, c) > b follows as a corollary from the determination of C(D) in Theorem 6.1.

For comparison, in [49], the bigraded homology group H−(D) for a special knot diagram

D is denoted J U (D) = H(C(D)/V = 0).

Theorem 6.6 Let D be a special knot diagram of P (2c+ 1,−2b− 1, 2a) with min(a, c) >

b, with a diagram of the form described in Figure 6.1. Denote by H−(D, s) the group

⊕dH−(D)d,s, where s is the Alexander grading and d the Maslov grading. The homology
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groups H−(D) as described in Definition 6.2 are then as follows:

H−(D, 2`− b− c− 1) = F`d=2`−2c−1 1 ≤ ` ≤ b

H−(D, 2`− b− c) = F`d=2`−2c 1 ≤ ` ≤ b− 1

H−(D, b− c) = Fb+1
d=2b−2c

H−(D, b− c+ 1) = F[U ]d=2b−2c+2 ⊕ Fa−b−1d=2b−2c+2

H−(D, 2`− b− c) = Fa−b−1d=2`−2c+1 b+ 1 ≤ ` ≤ c

H−(D, 2`− b− c− 1) = Fa−bd=2`−2c b+ 1 < ` ≤ c

H−(D, c− b+ 2`+ 1) = Fb−`d=2`+1 0 ≤ ` ≤ b− 1

H−(D, c− b+ 2`) = Fb−`+1
d=2` 1 ≤ ` ≤ b.

Proof From Table 2.2, the minimal Alexander grading of any state Ajk, Bik or Cij is

−b− c− 1, which is achieved for states

{A1,2r}ar=1 ∪ {B1,2r}2ar=1.

Using Theorem 6.1, one has that

∂−(A1,2r) = UA1,2r+1

∂−(B1,2r) = A1,2r + UB1,2r+1.

Hence, since no cancellation can occur, one has that none of the elements above live in

ker(∂−), and so the homology in Alexander grading −b− c− 1 is trivial. It is also simple

to check that (∂−)2 = 0 when applied to either of these states, as can be expected from a

chain complex.

Likewise, the states in Alexander grading −b− c are

{A1,2r+1, B1,2r+1}a−1r=0 ∪ {A2,2r, B2,2r}ar=1 ∪ {C11}.

Applying Theorem 6.1 once more, the action of ∂− on these states is as follows:

∂−(A11) = U(A21 + C12)

∂−(A1,2r+1) = 0

∂−(A2,2r) = U(A3,2r +A2,2r+1)

∂−(B11) = A11 + C11

∂−(B1,2r+1) = A1,2r+1
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∂−(B2,2r) = (C2−2r+1,2r−1 +A2,2r−2) + U(B3,2r +B2,2r+1)

∂−(C11) = U(A21 + C12).

Using this, it is clear that ker(∂−) in this Alexander grading is spanned by

{A11 + C11} ∪ {A1,2r+1}a−1r=0 ,

which are also terms that feature in im(∂−). Hence, the homology group is also trivial in

Alexander grading −b− c.

Alexander grading 2`− b− c− 1

The states with Alexander grading 2`− b− c− 1 for 1 ≤ ` ≤ b are:

{A2`,2r+1, B2`,2r+1}a−1r=0 ∪ {A2`+1,2r, B2`+1,2r}2ar=1 ∪ {Cij}i+j=2`+1.

Fixing ` in the range 1 ≤ ` ≤ b, applying Theorem 6.1 the differential ∂− acts as follows

upon these states:

∂−(A2`,2r+1) = UA2`+1,2r+1

∂−(A2`+1,2r) = UA2`+1,2r+1

∂−(C2p+1,2`−2p) = U(C2p+1,2`−2p+1 + C2p,2`−2p+2) 0 ≤ p ≤ `− 1

∂−(C2p,2`−2p+1) = U(C2p+1,2`−2p+1 + C2p,2`−2p+2) 0 ≤ p ≤ `

∂−(B2`,2r+1) = C2`−2r,2r+1 + UB2`+1,2r+1 0 ≤ r ≤ `− 1

∂−(B2`,2r+1) = A2`,2r−2`+1 + UB2`+1,2r+1 ` ≤ r ≤ a− 1

∂−(B2`+1,2r) = C2`−2r+1,2r + UB2`+1,2r+1 1 ≤ r ≤ `

∂−(B2`+1,2r) = A2`+1,2r−2` + UB2`+1,2r+1 `+ 1 ≤ r ≤ a− 1

∂−(B2`+1,2a) = A2`+1,2a−2` +A2`,2a−2`+1.

Using the above, one has that in this Alexander grading, ker(∂−) contains the terms

{A2`+1,2r +A2`,2r+1}a−1r=1 ∪ {A2`+1,2a} ∪ {C2p+1,2`−2p + C2p,2`−2p+1}`−1p=0.

Note that the sums of the Cij terms appear in the image of ∂−, since for 1 ≤ r ≤ ` − 1,

one has that:

∂−(B2`+1,2 +B2`,3) = C2`−1,2 + C2`−2,3

∂−(B2`+1,4 +B2`,5) = C2`−3,4 + C2`−4,5
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...

∂−(B2`+1,2`−2 +B2`,2`−1) = C3,2`−2 + C2,2`−1.

Similarly, for l + 1 ≤ r ≤ a− 1, the sums of Ajk terms also appear in im(∂−), since

∂−(B2`+1,2`+2 +B2`,2`+3) = A2`+1,2 +A2`,3

∂−(B2`+1,2`+4 +B2`,2`+5) = A2`+1,4 +A2`,5

...

∂−(B2`+1,2a−2 +B2`,2a−1) = A2`+1,2a−2`−2 +A2`,2a−2`−1

∂−(B2`+1,2a) = A2`+1,2a−2` +A2`,2a−2`+1.

Furthermore, since ∂−(A2`,2r) = U(A2`+1,2r + A2`,2r+1), for every 1 ≤ r ≤ a − 1, the

homology in Alexander grading 2`− b− c− 1 is given by

(
{A2`+1,2t +A2`,2t+1}a−1t=a−`+1 ∪ {A2`+1,2a}

)
/
(
{U(A2`+1,2t +A2`,2t+1)}a−1t=a−`+1 ∪ {UA2`+1,2a}

)
,

which gives a group isomorphic to F`.

