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Abstract

This thesis is concerned with determining the knot Floer homology and concordance in-
variants of pretzel knots, in particular three-strand pretzel knots. Knot Floer homology is
a package of knot invariants developed by Ozsvath and Szabd, and despite the invariants
being known for simple classes of knots — for example quasi-alternating, two-bridge and
L-space knots — there are still many simple families for which knot Floer homology and

the associated concordance invariants are not known.

Recent work by Ozsvath-Szabé in [49] developed a construction of an algebraic invariant
C(D) conjectured by them to be equal to a variant of knot Floer homology. This com-
plex C(D) is a bigraded, bifiltered chain complex whose filtered chain homotopy type is
an invariant of a knot [49]. Their construction — which has also been implemented in a
C++ program, see [47] — is a divide and conquer method which decomposes knot dia-
grams in a certain form into smaller pieces, to which algebraic objects are then associated.
These algebraic objects are themselves invariants (up to appropriate equivalence) of par-
tial knot diagrams, and are pieced together to form the full invariant. As with classical
knot Floer homology, one can study the homology of this complex C(D), or the homology

of subcomplexes and quotient complexes, which are also invariants of a knot.

Even more recent work of Ozsvéth-Szabd in [48] confirms that this conjectured equivalence
between the theories holds. Hence, like the well-known grid homology of a knot [30,
35], this algebraic method provides a combinatorial construction of knot Floer homology
— or in this case some slightly modified version of classical knot Floer homology, like
that presented by Dai-Hom-Stroffregen-Truong in [4]. The benefit of such combinatorial
constructions is that they do not rely on computation of the counts of pseudo-holomorphic
representatives of Whitney disks in some high-dimensional space, unlike classical knot

Floer homology.



The grid homology developed in [30,35] has the disadvantage that although one need not
calculate these counts — since by construction all Whitney disks considered in this theory
have a single pseudo-holomorphic representative — this is at the expense of computing the
homology of chain complexes with a very large number of generators (relative to crossing

number).

However, the algebraic invariant C(D) of Ozsvath-Szabé has the form of a chain complex
whose generators are in one-to-one correspondence with the Kauffman states of a knot
diagram. Kauffman states are decorated, oriented knot projections, and the bigrading
of the corresponding generators can be determined from the Kauffman states. Similarly,
classical knot Floer homology can also be calculated from a chain complex generated by

Kauffman states, as demonstrated in [37].

Adapting the work of Eftekhary in [5], the Kauffman states for a three-strand pretzel
knot P can be placed into three families, based upon the positions of the decorations on
each of the three strands. These families have grading information that is determined
by the positions of the decorations on each strand — see Table 2.1 and Table 2.2 for
explicit calculations of these gradings. Using the grading information associated to these
Kauffman states, one can restrict the possible differentials within the knot Floer chain
complex CFK*(P), as demonstrated by Lemma 2.10. Furthermore, the classification of
the Kauffman states into these three families with well-understood grading information
makes three-strand pretzel knots particularly amenable to study using the divide and

conquer construction of [49].

After an introduction to knot Floer homology and the current knowledge for pretzel knots
and links provided in Chapter 1, this thesis will present in Chapter 2 a definition of
Kauffman states, their grading information, and in particular the possible Kauffman states
for three-strand pretzel knots of the form P(2a,—2b—1,2c+ 1) and P(2a,—2b—1,—2c —
1). Moreover, in Chapter 2, it will be demonstrated how the grading information of the
Kauffman states for these pretzel knots can be used to restrict the possible Maslov disks
between generators of the classical knot Floer homology. In so doing, one can read off
certain knot Floer homology groups directly from the combinatorial information, see for

example Lemma 2.7 and Lemma 2.9.

Chapter 3 defines many of the simpler concordance invariants extracted from classical knot

Floer homology, and in particular Section 3.3 describes how the concordance invariants



of some families of pretzel knots can be bounded by using the sharper slice-Bennequin
inequality of [18,19]. In particular, the family of three-strand pretzel knots described by
P(2a,—2b—1,—2c—1) for a, b, c € N are quasipositive, and so have concordance invariants
v and 7 equal to their Seifert genus. Furthermore, one can place bounds upon the 7 and v-
invariants of the family P(2a,—2b—1,2c+ 1) using the sharper slice-Bennequin inequality
and work of [18], and what is more, these bounds are strong enough to deremine these

concordance invariants the case of b > ¢, as demonstrated by Lemma 3.19.

Before describing the construction of the algebraic invariant C(D) defined by Ozsvéth-
Szabd, it is first necessary in Chapter 4 to define the algebraic objects used in the con-
struction: namely As.-algebras, associated to every horizontal level of a knot diagram
in the required form; DA-bimodules, associated to every Morse event such as crossings,
maxima and minima; Type D structures, associated to upper knot diagrams; and Ao-
modules, associated to lower knot diagrams. In this chapter, the specific algebraic objects
used in the construction of C(D) are defined over the required differential graded algebras.
Furthermore, because all three-strand pretzel knots admit knot diagrams in a certain form
— see Figure 5.1 — a new A, -module associated to the minima in these special knot
diagrams will be defined in Section 4.6.2. This new A,.-module greatly simplifies the cal-
culation of the invariant C(P(2a,—2b— 1,2c+ 1)), allowing the inductive proofs presented
in Chapter 5 determining this invariant to be more closely motivated by the Heegaard

diagrams for this family of knots used by Eftekhary in [5].

Using the D A-bimodules defined by Ozsvath-Szabd in [49], and introduced in Chapter 4,
the Type D structure for upper knot diagrams of three-strand pretzel knots can be deter-
mined inductively. Under certain conditions, the tensor product between a D A-bimodule
and a Type D structure can be taken to yield another Type D structure. This process is
outlined in Section 4.5. Intuitively, since Type D structures are associated to upper knot
diagrams, and D A-bimodules to Morse events (such as crossings or maxima), attaching a

Morse event to an upper knot diagram yields another upper knot diagram.

The generators of Type D structures are in bijection with upper Kauffman states, and for
three-strand pretzel knots the upper Kauffman states can also be separated into distinct
families based upon the decorations on each strand. This separation of upper Kauffman
states into families allows one to determine the Type D structure after an arbitrary number

of crossings in each strand. In the proofs in Chapter 5, much use is made of both the trun-



cation of the Ay,-algebras explained in Chapter 4, and the diagrammatic representation

of Type D structures: see for example Figure 5.3.

For D a three-strand pretzel knot in the family P(2a,—2b — 1,2c + 1), the structure of
C(D) — and the associated homology theories recently proven in [48] to be equivalent to
OFK (D) and HFK—(D) — will be determined in Chapter 6, relying on the inductive
computations of Chapter 5 and the construction of a new A..-module associated to the

minima of a special knot diagram for these knots outlined in Section 4.6.2.

From these homology theories, the invariants v and 7 will be determined. These were
defined by Ozsvath-Szabé in [49], and although they are now proven to be equivalent to
the familiar concordance invariants v and 7, they are themselves invariants of the local
equivalence class of the bigraded complex C(D). In Section 6.2.3 the invariants v and T are
demonstrated to also be additive under connected sum. This is as a corollary of the fact

that the complex C(Dy# D3) satisfies the Kiinneth relation, see Proposition 6.16.

Theorem 6.6, determining the homology theory H(C~ (D)), is also sufficient to determine
the infinite family of concordance invariants {®; };en, introduced by Dai-Hom-Stroffregen-
Truong in [4]. This is a linearly independent family of concordance invariants, extracted
from what they call a reduced knot-like complex. Since the complex C(D) is equivalent to
the complex CF K/ (D), defined by [4], one could also simplify C(D) to a reduced knot like
complex. However, in the case of the three-strand pretzel knots P(2a, —2b—1,2c+1), this

is not needed to compute the invariants {y; }ien, as demonstrated by Lemma 6.14.

Chapter 6 finishes by suggesting new areas where the techniques outlined within this
thesis might be employed, and open problems in the study of three-strand pretzel knots.
In particular, the remaining examples of three-strand pretzel knots whose slice genus
is not known will be discussed. The concordance invariants defined in Chapter 6 are
insufficient to answer these open questions; it is hoped, however, that since C(D) provides
more information that HF K~ (D) and Fﬁ((D), Theorem 6.1 determining C(P(2a, —2b—

1,2¢+ 1)) might prove useful for answering these questions in the future.

Figures within this thesis have been constructed by the author using the vector drawing
package [3]. Where these have been adapted from existing figures in other works, this has

been appropriately cited.
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Chapter 1

Overview of knots and knot Floer

homology

The primary object of study through this thesis will be links, embeddings of S' -1 S?
into 53, and the invariants used to distinguish them. Knots are one-component links,
and are thus embeddings of S' into S3. It will often be useful and convenient to present
these as subsets of S3 up to ambient isotopy in S3. Moreover, the distinction between
knots, and knot diagrams (their representation on the plane) will only be made when it is
explicitly needed. For expositional material on knots and knot diagrams, the author refers

the reader to [55].