Alexander grading 2`− b− c

The states with Alexander grading 2`− b− c for 1 ≤ ` ≤ b− 1 are

{A2`+1,2r+1, B2`+1,2r+1}a−1r=0 ∪ {A2`+2,2r, B2`+2,2r}ar=1 ∪ {Cij}i+j=2`+2.

Applying the calculation in Theorem 6.1 and setting V = 0 for the map d : C(D)→ C(D),

one has that:

∂−(A2`+1,1) = U(A2`+2,1 + C1,2`+2)

∂−(A2`+1,2r+1) = 0 1 ≤ r ≤ a− 1

∂−(A2`+2,2r) = UA2`+3,2a

∂−(C1,2`+1) = U(A2`+2,1 + C1,2`+2)

∂−(C2p+1,2`−2p+1) = U(C2p+1,2`−2p+2 + C2p,2`−2p+3) 1 ≤ p ≤ `

∂−(C2p,2`−2p+2) = U(C2p,2`−2p+3 + C2p+1,2`−2p+2) 1 ≤ p ≤ `

∂−(B2`+1,2r+1) = C2`−2r,2r+2 + C2`−2r+1,2r+1 0 ≤ r ≤ `− 1

∂−(B2`+1,2`+1) = C1,2`+1 +A2`+1,1

∂−(B2`+1,2r+1) = A2`+1,2r−2`+1 `+ 1 ≤ r ≤ a− 1
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∂−(B2`+2,2r) = C2`−2r+3,2r−1 + U(B2`+3,2r +B2`+2,2r+1) 1 ≤ r ≤ `

∂−(B2`+2,2r) = A2`+2,2r−2`−2 + U(B2`+3,2r +B2`+2,2r+1) `+ 1 ≤ r ≤ a.

As a consequence, it is easy to see that the terms A2`+1,1 + C1,2`+1, {A2`+1,2r+1}a−1r=0 and

{C2p+1,2`−2p+1 +C2p,2`−2p+2}`p=1 are all of the generators in ker(∂−) in Alexander grading

2`− b− c for 1 ≤ ` ≤ b− 1.

The term A2`+1,1 + C1,2`+1 lies in im(∂−), as it is equal to ∂−(B2`+1,2`+1). Also, each

term in the set {C2p+1,2`−2p+1 + C2p,2`−2p+2}`p=1 lies in im(∂−) using the calculation of

∂−(B2`+1,2r+1) above. Furthermore, {A2`+1,2r+1}a−`−1r=1 also lie in im(∂−) from the same

term with `+ 1 ≤ r ≤ a− 1.

What is more, since ∂−(A2`+1,2r) = UA2`+1,2r+1 when 1 ≤ ` ≤ b− 1, H−(D, 2`− b− c) is

isomorphic to

{A2`+1,2r+1}a−1r=a−`/{UA2`+1,2r+1}a−1r=a−`
∼= F`.

Alexander grading b− c

In Alexander grading 2b− b− c = b− c, the terms in ker(∂−) are:

{C1,2b+1} ∪ {A2b+1,2r+1}a−1r=0 ∪ {C2p+1,2b−2p+1 + C2p,2b−2p+2}bp=1.

Likewise, as in the calculation above, one has that

im(∂−) 3 {A2b+1,1 + C1,2b+1} ∪ {A2b+1,2r+1}a−b−1r=1 ∪ {C2p+1,2b−2p+1 + C2p,2b−2p+2}bp=1.

Once more, employing the fact that ∂−(A2b+1,2r) = UA2b+1,2r+1, the group H−(D, b− c)
is isomorphic to

{A2`+1,2r+1}a−1r=a−`/{UA2`+1,2r+1}a−1r=a−` ⊕ {A2b+1,1}/{UA2b+1,1} ∼= Fb+1.

Alexander grading b− c+ 1

The possible Kauffman states in Alexander grading b− c+ 1 are

{B2b+2,2r+1}a−1r=0 ∪ {B2b+3,2r}ar=1 ∪ {Cij}i+j=2b+3.

Recall, from Table 2.2, there are no Ajk states in this Alexander grading or in any greater

Alexander grading.
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Note here, that the only assumption in this corollary is that min(a, c) > b, hence one

might have that c = b + 1. Thus, 2b + 3 = 2(b + 1) + 1 = 2c + 1, so each Bik term is a

generator corresponding to an appropriate Kauffman state.

Applying once more the calculation of ∂− from adapting Theorem 6.1, the action of the

differential on these states is as follows.

∂−(C2,2b+1) = UC3,2b+1

∂−(C2p,2b+3−2p) = U(C2p,2b+4−2p + C2p+1,2b+3−2p) 2 ≤ p ≤ b

∂−(C2b+2,1) = U(C2b+2,2 + C2b+3,1)

∂−(C3,2b) = UC3,2b+1

∂−(C2p+1,2b+2−2p) = U(C2p,2b+4−2p + C2p+1,2b+3−2p) 2 ≤ p ≤ b

∂−(B2b+2,2r+1) = C2b+2−2r,2r+1 + UB2b+3,2r+1 0 ≤ r ≤ b

∂−(B2b+2,2r+1) = UB2b+3,2r+1 b+ 1 ≤ r ≤ a− 1

∂−(B2b+3,2r) = C2b+3−2r,2r + UB2b+3,2r+1 1 ≤ r ≤ b

∂−(B2b+3,2r) = UB2b+3,2r+1 b+ 1 ≤ r ≤ a− 1

∂−(B2b+3,2a) = 0.

Hence, in this Alexander grading, one has that ker(∂−) is spanned by

{C2p,2b+3−2p + C2p+1,2b+2−2p}bp=1 ∪ {B2b+2,2r+1 +B2b+3,2r}a−1r=b+1 ∪ {B2b+3,2a}.