1.1 Pretzel links

Pretzel links are a class of links that are amongst the most well-studied, having a sim-
ple presentation as a link diagram and many useful symmetries. A pretzel link L =
P(ai,az,--- ,a,) with a; € Z\{0} admits a standard link diagram with a; half-twists at-
tached in the manner shown in Figure 1.1. The sign of a; denotes whether the twists on

the strand are positive half twists, or negative half-twists, see Figure 1.2.

Through rotation by 180 degrees, it is simple to see that there is an isotopy between
pretzel links P(ay, a2, - ,a,) and P(ap,an—1,---,a1). Moreover, an isotopy exists be-
tween P(ay,ag, - ,a,) and P(an,a1,a2, -+ ,a,—1), and so the integers a; only determine

a diagram for a pretzel link up to cyclic permutation and reversing the order.

10



CHAPTER 1. OVERVIEW OF KNOTS AND KNOT FLOER HOMOLOGY 11

O
NN>

Figure 1.1: An diagram of the two-component pretzel link P(3,—1,4,2)

Another useful symmetry is that the mirror of the link P(ai,a9, - ,ay), denoted by
P(ay,--- ,ay) is isotopic to P(—ay, —ag, -+ ,—ay). As a consequence, since the invariants
studied in this thesis react to mirroring in a known way, often only one of these pairs will

be considered.

Note, if all of the a; are of the same sign, the link is alternating. In fact, this condition is
necessary and sufficient when n > 3, see for example [8]. Since pretzel links are a subset
of Montesinos links, for n > 3 the standard pretzel link diagrams following Figure 1.1
are reduced Montesinos diagrams, which achieve their minimum crossing number by [22,
Thm. 10]. Moreover, it is easily demonstrated that the pretzel link P(ay,--- ,a,) is a knot
if and only if there is at most one even coefficient a; when n is odd, and if and only if one

of the a; is even for even n.

Using Figure 1.1, since a3 and a4 are even, P(3,—1,4,2) can be seen to have more than
one component. Furthermore, this diagram is almost-alternating, that is a single crossing
change (to the negative half twist) would change this into an alternating diagram, with

all the coefficients a; being of the same sign.

A larger class of links than alternating links is that of quasi-alternating links, introduced
in [42, Def. 3.1]. Denote the class of quasi-alternating links as Q. Then, Q is the smallest

set of links such that

e The unknot belongs to Q.
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AN /
N /

Positive half-twist Negative half-twist

Figure 1.2: The convention for positive and negative half twists in diagrams of pretzel
links. Note, that in an oriented pretzel link, the sign of the half twists does not necessarily

correspond to the sign of the oriented crossing.

e If L has a projection with a crossing ¢ such that the 0 and 1 resolutions at ¢ yield

links Lo and Ly with det(L) = det(Lg) + det(L1), and Ly, L; € Q, then L € Q.

Note that all alternating links are contained within Q. Quasi-alternating pretzel links are
of particular interest because they are homologically thin with respect to both Khovanov
and knot Floer homology theories [31]. This means that the homology theory is supported
entirely in a single diagonal, and for quasi-alternating links this diagonal is determined by
the (classical) signature of the knot. In [8, Theorem. 1.4], Greene determines which of the
Montesinos links M (—e,; (p1,1),..., (pn,1),(q1,—1),...,(gm,—1)) are quasi-alternating,
which when e = 0 specialises to determine the quasi-alternating pretzel links, stated here

in Theorem 1.1.

Theorem 1.1 The pretzel link P(pi,p2, -+ ,Pn, —q1," - s —Gm), with p; > 2,q; > 3 is

quasi-alternating if and only if one of the following holds.
1. n=1, and p1 > min{qy, - ,qn} orm < 1.
2. m=1, and ¢1 > min{py,--- ,pp} orn < 1.

The pretzel knots with three strands take one of the following forms: P(2a+1,2b+1,2¢c+1)
for a,b,c € Z, or P(2a,—2b—1,—2c—1) and P(2a,—2b—1,2c¢+ 1), or the corresponding

mirrors, with a,b,c € N.

In the first case, P(2a + 1,2b + 1,2¢ + 1), the knot Floer homology has been studied
in [41, Sec. 5]. As described above, when all of the coefficients have the same sign, the
knots are alternating, and hence are homologically thin. However, if b < 0 and a,c > 0,
the knots are non-alternating. The knot Floer homology of this family of pretzel knots

has been determined in [41, Sec. 5].

Theorem 1.2 [41, Theorem 1.3] For a,b,c € N, the three strand pretzel knot K =
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P(2a+1,-2b—1,2c+1) has I?F?((K, 1) isomorphic to

- Zab+bc+bfac if b > min(a, C)
HFK (K 1) =4 Y

b(b b—a)(b—c) ‘ ‘
Z(g)H) & ZEQ) (=) if b < min(a,c)

The proof of this theorem uses the long exact sequence in knot Floer homology associated
to the oriented skein relation presented in [39, Thm. 10.2]. In particular, for this family of
pretzel knots, resolving using the oriented Skein relation relates the knot Floer homology
of P(2a+1,-2b—1,2c+ 1) to the knot Floer homology of the torus link 75 3|,_p|, which

is well understood.

Note, if b > 0, and a, ¢ < 0, one can mirror the knot to put it into the above form. This is
not an isotopy, but mirroring changes the knot Floer homology in a known way. Namely,
from [39], one has that

HFR4(K,i)~ HFE (K, —i).

One can then use the universal coefficient theorem to relate this cohomology group to

homology.

The remaining cases of pretzel knots have been considered by Eftekhary in [5], with the
‘hat’ version of knot Floer homology HFEK calculated using Kauffman states. However, as
the author has determined, if the conjectural equivalence between the bordered invariant of
Ozsvath-Szabé and classical knot Floer homology holds, then OFK (P(2a,—2b—1,2c+1))
is more complicated than as presented in [5, Lem. 1, Thm. 1,2]. Using Theorem 6.3, ex-
amples of three strand pretzel knots can be presented that have HFK that disagrees
with the calculation in [5]. In particular, this can also be verified using the computer

implementation of [47], as described in Remark 6.4.

Both of these cases considered in [5] are non-alternating when a,b,c > 1. They can be
quasi-alternating, precisely when the conditions of Theorem 1.1 are satisfied, but are not

always.

1.2 Classical knot Floer homology

Knot Floer homology is a family of homology theories providing invariants of unoriented
knots and links, originally outlined by Oszvath and Szab6 in [39], and Rasmussen in

[53].
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This family consists of three ‘flavours’ of knot Floer homology associated to a knot K,
generalised to links in [43], taking the form of Z @ Z-bigraded theories. These homology
theories have a chain complex generated by the same basis, but differing in the definition of
the differential and differing in the ring over which the chain complex is defined. The two
gradings associated to the chain complex (and homology theory) are the Maslov grading

and Alexander grading.

1.2.1 Heegaard diagrams and the knot Floer complex

As summarised by [29, Def. 3.1], a multi-pointed Heegaard diagram H = (X, «, 8, w, z) for
a knot K is defined by the following.

e A closed surface ¥ C S of genus g > 0 splitting S% into handlebodies Uy and Uy.

Typically, one orients ¥ as the boundary of Uy.

e A collection o = {ov,- -+ , g1} of pairwise disjoint, simple closed curves on ¥,
such that each «; bounds a properly embedded disk D' in Up, and such that the
complement of these disks in Uy is a union of k£ balls. On X, by convention a-curves

are coloured red.

e A collection 8 = {f1, -, Bg+k—1} with the same properties in the handlebody Uy.

On ¥, by convention §-curves are coloured blue.

e Two collections of points on X, w = {wy, -+ ,wi} and z = {21, -, zx }, all disjoint
from each other and the v and 8 curves. Give the points w; a positive orientation,

and z; a negative orientation.

e The knot K is then the isotopy class of simple, closed curve formed by tracing a path
disjoint from the disks in each handlebody through the points wi, 21, ws, ..., 2E, w1

agreeing with the orientation.

In this thesis, Heegaard diagrams for knots are commonly doubly pointed, so one has
unique basepoints z and w. There are further admissibility conditions on Heegaard dia-
grams for knots, as described in [43, Sec. 3.1], and the reader is referred there for further

detail.

With a doubly pointed Heegaard diagram for a knot K, one can then form the generators

of the knot Floer complex CFK>(K) as follows. Let Sym9(X) denote the smooth, real
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2g-dimensional manifold

Sym?() = 37/5,.
the g-fold product of ¥, quotiented out by the action of the symmetric group S,.

The o and 8 curves then form two half-dimensional submanifolds T, = a1 x --- X ay and
Tg = B1 X -+ x By C SymI(X). Following [51], these tori are said to be real: fixing a
complex structure on ¥ induces a complex structure on Sym?(¥), and in relation to this
complex structure the tori T, and T have tangent spaces containing no complex lines,

and so are totally real.

The intersection of the two submanifolds T;, and T provides the basis for the modules in

knot Floer homology, namely: C/'F?((K), CFK™(K) and CFK*(K).

Definition 1.3 Where F is a commutative ring, the module C/ﬁ((K) is defined as the
F-module freely generated by the intersection points T, NTz. Each of these intersection
points can be thought of as unordered g-tuples of points on 3, with one point on each «

curve and each B curve.