Each of the terms C2p,2b+3−2p+C2p+1,2b+2−2p appear in im(∂−), from the terms ∂−(B2b+2,2r+1+

B2b+3,2r) with 1 ≤ r ≤ b.

Since ∂−(B2b+2,2r) = U(B2b+3,2r+B2b+2,2r+1) when b+2 ≤ r ≤ a−1, and ∂−(B2b+2,2a) =

UB2b+3,2a, the group H−(D, b− c+ 1) contains a subgroup Fa−b−2 ⊕ F ∼= Fa−b−1.

However, the term B2b+2,2b+3 + B2b+3,2b+2 and any Uk-multiple of this does not ap-

pear in im(∂−). This is because the term ∂−(B2b+2,2b+2) = C1,2b+1 + U(B2b+3,2b+2 +

B2b+2,2b+3). An examination of Theorem 6.1 demonstrates that there is no way to cancel

the C1,2b+1 term in this sum. As a consequence, B2b+2,2b+3 + B2b+3,2b+2 ∈ ker(∂−), but

since Uk(B2b+2,2b+3 +B2b+3,2b+2) for any k ∈ N, this generates a subgroup F[U ] in homol-

ogy. Hence, the group H−(D, b − c + 1) is only non-zero in Maslov grading 2b − 2c + 2,

and is isomorphic to

H−(D, b− c+ 1) ∼= F[U ]⊕ Fa−b−1.
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As a remark, there is a special case when a = b+1, since then there is no term B2b+2,2b+3 =

B2b+2,2a+1. However, similar logic holds, since B2b+3,2a ∈ ker(∂−), yet because

∂−(B2b+2,2b+2) = ∂−(B2b+2,2a) = C1,2b+1 + UB2b+3,2a 6= 0,

no U -multiples of B2b+3,2a ever appear in im(∂−). Hence, this generates F[U ], and this is

the only homology in this Alexander grading when a = b+ 1.

Alexander grading 2`− b− c, ` > b

The states in Alexander grading 2`− b− c with ` > b are

{B2`+2,2p}ap=1 ∪ {B2`+1,2p+1}a−1p=0 ∪ {Cij}i+j=2`+2,

noting once more that there are no statesAjk with Alexander grading greater than b−c < 0.

The action of ∂− on these states is then given by the following:

∂−(C2p,2`+2−2p) = U(C2p,2`+3−2p + C2p+1,2`+2−2p) `− b+ 1 ≤ p ≤ `

∂−(C2p+1,2`+1−2p) = U(C2p,2`+3−2p + C2p+1,2`+2−2p) `− b+ 1 ≤ p ≤ `

∂−(C2`−2b+1,2b+1) = 0

∂−(B2`+2,2p) = C2`+3−2p,2p−1 + U(B2`+3,2p +B2`+2,2p+1) 1 ≤ p ≤ b+ 1

∂−(B2`+2,2p) = U(B2`+3,2p +B2`+2,2p+1) b+ 2 ≤ p ≤ a− 1

∂−(B2`+2,2a) = UB2`+3,2a

∂−(B2`+1,2p+1) = C2`−2p,2p+2 + C2`−2p+1,2p+1 0 ≤ p ≤ b− 1

∂−(B2`+1,2b+1) = C2`−2b+1,2b+1

∂−(B2`+1,2p+1) = 0 b+ 1 ≤ p ≤ a− 1.

As a consequence, the generators in ker(∂−) in this Alexander grading are

{B2`+1,2p+1}a−1p=b+1 ∪ {C2p,2`+2−2p + C2p+1,2`+1−2p}`p=`−b+1 ∪ {C2`−2b+1,2b+1}.

Note that C2`−2b+1,2b+1 = ∂−(B2`+1,2b+1), and C2p,2`+2−2p+C2p+1,2`+1−2p = ∂−(B2`+1,2`−2p+1).

Furthermore, since ∂−(B2`+1,2p) = UB2`+1,2p+1 when p ≥ b+ 1, one deduces that

H−(D, 2`− b− c) ∼= Fa−b−1d=2`−2c+1 for l > b.

Alexander grading 2`− b− c− 1, ` > b+ 1
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The only states in this Alexander grading are

{B2`+1,2p}ap=1 ∪ {B2`,2p+1}a−1p=0 ∪ {Cij}i+j=2`+1.

The differential ∂− acts on these states as follows:

∂−(C2`−2b,2b+1) = UC2`−2b+1,2b+1

∂−(C2p,2`+1−2p) = U(C2p,2`+2−2p + C2p+1,2`+1−2p) `− b+ 1 ≤ p ≤ `

∂−(C2`−2b+1,2b) = UC2`−2b+1,2b+1

∂−(C2p+1,2`−2p) = U(C2p,2`+2−2p + C2p+1,2`+1−2p) `− b+ 1 ≤ p ≤ `− 1.

∂−(B2`+1,2p) = C2`−2p+1,2p + UB2`+1,2p+1 1 ≤ p ≤ b

∂−(B2`+1,2p) = UB2`+1,2p+1 b+ 1 ≤ p ≤ a− 1

∂−(B2`+1,2a) = 0

∂−(B2`,2p+1) = C2`−2p,2p+1 + UB2`+1,2p+1 0 ≤ p ≤ b

∂−(B2`,2p+1) = UB2`+1,2p+1 b+ 1 ≤ p ≤ a− 1.

From above, ∂−(B2`,2p+1 + B2`+1,2p) = C2`−2p,2p+1 + C2`−2p+1,2p for 1 ≤ p ≤ b. Hence,

despite the fact that C2`−2p,2p+1 + C2`−2p+1,2p ∈ ker(∂−), these terms do not contribute

to the homology.

Furthermore, ∂−(B2`,2p) = U(B2`,2p+1 + B2`+1,2p) for p ≥ b + 2. What is more, using

Theorem 6.1, one can check that ∂−(B2`,2b+2 + B2`−1,2b+1) = U(B2`+1,2b+2 + B2`,2b+3).

Hence, one has that {UB2`,2p+1+UB2`+2,2p}a−1p=b+1 ∈ im(∂−). Similarly, since ∂−(B2`,2a) =

UB2`+1,2a, one has that im(∂−) 3 UB2`+1,2a

Then, since one has that {UB2`,2p+1+UB2`+2,2p}a−1p=b+1∪{B2`+1,2a} ∈ ker(∂−) in Alexander

grading 2`− b− c− 1, the group H−(D, 2`− b− c− 1) is thus

H−(D, 2`− b− c− 1) ∼= Fa−bd=2`−2c.

Alexander grading c− b+ 2`+ 1, 0 ≤ ` ≤ b− 1

As described before in the calculation of Ĥ(D), the only states with Alexander grading

greater than c− b are the states Cij with i+ j > 2c+ 2.

Specifically, in Alexander grading c− b+ 2`+ 1, with ` in the range 0 ≤ ` ≤ b− 1, one has

that states

{C2p,2c+2`+3−2p}cp=c+`+1−b ∪ {C2p+1,2c+2`+2−2p}cp=c+`+1−b.
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The differential ∂− acts as follows on these states:

∂−(C2(c+`+1−b),2b+1) = UC2(c+`+1−b)+1,2b+1

∂−(C2p,2c+2`+3−2p) = U(C2p,2c+2`+4−2p + C2p+1,2c+2`+3−2p) c+ `+ 2− b ≤ p ≤ c

∂−(C2(c+`+1−b)+1,2b) = UC2(c+`+1−b)+1,2b+1

∂−(C2p+1,2c+2`+2−2p) = U(C2p,2c+2`+4−2p + C2p+1,2c+2`+3−2p) c+ `+ 2− b ≤ p ≤ c.

Consequently, one has that {C2p,2c+2`+3−2p + C2p+1,2c+2`+2−2p}cp=c+`+1−b} ∈ ker(∂−).

Since one also has that ∂−(C2p,2c+2`+2−2p) = U(C2p,2c+2`+3−2p + C2p+1,2c+2`+2−2p) from

Theorem 6.1, it is clear that each of these terms generates a subgroup F in H−(D, c− b+

2`+ 1). Hence,

H−(D, c− b+ 2`+ 1) ∼= Fb−`.

Alexander grading c− b+ 2`, 1 ≤ ` ≤ b

Like in the previous case, one has that the states in this Alexander grading are Cij such

that i+ j = 2c+ 2`+ 2. These states are

{C2p,2c+2`+2−2p}cp=c+`+1−b ∪ {C2p+1,2c+2`+1−2p}cp=c+`−b

The differential acts on these states by:

∂−(C2p,2c+2`+2−2p) = U(C2p,2c+2`+3−2p + C2p+1,2c+2`+2−2p) c+ `+ 1− b ≤ p ≤ c

∂−(C2(c+`−b)+1,2b+1) = 0

∂−(C2p+1,2c+2`+1−2p) = U(C2p,2c+2`+3−2p + C2p+1,2c+2`+2−2p) c+ `+ 1− b ≤ p ≤ c.

Clearly, fixing `, the generators of the ker(∂−) in this Alexander grading are

{C2p,2c+2`+2−2p + C2p+1,2c+2`+1−2p}cp=c+`+1−b ∪ {C2(c+`−b)+1,2b+1}.

Then, since ∂−(C2(c+`−b),2b+1) = UC2(c+`−b)+1,2b+1, and

∂−(C2p,2c+2`+1−2p) = U(C2p,2c+2`+2−2p + C2p+1,2c+2`+1−2p)

for c+ `+ 1− b ≤ p ≤ c, all of these terms generate the subgroup F in homology. Hence

H−(D, c− b+ 2`) ∼= Fb−`+1.

Using Theorem 6.6, one can extract numerical invariants that have recently been proven

to be equivalent to the classical concordance invariants ν, τ and ε as defined in Chap-

ter 3.
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6.2.1 Numerical invariants

As introduced by Ozsváth-Szabó in [49, Sec. 1.1], the module H(C(D)) — denoted by

them J (D) — is a (∆, A)-graded module over R′ with multiplication actions by both U

and V . These actions are inherited from the actions of U and V on the complex C(D), as

defined in Definition 4.2.

Using [49, Prop. 1.4], which states that H(C(D))⊗F[U ]F[U,U−1] ∼= F[U,U−1] asR′-modules

with multiplication by V acting as multiplication by 0 on F[U,U−1], for a special knot

diagram D one can define the numerical invariants τ and ν. See [49, Def. 1.5,1.6].

Definition 6.7 With the decomposition

H(C(D)) ∼=
⊕
s∈Z

H(C(D), s),

H−(D) ∼=
⊕
s∈Z

H−(D, s),

where s is the Alexander grading, define the knot invariant τ(D) ∈ Z as

τ(D) = −max
s∈Z

{
θ ∈ H−(D, s)

∣∣∣ Ud · θ 6= 0 ∀d ∈ N
}
.

Similarly, define the invariant ν(D) ∈ Z as

ν(D) = −max
s∈Z

{
θ ∈ H(D, s)

∣∣∣ Ud · θ 6= 0 ∀d ∈ N
}
.

With the recently proven equivalence equivalence between C(D) and CFKR′(K), as demon-

strated in [48], these invariants τ and ν are equal to their counterparts τ and ν from

classical knot Floer homology.

Independent of this equivalence, in [49] it was demonstrated that these numerical invari-

ants extracted from C(D) satisfy the same crossing change inequalities as their classical

counterparts, as described on page 45.

Proposition 6.8 [49, Prop. 1.7] For D+ a special knot diagram with specified (oriented)

positive crossing, define D− as the special knot diagram with this crossing switched to a

negative crossing. Then

τ(D+)− 1 ≤ τ(D−) ≤ τ(D+)

ν(D+)− 1 ≤ ν(D−) ≤ ν(D+).
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Furthermore, for any special knot diagram D,

τ(D) ≤ ν(D).

These inequalities are proven in [49, Sec. 11.2]. In particular, the fact that τ(D) ≤ ν(D)

follows from the fact that any U -nontorsion element in H(C(D)) is also U -nontorsion in

H−(D). In the language of [4], the U -nontorsion element in H(C(D)) is the U -tower for

the complex C(D). The fact that C(D) is a knot-like complex comes from the recently

proven equivalence of C(D) with classical knot Floer homology, and the work of [4].