These same intersection points also freely generate two more modules, CFK~(K) and
CFK*(K), which for a doubly pointed Heegaard diagram are F[U] and F[U, U] modules

respectively.

Unless otherwise specified, in this thesis F = Z/2. It is also common to take F = Z,

although this adds the complication of counting with sign, which is absent when F =

7.)2.

An example of a suitable Heegaard diagram for the right-hand trefoil (the (2,3)-torus

knot), is presented in Figure 1.3.

These generators admit a Maslov grading and an Alexander grading, M (z) and A(z)
respectively for x € T, NTz. A relative bigrading is defined using Whitney disks between

intersection points.
From [40, Sec. 2.4], define the following for any Heegaard diagram H = (X, «, 3, z, w).

Definition 1.4 For intersection points x,y € T, N Tg, denote by ma(z,y) the set of ho-
motopy classes of Whitney disks

u(STN{Re<0})CTy

9 u(—i)=z, u(i)=y
{u : D* — Sym?(%) } :
u(SIN{Re>0})CTu
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Such disks and are pseudo-holomorphic if they satisfy the non-linear Cauchy-Riemann
equations for a generic one-parameter family of almost-complex structures on Sym9(%),

see [40, Sec. 3.2].

Figure 1.3: A Heegaard diagram for the right-hand trefoil. Note that Sym9(¥) = 3,
since this is a genus 1 Heegaard diagram. So, there are three generators for the knot Floer

complex, denoted a,b and c.

Define the space M(¢) as the moduli space of pseudo-holomorphic representatives of ¢.
One can associate to this moduli space an integer u(¢) known as the Maslov index. This
index is such that M(¢) is a smooth manifold of dimension u(¢). Moreover, this index
is calculable in a combinatorial way following the work of [53, Sec. 9] and [23, Cor. 4.10],

through an examination of domains on the surface ¥ associated to Whitney disks.

Definition 1.5 [40, Def. 2.13] Denote by Dy, Da, ..., D,, C X the closures of the regions
Y\ (aUB). A domain D(u) associated to Whitney disk u € ma(x,y) is then

m
D(u) =Y n.,(u)D;,
i=1
where z; € int(D;), and n, (@) is the intersection number

#u T ({z:} x Sym?™ ().

Remark 1.6 Every Whitney disk ¢ € mo(x,y) determines a domain, i.e. the formal sum
of components of ¥\ (U ), but the interior of these domains does not uniquely deter-
mine the class ¢ € mo(x,y). There are examples of formal sums of regions in X\ (aU f3)
that represent Whitney disks between different pairs of intersection points in T, N Tg. In
Section 6.3.2, this will be discussed in greater depth in relation to punctured polygonal
domains, as defined by [9, Def. 6.4]. Figure 6.3 provides an example where the formal sum

of regions does not uniquely determine the corners of the domain.
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However, as discussed in [40, Sec. 3.5], Whitney disks between generators are uniquely de-
fined by their domains when one specifies the corners of the domain for Heegaard diagrams

of genus greater than one.

For a Whitney disk ¢ € mo(x,y) with corresponding domain D(¢) C X, the corners of the
domain are points of intersection between « curves and 3 curves on X. These are points
on X, not elements of T, NTg C Sym9(X). As described by [53, Sec. 9], for a formal
sum of regions in X, there are admissibility conditions on the multiplicities of the regions
incident with the o and B curves at a corner in order for this intersection point to be a

valid corner of a domain, see [53, Fig. 32].

The existence of an R-action on M(¢) by automorphisms of the disks fixing the endpoints
means that one can form a smooth, compact manifold ﬂ(gb) = M(¢)/R, which, when
wu(¢) = 1, means that ﬂ(d)) is a finite set of points. This action by R upon the moduli
space is most easily seen in terms of the cylindrical reinterpretation of [23], where Whitney

disks are now interpreted as strips R x [0, 1], with the action by R being translation.

For each ¢ € my(x,y), each basepoint v € wUz has a corresponding codimension 2 manifold
R, = {v} x Sym9=1(Z) C Sym?(X). One can then define n,(¢) € Z as the intersection

number between ¢ (more formally the image of ¢) and R,,.
Then, relative Maslov and Alexander gradings are defined as follows.

Definition 1.7 For z,y € T,, N Ty, with ¢ € ma(x,y):

This relative bigrading can further be fixed to an absolute grading, but first it is useful to

introduce the differential maps.
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Definition 1.8 For x € T,, N Ty, define the differentials

o= Y Y (#M©) v

yeTaNTy  ¢pema(z,y)

va= Y Y (#Mlg) - um@y,

0>®r = Z Z (#ﬂ/{\(@) (@) .

yETaNTg pEm2(2,y)
n(g)=1

Then, Cﬁ*"?((K), CFK™(K) and CFK*(K) are respectively the bigraded F-module, F[U]-
module and F[U,U~]-module generated by the points T, NTg, and one defines ffﬁ((K),
HFK (K) and HFK*(K) as the respective homology theories.

These complexes, up to filtered chain homotopy equivalence, are invariants of knots, not

merely the Heegaard diagram associated to a knot.

Theorem 1.9 [39, Thm. 8.1] For K an oriented knot in S®, the filtered chain homotopy
type of the complex CFK*°(K) is a topological invariant of the knot. Moreover, the associ-
ated homology groups Ijﬁ((K) and HF K~ (K) associated to subcomplezes of CF K> (K)

are topological invariants of the knot.

The key element in the proof of this statement is demonstrating that two admissible
Heegaard diagrams for the same knot can be related by a sequence of moves, namely
stabilisation of the Heegaard diagram, destabilisation, isotopies of the a and 3 curves,
and handleslides. For three-manifolds, this is a classical result of Reidemeister and Singer,
but in [39, Sec. 3.2] Ozsvath and Szabd prove that each of these moves on a Heegaard
diagram for a knot does not change the filtered chain homotopy type of the complex, so

yielding the result.

1.2.2 Bifiltration of the full knot Floer complex

The full knot Floer complex CFK*(K) can be thought of as a Z® Z-filtered complex over
IF, following [39, Sec. 3.1]. Then, elements of CFK are triples [z, i, j] with € T, N T,
i,7 € Z. These generators are then representable on an (i, j) grid as points, see Figure 1.4.

Furthermore, one defines the action of U such that U - [z,i,j] = [z,i — 1,7 — 1].
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The triple [x,4,j] then corresponds to generator U 'z, where x is has Alexander grading
j. This gives a useful diagram for the complex, with the complex lying in the (7, j) plane.
The differential is then defined as
(i) = Y (AM@) i —nu(9),5 — n=(0)]
yGTaﬂTﬁ

¢E7T2 (x,y)
w(o)=1

An example of this calculation is presented in Figure 1.4 for the Heegaard diagram in

Figure 1.3.

Figure 1.4: The full knot Floer complex for the right hand trefoil pictured in Figure 1.3.
Note that there are two bigons in the genus 1 Heegaard diagram, one containing the base-
point w, and the other z. Each of these corresponds to a Whitney disk: ¢ € ma(b, c) with
n.(¢) =1, and the other ¢ € ma(b, a), with n, () = 1.

The Z @ Z-filtration of the complex is then given by the coordinates, i.e. there exists
a filtration F : (To N T3) X Z® Z — 7 & 7Z defined as [x,i,5] — (4,5). As described
by [39, Sec. 3.1], this allows the definition of subcomplexes since the differential is non-
increasing in both ¢ and j, and a partial ordering can be placed on the filtration by defining

(i,7) < (i/,j') when i <# and j < j.

1.2.3 Subcomplexes and absolute gradings

As summarised by [13, Sec. 2.2], placing conditions upon i and j allows one to extract
from this interpretation for CFK*°(K) the other complexes CFK~(K) and C/ﬁ((K),

and associated concordance invariants.
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Define the subcomplex C{i = 0} := {[z,0, j]}zETaﬂTg’ with the differential only counting
those ¢ with n,(¢) = 0, whose homology is isomorphic to HF (83). This last group is
the hat version of the Heegaard Floer homology for the 3-manifold S3, as defined in [39].
This homology group has only a single generator, which is by convention in grading zero.
The corresponding generator in H, (C{i = 0}) is given a Maslov grading of 0, making the

relative grading into an absolute grading.

Then, the relative Alexander grading is made absolute by the fact that the Alexander
grading of HFK (K) is symmetric about 0, and as stated by [53], the filtered Euler char-
acteristic of HFK (K) is equal to the Alexander polynomial Ag(t).

In fact, CFK (K) is equal to the complex C'{i = 0}, equipped with the differential

w0 = > #(M@) 0.
y€7r2($,y)
w(e)=1
12 (¢)=0=n(¢)

This can be thought of as setting all vertical and horizontal arrows to 0, so only those
that are between generators with the same (i, 7) coordinates contribute non-trivially to

the differential. Using Figure 1.4, one thus has that

F if (d,s) = (0,1)

. F if (d,s)=(—1,0
HFKd(ng,S) = ( ) ( )
F o if (d,s) = (—2,—1)

0 otherwise.

One can also define (CFK~(K),07) as the complex @, ., C ({i <0,j = s}), equipped
with the differential

o (i) = > # (M) lyi—nul@), ]
yEma(z,y)
n(¢)=1
nz(¢)=0
Each of the flavours of knot Floer homology then decomposes into graded parts, for exam-

ple HFK™(K) =@, , HF K (K,s). Here d is the Maslov grading, and s is the Alexander

grading.
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1.3 Zemke’s reformulation

In [60,62], Zemke provided a reformulation of the full knot Floer complex in terms of an
R-module, where R = F[U, U™, V,V~1]. The two settings, i.e. the classical knot Floer
homology defined in [39, 53], and the setting presented in [60] are equivalent, as proved
in [60, Sec. 8]. They both take the form of complexes equipped with a Z @& Z-bigrading,

and a Z @ Z-filtration, and one can translate between the two formulations.

The R-module complex is of particular interest in this thesis because the bordered invariant
presented by Ozsvath-Szabé in [49], and concordance invariants defined by [4] are both
adapted from this formulation. The cut-and-paste methods of [47,49] are central to the
determination of invariants for three-strand pretzel knots presented in this thesis, hence

Zemke’s formulation is the most convenient to use.

Definition 1.10 [/, 62/ For a doubly pointed Heegaard diagram H = (¥, «, 3,2z, w)
associated to a knot K as defined in [39, Def. 2.2], define CFKgr(K) to be the R =
F[U, U, V, VY module freely generated by the intersection points Ty, N Ts.

The complex CFKR(K) admits two integer valued gradings, gry and gry that have the

following relative grading formula for ¢ € ma(x,y).

The differential in the compler CFKg(K) is then

o)=Y # <ﬂ(¢)) @) y=(9)y,

YyEm (ac,y)
n(g)=1

The grading gry is known as the homological or Maslov grading, and one can check using
Definition 1.7 that this satisfies the same relative grading formula as the Maslov grading
as presented in [39]. However gry is not equal to the familiar Alexander grading, but it

can be recovered.

A(z) = Aly) = nz(¢) — nw(9)

- % ((grv(x) = gru(y)) — (grv(z) = grv(y))) -
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These gradings can be lifted to absolute gradings, as is proved in [60, Sec. 5.5]. Moreover,
as proven by in [60, Sec. 8], the Ozsvéth-Szab6 and Zemke formulations are equivalent,
which is demonstrated by showing that the absolute gradings agree in the two formulations,

since both complexes have the same basis and same relative gradings.

It is worth noting the effect of the differential upon the bigrading, as it is not the same as

the classical knot Floer setting, which leaves the Alexander grading unchanged.

gru(9(z)) = gru(z) -1

grv(9(x)) = grv(z) — 1.

In the complex CFK*°(K) in the Ozsvath-Szabd setting, one has an action on the complex
of multiplication by U. This drops the Alexander grading by 1, and the Maslov grading by
2. This has an analogous action in CF K (K), which is multiplication by UV. So, taking

this product corresponds to multiplication by U in the Ozsvath-Szabd setting.

Furthermore, as stated in [62, Def. 2.1], there is a filtration G; ;, defined as the subset of
the complex CF Kg(K) generated by elements UV" -z for x € T, NTg and m > i,n > j.
So, both the Zemke formulation and Ozsvath-Szabé formulation are Z @ Z-bifiltered and
bigraded.

This filtration is demonstrated in Figure 1.5, which exhibits Zemke’s reformulation of the
knot Floer homology for the Heegaard diagram of the right hand trefoil in Figure 1.3.
One key difference in diagrammatic representations of these two formulations is that the
gry-grading and gry-grading cannot be read off from the bifiltered diagram in the Zemke
setting, whereas one can read off the Alexander grading of states in the diagram for the

complex in the classical setting, see Figure 1.4.

Remark 1.11 [t is not immediately apparent that the complex is indeed a knot invariant,
and also that the differential squares to zero. However, both of these are true. In a
generalisation to the link setting, it was proven in [61, Prop. 8.5] and [60, Prop. 2.1] that
if a link L has two admissible Heegaard diagrams H and H', then there is a filtered, R-
equivariant chain homotopy equivalence between the associated complezes CFKgr(H) and
CFKgr(H'). Together with [39, Prop. 3.5, Thm. 3.1], this equivalence between Heeagaard

diagrams is enough to prove that the complex is a knot invariant.

Although the generalisation of the complex to links does not have 8> = 0, as demonstrated



CHAPTER 1. OVERVIEW OF KNOTS AND KNOT FLOER HOMOLOGY 23

UO
A

» |/

Figure 1.5: Diagrammatic representation of the compler CF Kg(Ts3), from the Heegaard
diagram represented in Figure 1.8. Note, the green arrows represent Oy, and the red dy,
as introduced in Section 1.4.1. The product UV in this setting moves the generators down

and left in the filtration, as multiplying by U does in the Ozsvdth-Szabd setting.

by [59, Lem. 2.1] in the case of doubly pointed Heegaard diagrams for knots, or indeed

2n-pointed diagrams for links, 0% is equal to 0, and so CFKg(K) is a chain complex.

As noted by [4], useful properties of the full knot Floer complex CFK*°(K) are echoed in

Zemke’s setting.

Remark 1.12 o There is a filtered, R-equivariant, chain homotopy equivalence be-

tween the complexes CFKr(K#J) and CFKr(K)®@CFKg(J), see [62, Thm. 1.1].

o There is a filtered, R-equivariant, chain homotopy equivalence between the com-
plezes CFKr(—K) and CFKR(K)*, where x denotes the dual complex, see [62,
Lem 2.17, 2.18].
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1.3.1 Local equivalence

There is a notion of equivalence of complexes CFKg(K) which is useful in the definition

of the concordance invariants in [62] and [4]. This is local equivalence.

Definition 1.13 [/, Def. 2.4] Two (gry, gry)-bigraded complexes C1 and C2, both R-
modules, are defined to be locally equivalent if there are filtered, grading-preserving, R-
equivariant chain maps f : C1 — Cs and g : C1 — Co such f and g induce isomorphisms

on homology.

This also has a refinement to a setting over a different ring: R’ = F[U,V|/(UV). This
is the setting used by Dai et al in [4] to define concordance invariants from Zemke’s
reformulation. The properties in Remark 1.12 also hold when one uses the ring R’ in
place of R. Define the complex CFKg/(K) in the same way as CFKg(K) is defined in

Definition 1.3, except now taking UV = 0.

As remarked above, multiplication by UV in CFKg(K) corresponds directly with multi-
plication by U in the CFK*°(K) setting. The differential in CFKg/(K) now has coeffi-
cients determined by counting pseudo-holomorphic representatives of those Maslov index

one disks in the Heegaard digram passing over at most one of the basepoints.

The advantage of this is twofold. Firstly, by keeping track of less information, the cal-
culation of the complex and associated invariants is easier: as evidenced by the utilisa-
tion of R in the algorithmic construction of [47]. Secondly, as noted by [4, Thm. 1.3]
and [11, Prop. 4.1], the local equivalence classes of complexes in this ring R’ admit a
total ordering. As proved in [4], the notion of local equivalence classes of CFKg/(K) are
identical to the e-equivalence classes defined in [11], and using the total order available on
the equivalence classes allows one to prove linear independence results in the topological

concordance group.

Remark 1.14 It is important to note the distinction between the knot-like complexes de-
fined as local equivalence classes of CFKr/(K) by [4] and the chain complex defined by
Ozsvdth-Szabo in [49].

The first construction is a modification of Zemke’s reformulation of classical knot Floer ho-
mology, and so the differential maps in the complex necessarily count pseudo-holomorphic
representatives of Whitney disks. The advantage is that the properties of knot Floer ho-

mology pass to the new perspective, so invariants of local equivalence classes of CFKr/ (K)
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are concordance invariants of the knot.

Because the setting in [47,49] is purely the association of an algebraic invariant to a knot,
when the invariant C(D) was first constructed there was only a conjectural equivalence
between this bordered invariant and the classical knot Floer setting. Hence, invariants
determined from equivalence classes of the bordered invariant C(D) defined in [49] were
not necessarily concordance invariants, as one could not utilise information on behaviour

under connect sums and mirror reflection from knot Floer homology.

The recent proof of this conjectural equivalence in [48] does demonstrate that invariants
of local equivalence classes of complexes C(D) are also invariants of the local equivalence
classes of the corresponding complezes CFKg:/(D), and so are invariants of concordance
classes. One can still examine the effect of taking connect sums of knots in the alge-
braic invariant of Ozsvdth-Szabd without using this equivalence, as will be discussed in

Section 6.2.5.

1.4 Knot-like complexes

As introduced by [4] using their modification of Zemke’s reformulation of knot Floer ho-
mology, one can undertake the abstract study of (gry, gry)-bigraded complexes over the
ring R'. From these complexes, one can extract numerical invariants of the local equiv-
alence class of complex without reference to the fact that these complexes arise from a

knot.

Definition 1.15 For C a (gry, gry)-graded chain complex over R' = F[U,V]/UV, a V-
nontorsion tower is said to be a generator of F[V] in H.(C/U), and a U-nontorsion tower

is said to be a generator of F[U| in H.(C/V).