Theorem 6.6 then gives the determination of τ(P (2c + 1,−2b − 1, 2a)) with min{a, c} >
b.

Corollary 6.9 For D a special knot diagram of the three strand pretzel knot P (2c +

1,−2b− 1, 2a) with min{a, c} > b, the quantity τ is given by

τ(D) = c− b− 1.

Proof From the proof of Theorem 6.6, in Alexander grading b−c+1, the term B2b+2,2b+3+

B2b+3,2b+2 generates a subgroup F[U ] in H−(D) when a > b + 1, else the term B2b+3,2a

generates F[U ] when a = b+ 1.

Hence, from Definition 6.7, as this is the only Alexander grading with a non-torsion ele-

ment,

τ(D) = −(b− c+ 1) = c− b− 1.

Note, it was determined in Proposition 3.18 that the classical τ invariant defined by

Ozsváth-Szabó lies in the range

c− b− 1 ≤ τ(P (2c+ 1,−2b− 1, 2a)) ≤ g4(P (2c+ 1,−2b− 1, 2a)) ≤ c− b.

Gratifyingly, using the equivalence between the classical and bordered invariants, Corol-

lary 6.9 does not contradict this restriction. Furthermore, since ν(K) ∈ {τ(K), τ(K) + 1}
for every oriented knot K, for these special knot diagrams one has ν(D) ∈ {c− b− 1, c−
b}.

If ν (P (2c+ 1,−2b− 1, 2a)) = c − b − 1, one would require that the maximal Alexander

grading s with a U -nontorsion element in H(C(D, s)) is s = b− c+ 1.
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Lemma 6.10 For D a special knot diagram of P (2c+ 1,−2b− 1, 2a) with min{a, c} > b,

one has that

ν(D) = c− b− 1

Proof Consider the element B2b+3,2a. From Theorem 6.1, one has that d(B2b+3,2a) = 0.

In the study of ∂− within Theorem 6.6, this appears in im(∂−) as

∂−(B2b+2,2a) = UB2b+3,2a.

However, when V 6= 0, one has that

d(B2b+2,2a) = UB2b+3,2a + V B2b+1,2a−2.

One can check that no other term can cancel this V B2b+1,2a−2 term in the sum – i.e.

V B2b+1,2a−2 /∈ im(d). Hence, UB2b+3,2a /∈ im(d), and so B2b+3,2a is a U -nontorsion state

because Ud ·B2b+3,2a 6= 0 in H(C(D)) for every d ∈ N.

The state B2b+3,2a has Alexander grading b− c+ 1. If there were some terms with strictly

larger Alexander grading that are also U -nontorsion, one would thus have that

ν(D) < −(b− c+ 1) = τ(D).

However, this cannot be true, as Proposition 6.8 states that τ(D) ≤ ν(D). Hence, this

must be the maximal Alexander grading with such a U -nontorsion element, and so ν(D) =

c− b− 1.

6.2.2 Other invariants of R′-modules

The information within H(C(D)) and H−(D) can be used to place bounds upon other

numerical invariants, such as the concordance invariants {ϕj}j∈N introduced by Dai et al

in [4].

As proven in [4, Thm. 1.1], for each value j ∈ N, one can use the methods outlined by

Dai-et-al in [4] to construct a surjective homomorphism from C (the concordance group of

knots) to Z. These homomorphisms ϕj are in fact defined as invariants of local equivalence

classes of bigraded chain complexes over R′. By [4, Thm. 2.5] and [62], two concordant

knots K1 and K2 have locally equivalent complexes CFK∗(K1) and CFK∗(K2), where

∗ ∈ {R′,R}. These complexes are as defined in Section 1.3.
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Hence, even without using the recently proven equivalence between CFKR′(D) and C(D),

for a special knot diagram D one can determine numerical invariants ϕj associated to local

equivalence classes of complexes C(D).

For the sake of brevity, a full definition of these invariants ϕj will be omitted, however

what follows is a rough outline of their construction from [4].

As outlined in Section 1.4.1, every knot-like complex over R′ is locally equivalent to a

reduced knot-like complex. Recall, this is a complex such that the differential acting upon

any element of the complex is strictly increasing in either the power of U , power of V ,

or both. The invariants {ϕj} are defined from standard complexes, a subset of reduced,

knot-like complexes.

Definition 6.11 [4, Def. 4.3] For n an even natural number, let (b1, b2, · · · , bn) be a se-

quence of non-zero integers. A standard complex of type (b1, · · · , bn), denoted C(b1, · · · , bn),

is the knot-like complex freely generated over R′ by {x0, x1, · · · , xn}, such that:

� Every pair of generators x2k, x2k+1 are connected by a U |b2k+1|-arrow. If b2k+1 is

positive, then the arrow goes from x2k+1 to x2k, and the reverse otherwise.

� Every pair of generators x2k+1, x2k+2 are connected by a V |2k+2|-arrow.

A U `-arrow (respectively V `-arrow) is a map that when applied to some generator x yields

generator U `y (respectively V `y). In the diagrammatic representation of the complex,

following Figure 1.5, these would be horizontal (respectively vertical) arrows of length `.

The above should be sufficient to define the complex C(b1, b2, · · · , b2k) and the associated

differential, however full detail is presented in [4]. The state x0 is the V -tower, and the state

xn is the U -tower, as defined by Definition 1.15. Hence, grU (x0) = 0, and grV (xn) = 0,

since this is a knot-like complex. From the following result of [4], every knot-like complex

is locally equivalent to some standard complex.

Theorem 6.12 [4, Thm 6.1] Every knot-like complex C is locally equivalent to a standard

complex.

Idea of proof Using the fact that one can place a total order upon the set of standard

complexes, for any knot-like complex C one can define integers {ai(C)}i∈N such that there

is a standard complex with standard sequence {ai}i∈N that is locally equivalent to C.

Furthermore, it is proven in [4, Prop. 6.3] that for every knot-like complex there is some
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N ∈ N such that ai(C) = 0 for i > N . These invariants ai are defined in [4, Sec. 5].