Definition 1.16 [/, Def. 3.1] C is defined to be a knot-like complex if C is a free, finitely

generated bigraded chain complex over R', such that
1. The differential O of the chain complex affects the bigrading by (—1,—1).
2. H,(C/U) has a single V-nontorsion tower lying in gry = 0.
3. H,(C/V) has a single U-nontorsion tower lying in gry = 0.

The U and V-tower classes defined above will be important in the determination of local

equivalence for knot-like complexes. This is defined slightly differently than for the local



CHAPTER 1. OVERVIEW OF KNOTS AND KNOT FLOER HOMOLOGY 26

equivalence classes of CF Kg/(K) in Definition 1.13, as C; and Cy knot-like complexes are
defined to be locally equivalent if there are maps f : C1 — Cs and g : Co — C; that are
absolutely U-graded, relatively V-graded R’-equivariant chain maps that are isomorphisms

on H.(C;/U)/V —torsion.

In fact, it is proven in [4, Lemma 6.9] that two locally equivalent knot-like complexes do
in fact have absolutely graded isomorphisms between their homologies, but the original

notion introduced is weaker.

Remark 1.17 The complex CFKgr(T>3) shown in Figure 1.5 has the differential Oy
marked in green, and Oy marked in red. Modding out by UV would not modify the axes
of the diagram, as these would not contain UV -product terms. Then, the corresponding
complex CFKg: would be a knot-like complex, with gry(a) =0 as a V-nontorsion tower,

and gry(c) =0 as a U-nontorsion tower.

1.4.1 Reduced knot-like complexes

In the construction of concordance invariants in knot Floer homology, it is convenient
to treat the horizontal differential (non-decreasing in U) or vertical differential (non-
decreasing in V') separately. More specifically, constructions like [14, Sec. 2.2] make use
of the fact that one can find equivalent complexes that are ‘vertically’ or ‘horizontally’
simplified. A similar notion exists for knot-like complexes, that of reduced knot-like com-
plexes and standard complexes, and much use is made of this in the determination of the

family of concordance invariants in [4].

Definition 1.18 [/, Def. 3.7] Recall, a knot-like complex is a freely-generated chain com-
plex over R'. Let {x;} be an R'-basis for the knot-like complex C.

C' is said to be a reduced knot-like complex if for every x;, one has that

O(xi) = > Pi(U,V)xj,
J#i
where each polynomial P;(U,V') is either zero, or a polynomial in either U or V' of degree

> 1 with no constant term.

Hence, as no constant term appears in each P;(U, V), the differential O can be subdivided

into 0 = Oy + Oy, where Oy and Oy have image with polynomials in U or V' respectively.

By definition all reduced knot-like complexes are knot-like complexes. Every non-zero
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differential has an image with polynomial terms in U or V with strictly positive powers,
and so in the Z & Z-filtered picture no arrow representing the differential remains at the
same coordinate. With the reformulation of 9 in Zemke’s setting, a reduced knot-like

~

complex is thus generated by elements that all lie in ker(9), and since Jy and dy decrease
either the horizontal or vertical coordinate, no generator lies in zm(é\) Consequently,
generators of a reduced knot-like complex are in bijective correspondence with generators

of HFK (K).

Using a similar construction to that of horizontally and vertically simplified bases in clas-
sical knot Floer homlogy presented in [12], one has the following lemma. This is of use in

the definition of the concordance invariants {¢;}jen, introduced in Section 6.2.2.

Lemma 1.19 [/, Lemma 3.8] Every knot-like complex C' is locally equivalent to a reduced

knot-like complex C'.

The proof of the above lemma presents an algorithm for the determination of a locally
equivalent reduced knot-like complex, based upon the fact that for a basis element x of C
such that O(x) contains a term z; without a U or V' polynomial, then one can construct a

split short exact sequence
0— (x,0(x)) - C —=C"—0,

such that the projection p : C' — C” and section s : C' — C' are isomorphisms on homology,
since (x,d(x)) is by construction acyclic. These maps then provide a local equivalence
between C and C’, a knot-like complex with at least one fewer generator not satisfying
the conditions of a reduced knot-like complex. Proceeding in this manner yields a locally

equivalent reduced knot-like complex.

There is, however, no guarantee that the algorithm presented in [4, Lemma 3.8] yields a
unique result, nor whether the generators of the reduced knot-like complex C’ correspond
to single generators of C. Generators of C’ can be the sum of generators of C, and so if the
generators of C' are in correspondence with Kauffman states (introduced in Chapter 2),
one can lose this correspondence when working with a locally equivalent reduced knot-like

complex.
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Kauffman states and three strand

pretzel knots

In order to define the knot Floer complex associated to a knot, it is necessary to specify

a Heegaard diagram (X, a, 8, z, w), and the intersection points T, N 71}p.

The choice of Heegaard diagram does not alter the filtered chain homotopy type of the
knot Floer complex, as noted in Theorem 1.2.1. But, certain choices of Heegaard diagram
can ease the computation of the knot Floer homology. In some fortunate cases it is possible
to choose a Heegaard diagram for which the counts of pseudo-holomorphic representatives

of Whitney disks is relatively simple.

As demonstrated by [35], using an arc-presentation of a knot one can use ‘grid diagrams’
to define a genus one Heegaard diagram for any knot. Grid diagrams are computationally
useful, because they are constructed in such a way that not only can Whitney disks with
Maslov index equal to 1 be read off combinatorially from the diagram — see [30] — but
also that these disks have a known count of pseudo-holomorphic representatives. However,
this comes at the cost of drastically increasing the number of intersection points in the

Heegaard diagram, yielding a more unwieldy complex.

Another method for producing the knot Floer complex for a knot comes from thickening
a projection of the knot to form a genus (c+ 1) Heegaard diagram, where c is the number
of crossings in a knot diagram. This process was originally introduced in [36], and the

generating intersection points T,,N7T} are in bijective correspondence with Kauffman states

28
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of the diagram.

2.1 Ozsvath-Szabd’s definition of Kauffman states

The use of Kauffman states in the calculation of knot Floer homology started with Ozsvéath
and Szabd’s paper [36]. Kauffman states were originally introduced by Kauffman in [16,
Ch. 2], and from these states the Alexander polynomial of a knot is calculable. Indeed,
in [17] it is proven that the Kauffman states model for knot Floer homology introduced

by [36] directly categorifies the Alexander polynomial in the setting of [16].

An early application of the Kauffman state model in [36] is the determination that the
knot Floer homology of an alternating knot K has ﬁﬁ(H%(K, s) = Flasl [36, Thm. 1.3].
Here o is the signature of the knot, and ay is the coefficient of the Alexander polynomial

in degree s.

Definition 2.1 [36, Def. 1.1] For a knot K, consider the 4-valent graph G from projection
of this knot into the plane z = 0. This cuts the plane into regions. Choose two regions
separated by a single edge of the graph G. Denote these regions by A and B, and mark
this edge. Note, this edge corresponds to an arc in a knot diagram of K, and this is a

decorated projection for the knot K.

Then, each vertex of the graph has 4 quadrants, each of which is a corner of some region
of the graph G. Assign a decoration in one of the quadrants by each vertezx, such that no
decoration is present in regions A or B, and such that each region other than A and B

has only a single marked corner.

Such a decorated diagram is a Kauffman state for the knot K. In place of 4-valent graphs
G, one can consider the corresponding picture in the original knot diagram. The 4-valent
graph G can then be yielded by joining the arcs at each crossing. An example can be seen
in Figure 2.1. The Kauffman state for a knot diagram should have a marked point on one
are, a decoration quadrant at each crossing, and every region (excepting A and B) should

contain exactly one decoration.

To summarise, a Kauffman state for a knot is a decorated knot projection associated to
a diagram for the knot. From this collection of Kauffman states — namely the different
ways to decorate this knot projection — one can extract information like the Alexander

polynomial for the knot. If one takes a different projection for the knot, for example one
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from a different, isotopic knot diagram, the projection has similarly defined Kauffman
states from which the same information about the knot can be drawn. However, this is a
different collection of Kauffman states, and there need not be a bijection between the two

sets of states.

Ozsvéath and Szabd associate two integer values to each Kauffman state, determined
through the total of local contributions across all crossings in a knot diagram. To each
crossing ¢ in a knot diagram, half-integer values M(c) and A(c) can be assigned, based
upon which quadrant is occupied by the marked point of that crossing, following Fig-

ure 2.2.

Definition 2.2 Using the gradings depicted in Figure 2.2, let C(K) be the crossings in a
knot diagram of K. Then, define the Maslov grading of a Kauffman state x as

M(z):= Y M(ec),

ceC(K)

and the Alexander grading of a Kauffman state x as

A(x) = ) Alo).

ceC(K)

Figure 2.1: A Kauffman state for the oriented figure 8 knot is shown here. Note, the
regions A and B neighbour the marked arc, and all conditions for Kauffman states are

satisfied.

Then, Ozsvath and Szabd prove the following theorem, detailing the correspondence be-

tween Kauffman states and the knot Floer complex.
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Theorem 2.3 [36, Thm. 1.2] For K a knot in S®, choose a decorated projection for K.
Then there is a Heegaard diagram H = (3, o, B, z,w) for K such that (ﬁ‘T((K) is freely
generated by Kauffman states, and there is equality between the Maslov and Alexander

indices of Kauffman states, and the Maslov and Alexander gradings of T, NTjg.

Local Maslov contributions

A X

Local Alexander contributions

Figure 2.2: The contributions to M and A at each crossing, as defined by [36, Figs. 2,3].

A Heegaard diagram can be associated to a knot diagram as follows. Take the boundary
of a tubular neighbourhood of the graph G, which for a knot diagram with ¢ crossings is
a (c+ 1) genus surface, ¥. Add an « corresponding to the boundary of each region in
the decorated projection, excepting B. At the marked point of the decorated projection,
place a meridional curve 3y, and the two basepoints either side of this curve. Place the
remaining S curves corresponding to the crossing of the knot diagram. This is detailed

more fully in [36, Sec. 2.2], but should be clear from Example 2.4.

Example 2.4 Consider the three crossing unknot, with two positive crossings and one
negative crossing. With a marked edge as in Figure 2.3, there are three possible Kauffman

states, denoted a, b and c.

A Kauffman state marks each crossing in a knot diagram with a point. In the Heegaard
diagram this marked point corresponds to the choice of an intersection point between an a-
curve and B-curve at the tubular neighbourhood of this crossing. This choice then dictates
that no other points may be put on these curves, just as marking a point at a crossing forces
that there are no other marked points in that region, or at that crossing. See Figure 2.4 for

generators in the Heegaard diagram associated to two of the Kauffman states in Figure 2.3.
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Also, note that at the distinguished edge, there is only one a curve intersecting the 5 curve
in the tubular neighbourhood of this edge. Hence, all generators of T, NTz C Sym*T(%)

have this intersection point as part of the unordered (¢ + 1)-tuple.

Figure 2.3: The three possible Kauffman states associated to a knot diagram for an
unknot with three crossings. Using Figure 2.2, the bigrading (M, A) of state a is (0,0), the
bigrading of b is (1,1), and the bigrading of ¢ is (0,1).

The equivalence in the grading information is then proved by Ozsvath-Szabd using an
action relating two Kauffman states called transpositions, and how these correspond to

domains, defined earlier in Definition 1.5.

2.1.1 An observation on this model and the grading information

When trying to compute knot Floer homology using this model, there is a slight nuance
that should be noted. The algorithm given in [36, Sec. 2.2] associating a Heegaard dia-
gram to a decorated knot projection is detailed in the position of the o and S curves, as

exemplified in Figures 2.3 and 2.4.

Using the gradings for Kauffman states in Definition 2.2, one has that the bigradings of
the states shown in Figure 2.3 are M(a) =0, A(a) =0; M(b) =1, A(b) =1; M(c) =0,
A(c) = 1.

From the definition of a Whitney disk given in Definition 1.4, the rectangular domain D(¢)
highlighted in Figure 2.4 might thus be thought of as corresponding to a Whitney disk
¢ € ma(c,b). Since Whitney disks map the interior of the disk D? C C to the corresponding
region in Sym?(X), and S* N {Re < 0} to Ts. Hence, the domain seems to represent a
Whitney disk from ¢ to b.

A helpful way to think of this is using [40, Lem. 3.6]. The disk ¢ € m(x,y) is described
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Figure 2.4: A Heegaard diagram constructed using the algorithm of [36, Sec. 2.2] for the
three crossing unknot in Figure 2.3. Shown are the generators of C/'F?((U) corresponding

to the Kauffman states ¢ (solid disk) and b (open disk).

by a domain D(¢), and the spaces S' N {Re < 0} € D? and S* N {Re > 0} C D? are
carried by ¢ to a path in Sym9(X) with preimage in ¥*9 of g arcs in the 5 and « curves
respectively. The arcs start at corners of the domain corresponding to the intersection
point x and terminate at corners for intersection point y. Travelling along one of these
arcs from an x-corner to a y-corner should keep the interior of the domain on the right.
Hence, the domain pictured in Figure 2.4 is seemingly one representing a Whitney disk

from c to b.

The Maslov index and pseudo-holomorphic count of the Whitney disk ¢ is then calculable
using a result of [53]. A domain is said to be polygonal if it is an embedded disk in ¥ with

only acute corners, following [23,53].

Lemma 2.5 [53, Lemma. 9.11] If D(¢), the domain of a homotopy class ¢ € ma(z,y),
is a polygonal domain, then u(¢) =1, and #,//\/\((qb) = +1.

Applying this lemma, one has that p(¢) = 1,n.(¢) = 0 = n,(4). Using the relative
grading information in Definition 1.7, one should have that M(c) — M(b) =1 —0 = 1.
But, using Ozsvath-Szabd’s gradings from Figure 2.2, M(c) — M(b) =0—-1= —1.
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Consequently, one might thus deduce that there is either an inconsistency with the grading
information provided by Definition 2.2, or in the construction of the Heegaard diagram
from a knot projection, since this is a Heegaard diagram shows a Maslov index 1 domain

that should contribute to the differential 5

In fact, this is not the case, and the description of Heegaard diagrams for knots arising from
Kauffman states does not lead to an inconsistency. The definition of a Heegaard diagram
for a knot as presented in Section 1.2.1 and [36, Sec. 2.2], specifies that the closed surface
> be oriented as the boundary of Uy, the handlebody in which each a-curve bounds a
properly embedded disk. Looking at Figure 2.4, this would mean that the handlebody Uy

is the one including the point at infinity.

Thus, the appropriate way to orient the surface ¥ is as the boundary of this surface,
rather than as one might think as the boundary of the thickened up knot projection. This
offers a rectification of the seeming inconsistency, as departing from the corner of b in X
along the blue S-curve, the interior of the disk is kept on the right of the observer, and
hence the domain D(¢) shown corresponds to ¢ € my(b,c), as required by the grading

information?.

This further makes sense of the seeming inconsistency in the paper introducing the use of
Kauffman states by Ozsvath-Szabd, namely in [36, Lem. 2.3 and Fig. 5]. In said figure,
copied in Figure 2.5 the Heegaard diagram for the (partial) knot diagram is constructed
as described, and a rectangular domain between the two generators. The dark circles
represent the generator x, and the light represent the generator y. For the domain shown to
represent a Whitney disk ¢ € ma(z,y), one must use the somewhat unintuitive orientation

described above.

2.2 Kauffman states for three strand pretzel knots

As noted in Section 1.1, the three-strand pretzel knots that do not have well-understood
knot Floer homology fall into one of two categories, P(2a, —2b—1,—2c—1) or P(2a, —2b—
1,2¢ + 1) where a,b,c € N, since the knot Floer homology of three-strand pretzel knots

with all odd coefficients has already been studied in [41].

!The author extends his thanks to Dr. Owens for discussions on clarifying this matter, who extends his

own thanks to Matthew Hedden.
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Figure 2.5: A copy of [36, Fig. 5] demonstrating the seeming inconcistency between the
Kauffman states for a knot diagram and the associated Heegaard diagram for the knot.
The shaded region is the support of a class ¢ € ma(x,y), where y is the solid black dot, and

x the white dot. As in the construction of [36], the B curves are around each crossing.

Following the definitions of [32], the family of three strand pretzel knots P(2a,—2b —

1,—2¢ — 1), with a, b, ¢, € N, the knots are all negative.

Definition 2.6 [32, Def. 2.1] An oriented knot K is defined to be positive if it admits an
oriented knot diagram with only positive crossings, as in Figure 2.6. Likewise, if it admits

a diagram with only negative crossings, it is defined to be negative.

From Section 1.1, one thus has that the knots P(—2a,2b + 1,2¢ + 1) are positive (as
the mirrors of a negative knot). Positive knots, and the slightly more general family
of quasipositive knots have well-understood concordance invariants and 4-genus g4, with

corresponding results stated in Section 3.3.

Kauffman states are particularly useful in the study of the knot Floer homology of three
strand pretzel knots (and the bordered invariant of Ozsvéath-Szabé [49]) because the rigid
structure of the Kauffman states means the generators are well understood, and moreover

lend themselves to inductive arguments.

Because the algebraic construction of [49] places the distinguished edge at the global
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N /
N /

Oriented positive Oriented negative

Figure 2.6: The classification of crossings as positive or megative in an oriented knot

diagram.

minimum, Figures 2.7 and 2.8 describe the possible types of Kauffman states for the
pretzel knots P(—2c—1,—-2b—1,2a) = P(2a,—2b—1,—2c—1) and P(2¢+1,—2b—1,2a) =
P(2a, —2b—1, 2c+1) respectively, slightly changing the notation of [5]. Using Definition 2.2,
the bigradings of the Kauffman states are displayed in Tables 2.1 and 2.2, using the

indicated orientations.

A21 B21 032

Figure 2.7: The three types of Kauffman states for the pretzel knots P(—2c — 1, —2b —
1,2a), shown here with a = b = ¢ = 1. The indices dictate the position of the marked
points in the interior regions, read from left to right. The left hand set of half-twists are
those described by the coefficient —2¢ — 1, the middle are those described by —2b — 1, and
the right by 2a.