Consequently, for each knot-like complex C there is some standard complex C(a1, · · · , a2k)
to which it is locally equivalent to it. The invariants ϕj of any knot-like complex are defined

as follows.

Definition 6.13 [4, Def. 7.1] For C a knot-like complex, let the standard complex that

is locally equivalent to this be denoted C(a1, a2, · · · a2k). Then, for each j ∈ N, define

ϕj(C) = #{ai|ai = j, i odd} −#{ai|ai = −j, i odd}.

The invariants ϕj are thus a signed count of the number of horizontal arrows of length j

in the standard complex that is locally equivalent to then knot-like complex.

These invariants {ϕj} are recoverable from any knot-like complex, and only use the purely

vertical and purely horizontal information in CFKR(K). Properties of these invariants are

presented in [4]; by construction they provide homomorphisms from the concordance group

to Z for each j ∈ N. Furthermore, they are linearly independent, and can be used to bound

the concordance genus and concordance unknotting number of knots, see [4, Sec. 1.3].

But, for three-strand pretzel knots, the local equivalence class of the bigraded invariant

C(D) can be used to show that the invariants ϕj(C(D)) are only possibly non-zero for one

value of j.

Lemma 6.14 For D a special knot diagram of a three-strand pretzel knot P (2c+ 1,−2b−
1, 2a), and C(D) the bigraded chain complex defined by [49], then

ϕj(C(D)) = 0 j > 1.

Proof Excepting the case where min{a, c} > b, the homology theory Ĥ(D) of a special

knot diagram D isotopic to P (2c + 1,−2b − 1, 2a) is contained in a single diagonal ∆ =

M − A, where M and A are the Alexander gradings. Hence, the knots are homologically

thin. Following [4, Prop. 1.4], the invariants ϕj(K) for homologically thin knots K are

determined by their τ -invariants (equivalently their τ -invariants). Namely:

ϕj(K) =


τ(K) if j = 1

0 otherwise.

The fact that CFKR′(D) is a knot-like complex is demonstrated in [4, Sec. 2]. The

complex CFKR′(D) has a single V -tower with Maslov grading (equivalent to the grU -
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grading) equal to 0. This is the generator of H(C{i = 0}) as introduced in Definition 3.2.

From the symmetry of knot Floer homology, the V -tower in CFKR′(D) corresponds under

the symmetry of the complex CFKR′(D) and CFKR′(D) that interchanges the values of

grU and grV to the U -tower of CFKR′(D).

Consequently, using the recent equivalence between C(D) and CFKR′(D), C(D) is a knot-

like complex. Hence, one can determine the invariants ϕj for the complexes defined using

the method of [49].

Denote by TorsU (H−(D)) the U -torsion submodule of the F[U ]-module H−(D). From

Theorem 6.6, this torsion submodule is generated by all elements that are not the U -tower

(the generator of the F[U ]-term).

Hence, since all other terms in the H−(D) are F, one has that U j ·TorsU (H−(D)) = 0 for

all j ≥ 1. Employing [4, Prop. 1.15], ϕj(D) = 0 for all j > 1.

From [4, Prop. 1.2], the classical concordance invariant τ can be determined from the

family of invariants {ϕj(K)}. Namely, one has that

τ(K) =
∑
j∈N

j · ϕj(K).

This provides the following easy corollary, determining ϕ1(K) in all cases.

Corollary 6.15 For any three-strand pretzel knot K = P (2c + 1,−2b − 1, 2a), one has

that ϕ1(K) = τ(K).

Proof Combining the calculation from Lemma 6.14, and [4, Prop. 1.2], one has that

∑
j∈N

j · ϕj(K) = ϕ1(K) = τ(K).

6.2.3 Numerical invariants as concordance invariants

The classical invariants ν and τ extracted from CFK∞(K) or appropriate sub- or quotient

complexes of this are concordance invariants, as discussed in Chapter 3. However, without

using the equivalence between the theories, the invariants ν and τ are only numerical

invariants of the complex C(D).

More strictly, as described in [49, Sec. 11.2], if C1 and C2 are quasi-isomorphic as bigraded

chain complexes over R′, then ν(C1) = ν(C2) and τ(C1) = τ(C2). This would make ν and

τ invariants of the quasi-isomorphism class of H∗(C(D)). But, since the quasi-isomorphism
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D1

D2

Figure 6.2: Above the horizontal line, one has the special knot diagram associated to the

disjoint uinion of D1 t D2. The idempotent of all upper Kauffman states for this upper

knot diagram is I13, displayed in blue. Below the horizontal line, one has the two minima

that form the connect sum D1#D2.

class of H∗(C(D)) is a knot invariant [49, Thm. 1.1], so are ν and τ . Yet without using

the recently proven equivalence between the theories, τ and ν are invariants associated to

knots, not concordance classes.

In [49, Sec. 9.1], Ozsváth-Szabó examined C(D1#D2), where D1 is an oriented special knot

diagram of knot K1, and D2 an oriented special knot diagram of K2. Let D1 and D2 be the

upper knot diagrams for D1 and D2 that result from excising their global minima. Then,

because one can place all maxima, minima and crossings of D2 at y-values below those of

D1, the generators of the Type D structure associated to D1 tD2 are tensor products of

upper Kauffman states of D1 and D2. This is demonstrated in Figure 6.2.

Due to the fact that the upper Kauffman states of the upper knot diagrams D1 and D2

have associated idempotents I1 and I3, as only the global minimum has been excised, the

upper Kauffman states corresponding to generators of D1tD2 have associated idempotent

I13. More specifically, the upper Kauffman states of D1 tD2 are

∑
Xi K.S. for Di

I1 ·X1 ⊗ I3 ·X2.

Proposition 6.16 For D1 and D2 special knot diagrams, with global minima oriented



CHAPTER 6. RESULTS AND THE FULL INVARIANT 220

right to left, the chain complex C(D1#D2) satisfies the Künneth relation, that is

C(D1#D2) ∼= C(D1)⊗ C(D2).