The grading information displayed in Tables 2.1 and 2.2 can enable one to determine
topological information about the knot and the knot Floer homology, using the definitions

above, and properties of knot Floer homology.

First, it is simple to see that in each of the cases, the knot Floer homology is contained in
at most two diagonals. Define the A-grading as A = M — A, then since the differential in
C/ﬁ((K) drops M by 1 and keeps A constant, A((/?\(:c)) =A(z) - 1.
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A12 BQI C'13

Figure 2.8: The three types of Kauffman states for the pretzel knots P(2a, —2b—1,2c+1),
shown here with a = b = ¢ = 1. The indices dictate the position of the marked points in

the interior regions, read from left to right.

For the knots P(2a,—2b—1,—2¢— 1), the homology has possible support in the diagonals
A € {c+b,c+b+1}. Furthermore, the only generators in the ¢+ b diagonal must be Cj;

states. Using the restrictions on %, j, and k, one has that

c—b<A(Ajx) <b+c+1
—b—c—1<A(Bjy)<c—1b
—b—c <A(Cj;) <b+ec.
By the fact that the only states in the maximal Alexander grading b+ c+1 are Aj;, states,
and that these are in the least A-grading, they cannot be in the image of 5, since this
would require Cj; states in the same Alexander grading (a contradiction). Furthermore,

they must be in the kernel of 5, since O drops A-grading by 1, yet there are no states in

A-grading ¢ + b — 1. Consequently, one has the following.

Lemma 2.7 For K = P(2a,—2b—1,—2c — 1), with a,b,c € N, the HFK (K) has
HFK(K,b+ c+ 1) = ((12b+20+2)’

with mo non-trivial homology groups in higher Alexander gradings.

Proof The only states in the maximal Alexander grading are Agp1 044, of which there are

a examples. Using the above observations on the A-grading then gives the results. |

Lemma 2.7 then provides more information about the knots using results from knot

Floer homology. From [38, Thm. 1.2], the Seifert genus g3 of a knot K is determined
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State Maslov Alexander

A j+e(k) +2¢ jtek)+c—b-1

Bip | —i+e(k)+2c+1| —i+ek)+c—0b

Cij —i+j+2c —i+ji+e—b

Table 2.1: Table giving the Maslov and Alexander gradings of the Kauffman states dis-
played in Figure 2.7 for the knot P(2a,—2b — 1,—2c — 1). Here, €(t) =t mod (2), and
1<i<24+1,1<j<2b+1,1<k< 2a.

State Maslov Alexander

Ajp | jH+ek)=2c—2 | j+elk)—b—c—2
By, |i+elk)—2c—1|i+elk)—b—c—2

Ci; 1+7—2c—2 it+j—b—c—2

Table 2.2: Table giving the Maslov and Alexander gradings of the Kauffman states dis-
played in Figure 2.8 for the knot P(2a,—2b—1,2c+1).

by .FTF?((K), namely

g3(K) = max {rk (@(K, s)) > O}.

s

Moreover, [33, Thm. 1.1] determines that
rk (fﬁ?{(K, gg)) —1& K is fibred.

So, one has the following easy corollary.

Corollary 2.8 The knot K = P(2a,—2b—1,—2c — 1) has Seifert genus b+ c+ 1, and is

fibred only when a = 1.

These facts are more easily seen in other ways, as these knots are negative (so have positive

mirrors), but this will be discussed in terms of concordance invariants later.

Similar information can be seen for the family P(2a, —2b—1,2¢+1), using the information

in Table 2.2.

Lemma 2.9 The knot K = P(2a,—2b—1,2c+1), for a,b,c € N is fibred, and has Seifert

genus g3(K) =b+ c.
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Proof Using the inequalities for ¢, j and k in Table 2.1, the grading information in Ta-
ble 2.2 yields

—b—c—1<A(Aj) <b-c
—b—c—1<A(Bjy)<c—0»

—b—c <A(Cy;) < b+c.

Since b and ¢ are both positive, one there is a unique state with maximal Alexander

grading, namely Cocq1 941, With A(Cocq10041) = b+ c.

The knot Floer homology of this knot has a support in at most two A diagonals, A = b—c¢
spanned by Aj; and Cj; states, and A = b — ¢+ 1, spanned by B, states. Hence, since d
drops the A grading by one, the states Cj; lie in ker((/?\) as they occupy the least A grading.
Furthermore, b+ ¢ > ¢ — b = max,ep,, {A(x)}, and so since the states B; are the only
states in the A = b — ¢ + 1 diagonal, one has that any state C;; with A(Cjj) > ¢ —b
must be a generator of @(K) So, @(K,b +¢) = Fg, and the result follows

from [33, Thm. 1.1] and [38, Thm 1.2]. |

More information about possible Maslov index 1 disks in the corresponding Heegaard

diagram is also extractable from Table 2.2, as displayed in the following lemma.

Lemma 2.10 If ¢ € ma(z,y) is a Whitney disk for the Heegaard diagram corresponding
to the decorated knot diagrams in Figure 2.8 for the knot K = P(2a,—2b—1,2c+1), then
if (@) =1, one has the following restriction on n,(¢) + 1y ().

Aji | Bir | Cij

T

A | 1] 2 |1

By | 0| 1] o0
Ci: | 1] 2|1

Table 2.3: Table describing the quantity n.,, (@) + n, (@) for ¢ € mo(x,y) with p(¢) =1 in
the Heegaard diagram for P(2a,—2b —1,2c+ 1) from the Kauffman states in Figure 2.8.

Proof Only the calculation for x = A;;, will be presented here, as the other cases are very

similar.
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Assume that one has a disk ¢ € mo(Aji, Apg), with u(¢) = 1. Then, using Definition 1.7

yields

M(Aj1) — M(Apg) = (j +e(k)) — (p+e(q))
=1—2nyu(¢)
A(Ajr) — A(Apg) = (7 +e(k)) — (p +€(q))

= 12(¢) — nw ().
Hence, one has that 1 — 2n,,(¢) = n.(¢) — nyw(¢), and so 1 = n (@) + nyw ().

Likewise, with x = A}, y = Bpq, one has that

M(Ajk) — M(Bpg) = (j + €(k)) — (p+e(q)) — 1
=1—2n,(9)
A(Ajr) — A(Bpg) = (j + €(k)) — (p+ €(q))
= nz(¢) — nw(9).

So, one has that 2 — 2n,,(¢) = n,(¢) — nw (@), and s0 2 = n.(P) + nyw(P).

Setting x = A, y = Cpq, one as that

M(Aj) — M(Cpg) = (j +€(k)) — (p+q)

=1—2n4(9)

which yields n,(¢) + ny(¢) = 1. |

By the principle of positivity of domains, see [53, Sec. 2.4], no domain D(¢) with pseudo-
holomorphic representative can have negative coefficients in the formal sum of regions
presented in Definition 1.5, and so to be counted in any differential 5, 0~ or 0°°, both n,

and n,, are strictly non-negative.

So, guided by Lemma 2.10, one could then determine that the differential 0~ (C;;) would
have states UQqu as possible elements in the image. This would then require that
M (Bp,) = M(C;j) + 3, restricting the possible states in the image of 07. Hence, the
gradings of the Kauffman states can inform the search for Whitney disks that contribute

to the differentials in knot Floer homology.
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Concordance invariants

The package of knot Floer homology, and the reformulations by [4, 60, 62] allow the ex-
traction of concordance invariants associated to subcomplexes of CFK*(K). Recall the

following definition from [55].

Definition 3.1 Oriented knots Ki, Ky C S® are smoothly concordant if there is some
smooth embedding of the cylinder S' x [0,1] into S3 x [0,1] such that O(S' x [0,1]) =
(K1 x {0}) U (=Ko x {1}).

A knot K is said to be smoothly slice if K C S3 is the boundary of a smoothly embedded
D? C B It is well known (see [55]) that the connect sum K# — K is slice, where —K
is the mirror-reverse of the oriented knot K. FEvery slice knot is thus concordant to the

unknot.

Concordance of knots defines an equivalence relation on the set of knots, and hence one
can define the group
C:{KCS3 a knot } /~,

whose elements are concordance classes of knots, with the operation of connect sum. The
identity element is then the class of slice knots, and the inverse element of the class [K]

is [—K].

Any function f : C — G, where G is some algebraic object is then said to be a concordance
invariant. If G is a group, f need not necessarily be a homomorphism, although many
concordance invariants are, for example the T-invariant defined by Ozsvath-Szabd is a

group homomorphism from C to Z.

41
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3.1 Ozsvath-Szabd’s T-invariant.