Proof To yieldD1#D2 fromD1tD2, as pictured in Figure 6.2, one attaches the lower knot

diagram corresponding to tf1� f̃2. The DA-bimodule f̃2 is as defined in Definition 4.45,

with a single generator I1 ·Q · I13.

Since by construction the Kauffman states for the D1 and D2 components do not include

2 in their idempotents, the non-zero maps in f̃2 are:

δ12(Q,Uk1 ) = Uk1 ⊗Q

δ12(Q,Uk4 ) = Uk2 ⊗Q

δ11+1+k(Q,U
k
2 , C

⊗k
34 ) = Uk2 ⊗Q

δ11+1+k(Q,U
k
3 , C

⊗k
12 ) = Uk1 ⊗Q

δ13(Q,C12, C34) = C12 ⊗Q.

Pairing this with the A∞-module Y ′A(1) as defined in Definition 4.43, the A∞-module

corresponding to the minima in Figure 6.2 is Y ′ � f̃2
A(2), with a single generator H · I13,

and maps

m1+j :
(
Y ′ � f̃2

)
⊗A(2)⊗j → Y ′ � f̃2,

defined by

m2(H,U
k
1 ) = Uk ⊗H

m2(H,U
k
4 ) = V k ⊗H

m1+1+k(H,U
k
2 , C

⊗k
34 ) = V k ⊗H

m1+1+k(H,U
k
3 , C

⊗k
12 ) = Uk ⊗H.

Roughly, this means that elements U1 and U3 correspond with U in R′, and the elements

U2 and U4 with V in R′.

Abusing notation slightly, and letting Di denote the Type D structure associated with the

upper knot diagram Di, in D1 one would have that U1 would pair with m2(H · I1, U1) =

U ⊗H in Y ′, and U2 with m2(H · I1, U2) = V ⊗H. Similarly for U1 and U2 in D2. In the

disjoint union D1 t D2, the term U1 in D2 would correspond to U3 in D1 t D2, and U2

with U4.
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If in D1 and D2 there are elements x1 and x2 respectively, such that

d(x1) =
∑

ai ⊗ y1i d(x2) =
∑

bi ⊗ y2i

for ai, bi ∈ {Uk1 , U `2}, then in D1 tD2 one thus has that

d(I13 · (x1 ⊗ x2)) = ai ⊗ (y1i ⊗ x2) + φ(bi)⊗ (x1 ⊗ y2i ),

where the map φ is such that φ(Uj) = Uj+2. This is perhaps easiest to visualise using

the interpretation of these maps as corresponding to partial domains between intersec-

tion points in upper Heegaard diagrams. Because the Maslov and Alexander gradings are

determined by local contributions, and the two components are disconnected, partial do-

mains between two upper Kauffman states with Maslov grading differing by one are either

contained solely in the upper Heegaard diagram for D1 or the upper Heegaard diagram

for D2.

Hence, pairing this with the A∞-module defined above, and using the familiar box-tensor

product between Type D structures and A∞-modules (see Section 4.5.2) one has that

∂D1#D2(H · I13 ⊗ (x1 ⊗ x2)) = ∂D1(H · I1 ⊗ x1)⊗ x2 + x1 ⊗ ∂D2(H · I1 ⊗ x2).

This is because ai and φ(bi) (together with appropriate matching terms) yield U and V

terms in the chain complex as in the disjoint union. This shows the differential acts as it

would under the tensor product of two chain complexes, as required.

Corollary 6.17 The knot invariants ν and τ are additive under the connect sum opera-

tion.

Proof Since the Alexander grading is determined by the local contributions at Kauffman

states at each crossing, and that any element in the kernel of ∂D1#D2 (or quotient with

V = 0) needs to have tensor-coordinate components that are in the kernel of ∂D1 and

∂D2 , then the non-torsion element in H(C(D1#D2)) has to be the tensor product of the

non-torsion elements in D1 and D2. The local contributions of the grading then imply

that the Alexander gradings of each tensor coordinate are summed together, so making

the invariants additive.

6.3 Further directions for study

As remarked within this thesis, the divide-and-conquer construction of C(D) is a useful

tool for providing a combinatorial method for the construction of a bigraded complex
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equivalent to CFKR′(D). From C(D), one can then extract homology theories equivalent

to ĤFK(D) andHFK−(D), and concordance invariants equivalent to τ and ν. As evinced

by the speed of the C++ program [47] published by Ozsváth-Szabó, this combinatorial

method of determining a complex equivalent to knot Floer homology ĤFK(K) has the

advantage of using fewer generators than the grid homology of [30,35], allowing the swift

determination of some concordance invariants for specific examples of knots.

Although this thesis determines the invariant C(D) for one family of pretzel knots, one

could extend this construction to pretzel knots with four, five, or more strands. As well

as having well-structured Kauffman states — which are in bijection with the generators

of C(D) — all pretzel knots admit special knot diagrams with width three: that is they

admit isotopic special knot diagrams with at most six intersection points between some

generic line y = ` and the special knot diagram.

For a knot with width n, the differential graded algebra A(n) as defined in Definition 4.12

is associated to the horizontal level intersecting the knot at 2n points. Hence, at the

widest point of the special knot diagram, the algebra used is simpler: i.e. has fewer

permitted idempotents than knots with greater width. For this reason, three-strand pretzel

knots (and by extension, all pretzel knots) are particularly amenable to study using this

combinatorial construction, since the algebras and number of possible idempotents does

not grow too computationally complicated. One can verify that specific examples of pretzel

knots D have homology theories Ĥ(D) that can be determined quickly by the program [47],

even for those pretzel knots with high numbers of strands and crossings.

It is however slightly beyond the scope of this thesis to study families of pretzel knots

with more than three-strands. This is because the proofs within this chapter and within

Chapter 5 rely upon good knowledge of the Kauffman states in order to use induction.

This is aided by the simplicity of diagrams representing Type D structures, yet because

pretzel knots with more strands have more complicated Kauffman states, determining

the structure and using induction becomes more difficult. However, with patience, the

author does believe that one could determine C(D) for D a representative of a family of

pretzel knots with more than three strands. It would be particularly advantageous for

such constructions to determine explicitly the DA-bimodules associated to any number of

half twists, so for any k and n the bimodules(
Pk
)�n

and
(
N k
)�n

.
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6.3.1 Concordance invariants and slice-genus of pretzel knots

This thesis determines the algebraic invariant of Ozsváth-Szabó for an infinite family of

knots — the three-strand pretzel knots P (2a,−2b − 1, 2c + 1). Since C(D) is equivalent

to the bigraded complex CFKR′(D) defined in [4], and within [4] the authors extract

an infinite family of concordance invariants from the complex, one could then hope that

the determination of these concordance invariants may answer open questions as to the

slice-genus of representatives of this family.

In [20], Lecuona studies obstructions to sliceness for many examples of three-strand pret-

zel knots. The techniques used include examining the Alexander polynomial and Casson-

Gordon invariants of families of pretzel knots whose slice genus is not known, and exam-

ining double-branched covers of the knots. The Fox-Milnor theorem [6, Thm. 2], states

that if a knot K is slice, then its Alexander polynomial is of the form

∆K(t) = f(t) · f(t−1),

where f is a polynomial with integer coefficients. In [20, Thm. 4.5], Lecuona uses the

Fox-Milnor theorem to obstruct the sliceness of many infinite families of pretzel knot, by

demonstrating that their Alexander polynomial does not have the required form.

Three strand pretzel knots of the form

P

(
a,−a− 2,

−(a+ 1)2

2

)
,

with a ≡ 1, 11, 37, 47, 49, 59 mod (60), are the only family of three-strand pretzel knots

whose slice genus is not yet determined using the methods of [20] or otherwise. However,

in [20, Conj. 1.3] Lecuona conjectures that this family is not slice. Although this family

of pretzel knots is of the form considered in this thesis — i.e. P (2c + 1,−2b − 1, 2a′) for

a′, b, c ∈ N and c = b + 1, for a ≥ 3 — this is a knot where a > b and c > b. Hence,

applying Corollary 6.9 and Lemma 6.10, one has that

τ

(
P (a,−a− 2,

−(a+ 1)2

2
)

)
= ν

(
P (a,−a− 2,

−(a+ 1)2

2
)

)
= 0.

So, these two invariants do not obstruct sliceness in the cases where the slice-genus is not

known.

The infinite family of concordance invariants {ϕj}j∈N also do not obstruct being slice in this

case. From [4, Thm. 1.1], for each j ∈ N, ϕj : C → Z is a surjective homomorphism. How-
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ever, from Lemma 6.14 and Corollary 6.15, one has that ϕj

(
P
(
a,−a− 2, −(a+1)2

2

))
= 0

for all j ∈ N.

But, Theorem 6.1 determines C(P (2c+ 1,−2b− 1, 2a)) for any a, b, c ∈ N, not simply the

homology theory HFK−(P (2c+1,−2b−1, 2a)) or ĤFK(P (2c+1,−2b−1, 2a)). Although

it is beyond the scope of this thesis, it is hoped that the information within this bigraded

complex could be used to try to obstruct sliceness for the remaining family of knots given

by Lecuona, as they are conjectured to have slice genus equal to one.

6.3.2 Information about domains in Heegaard diagrams

Using the recently proven equivalence between algebraic invariant C(D) and classical knot

Floer homology, it would be interesting to consider whether one could recover information

about domains within a Heegaard diagram from the knowledge of counts provided by the

differential within C(D).

One of the difficulties in computing the knot Floer homology of pretzel knots directly from

the Heeagaard diagrams produced from thickened up knot projections is that domains can

arise whose counts are not known. In Eftekhary’s examination of the hat version of knot

Floer homology for pretzel knots, [5], Eftekhary examines domains that have a known

count — see [5, Fig. 7]. These domains are known as arborescent punctured polygons,

introduced by Greene in [9] following the work of Ozsváth-Szabó in [34].

Arborescent punctured polygons, as defined in [9, Def. 6.5], are an extension of the ‘disky

differentials’ as considered in [53]. That is, all disky differentials are arborescent punctured

polygons, but not all arborescent punctured polygons are disky differentials. In particular,

punctured polygons admit boundary components that are solely α or β curves, in addition

to the polygonal boundary composed of alternating α and β curves with only internal

corners.

Without loss of generality, let the internal boundary components in a punctured polygon

be β-curves. These β-curves can be connected to each other, or the boundary, by α-curves

that have degenerate corners on the β-curve boundary components. A punctured polygon

domain D is then arborescent if the complement of these curves in D is connected. Greene

then proved in [9, Lem. 6.6] that if D is an arborescent punctured polygon that is a domain

representing a Whitney disk φ ∈ π2(x, y), then µ(φ) = 1 and #M̂(φ) = ±1.
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Figure 6.3: A domain between intersection points on a subsection of a Heegaard diagram

associated to a three-strand pretzel knot. Using the black states on the topmost two cross-

ings on the right hand strand, the domain pictured is an arborescent punctured polygon.

However, uing the green states at these two crossings yields a non-arborescent punctured

polygon, but with the same interior.

Examining the domains between generators in said Heegaard diagrams for three-strand

pretzel knots, one can find examples of domains that are non-arborescent punctured poly-

gons, but with other domains that have the same interior (but different corners) and are

arborescent punctured polygons. An example is provided in Figure 6.3. Although one

cannot apply [9, Lem. 6.6] to determine the count of pseudo-holomorphic representatives

in the case of non-arborescent punctured polygons, one might be able to use the known

differentials within C(D) to determine information about the counts of the correspond-

ing Whitney disks. This utilises the equivalence between C(D) and CFKR′(D) recently

proven in [48], and the correspondence between differentials in C(D) and domains within

Heegaard diagrams. The author hypothesises that the pseudo-holomorphic counts for

Whitney disks admitting non-arborescent punctured polygons as featured in Figure 6.3

would match the counts on the differentials within C(D), and this would be an interesting

direction for future work.
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[35] P.S. Ozsváth, A. Stipsicz, and Z. Szabó, Grid homology for knots and links, American

Mathematical Survey, 2015.
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