In [37], a surjective group homomorphism 7 : C — Z was defined by examining maps of
subcomplexes into C'{i = 0}, introduced in Section 1.2.3. This integer-valued invariant has

two equivalent formulations, with this equivalence demonstrated in [50, App. A].
Definition 3.2 Following [37], define the subquotient complex
C{i=0}=C{i<0}/C{i <0},

with the differential induced by this quotient. Namely, one has

Ouert(2,0.) = X D0 #(M(9)) [4,0.5 — n=(9))

y€TaNTg pema(z,y)
n(p)=1
nw (¢)=0

From Section 1.2.3 and [37, Sec. 2.2],
H. (C{i=0}) = HF(5% = F.
Using the filtration on CFK*(K), one has the natural inclusion map
S C{i=0,7< s} — CF(S%),
that has the induced map on homology
W H (C{i = 0,7 < s}) — HF(S®) 2 F .
The concordance invariant 7(K) is then defined as
7(K) =min {s € Z s.t. 1} is non trivial }.
It is useful to note that the generator of ﬁ‘(Sg) = H,(C{i = 0}) is in Maslov index 0. It
does not mean that the complex C{i = 0} has a single generator in Maslov index 0 that
lies in ker(Oyert) and also ker(é\), as is the case for the complex in Figure 1.4. Take for

example Figure 3.1, where the sum of two generators would give the required generator of

the homology group.

The equivalent formulation of 7(K) as defined in [50] uses the idea of non-torsion elements

in HFK~ (K).
Definition 3.3

T(K):—IEGaZX{HGHFK (K,s) | U0#0 VneN}.
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1=10

Figure 3.1: An example diagram for part of a chain complex, demonstrating that a

~

generator of homology in H, (C{i = 0}) might not lie in ker(9).

In particular, this formulation is also applicable in Zemke’s reformulation, and calculable
from the complex CFKg/(K) defined by [4]. This is because this formulation from [50]
uses information from HF K~, which is calculable from only horizontal information in
CFK*(K), and so from Jy as defined in Definition 1.18. In particular, 7(X) would then

be equal to the the negative of the Alexander grading of the U-nontorsion tower.

As summarised by [26], the 7-invariant as defined above has the following properties.
They are not proven here, but the fact that 7 is a concordance invariant is proven in [37,

Thm. 1.2], with other results being corollaries in [26, 37].
Theorem 3.4 Properties of T [37]
e 7:C — 7 is a group homomorphism, with 7(U) = 0.

e Defining g4(K) as the minimal genus of surface D bounded by K where D is smoothly
embedded in B*, one has the bound |7(K)| < g4(K). The quantity g4(K) is called

the slice genus of K.

o If K, is the oriented knot with a marked positive crossing, and K_ is the oriented

knot yielded by changing this marked crossing to a negative crossing, then

r(Ky) — 1< 7(K-) < 7(K).

The above crossing change inequality and lower bound on the slice genus will be useful

in the later discussion of bounds on concordance invariants for three strand pretzel knots.
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By convention, 7 is positive for positive knots such as the right hand trefoil, so 7(T33) =1

corresponding to the generator a from Figure 1.4.

For an oriented knot K, the quantity 7(K) is insensitive to reversing the orientation,
see [37, Sec. 3.2]. However, the concordance class the mirror-reverse —K is the inverse of

class [K], and since 7 is a group homomorphism, one thus has that 7(—K) = —7(K).

The properties demonstrated are similar to properties of the signature o(K) of a knot,
and the Rasmussen s-invariant from Khovanov homology. It was conjectured in [54] that

T(K) = —J(QK) = —3 for all knots K. This was demonstrated to be false by [10], but the

following is true.

Theorem 3.5 [37, Thm. 1.4] For K an alternating knot in S3, 7(K) = — =—

This statement is more generally true for all homologically thin knots, since the entire

knot Floer homology HFK is supported in a single diagonal A = M — A.

3.2 Concordance invariants v and ¢

One can consider the inclusion of other subcomplexes into C{i = 0} to extract similar

concordance invariants.
Define C'{max(i,j — s = 0)} as the quotient C{i = 0}/C{i = 0,5 < s}. As a quotient
complex, this includes into C{i = 0} with the following family of maps:

v®: C{max(i,j —s=0)} - C{i=0} = 51\7(53).
In the context of CFK*°(K), this can be thought of as the complex lying on the horizontal
line j = 5,4 < 0 and the vertical line : = 0,5 < s.

The complex C'{max(i,j — s = 0)} is isomorphic to the chain complex of 5?7(5’13(,(1(), s)
for |s| < % [44, Thm. 2.3], which is the Heegaard Floer homology of N surgery along the
knot K C S3.

As in Definition 3.2, this map gives an induced map on homology
U5 HF(SY(K),s) — HF(S®),

which is necessarily trivial for s < 7(K) from Definition 3.2. Likewise, for s > 7(K) this

map is non-trivial.
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Definition 3.6 [45, Defn. 9.1]

v(K) =min{s € Z s.t. U} is surjective} .

Hence, v(K) € {7(K),7(K) + 1}, and moreover from [15, Prop. 2.3|, one has that

T7(K) < v(K) < g4(K)L

Again, since the only information from CFK® needed to define v(K) came from the
horizontal and vertical information separately — namely on the lines {i = 0,5 < s} and
{j = s,i < 0} — this invariant is calculable from CFKx/(K), and also from the reduced

complexes discussed in Section 1.4.1.

Unlike 7(K), v(K) is not a group homomorphism from C — Z. This can be seen from
that observation that for any knot K, one has that v(K) is either equal to 7(K) or
7(K) + 1. Hence, if one has that v(K) = 7(K) + 1, then v(-K) € {r(-K),7(-K) + 1},
and thus

v(—K)>—-71(K)—-1=—-v(K).
Since there exist knots K with v(K) # 7(K) — an example of which is the left-hand
trefoil —T5 3, as demonstrated in [29, Fig. 6] — taking an inverse in C does not correspond

to taking the inverse in Z, implying this is not a group homomorphism.

3.2.1 Simplified bases and the ¢ invariant

As mentioned previously, the notion of a reduced knot-like complex from Definition 1.18
is similar to notions previously introduced in knot Floer homology, namely that of hori-

zontally and vertically simplified bases from [12].

Definition 3.7 Let C = CFK ™~ (K) be the subcomplex C{i < 0} of CFK®. The complex
C is then reduced if the differential 0°° drops the i-filtration level, j-filtration level or both.
A reduced complex represented in the familiar Z&Z grid then has no arrows that begin and

end at the same coordinate. Hence, each generator of a reduced complex lies in ]?ﬁ((K)

Further, define C, 3 to be the subcomplex C{i < a,j < b}. A basis {zy} for (CFK~(K),0%)
is then a filtered basis if for every pair (a,b) the set

{xk |$k (S Ca7b}

'This inequality is as stated in the proposition, which holds when 7(K) > 0. In the case where 7 is

negative, then taking the mirror of the knot would yield a similar inequality with 7 positive.
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is a basis for Cqp.

Using this definition, for a reduced complex (C,9°), one can separate the differential
0% into 0° = Oyert + Ohors, Where each drops the i and j filtration respectively. As a
consequence, a reduced complex is amenable to finding a basis that simplifies one (or both)

of these differentials.

Definition 3.8 A filtered basis {xy} for a reduced complex C is then a vertically simplified

basis if for every element x;, one has the following trichotomy.
o x; € ker(Oyert) but x; & im(Oyert)-
o x; & ker(Overt), and Opert(x;) = Tit1.
e x; € ker(Oyert) and there is a unique z;—1 such that x; = Oyert(Ti—1).

An equivalent notion then exists for the horizontal differential and horizontally simplified
bases. The property of having a vertically or horizontally simplified basis is universal, as

demonstrated by then following.

Lemma 3.9 [12, Lem. 2.1] Every CFK ™~ (K) is filtered chain homotopy equivalent to a

reduced complex with a vertically (or horizontally) simplified basis.

If such a basis can be found, and the appropriate equivalent reduced complex, the calcula-
tion of the concordance invariants v and 7 becomes easier. For example, the generator of
HF (83) determining 7 would be the basis element of the vertically simplified basis that

falls into the first category.

The trichotomy and correspondence of C{i = 0} with CF (83) dictates that there is
some filtered chain homotopy equivalent complex admitting a basis such that Jy.+ cancels
generators in pairs, except for a single distinguished gemerator. Using this, Hom defines

the following concordance invariant [12].

Definition 3.10 Let x; be the distinguished generator of the vertically simplified basis for
C, a reduced complex filtered chain homotopy equivalent to CFK~(K). Using this basis
for C, one can then find a horizontally simplified basis by [12, Lem. 3.2,3.3]. Then, define
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e(K) € {~1,0,1} by

-1 ifx; & ker(Ohorz)
e(K)=950  ifxj € ker(Onors), zj & im(Ohor=) -

1 if xj € 2‘W"(ahorz)

Informally, this corresponds to the distinguished generator of the vertically simplified basis
then being at the start of a horizontal arrow, the distinguished horizontal generator, or at

the end of a horizontal arrow.
In fact, € can be defined purely in terms of 7 and v a knot K and its mirror.

Definition 3.11 [12, Rmk. 3.5/

Hence, as 7 and v are both concordance invariants, it then follows immediately that e
is an invariant of not only the filtered chain homotopy class of CFK~(K), but also the

concordance class [K] € C.

Remark 3.12 Since 7 and v are both determinable from CFKg/(K), Zemke’s formula-
tion over the reduced ring R', so is e(K). In fact, such a numerical invariant is extractable
from a reduced knot-like complex, a fact that is useful later on when considering the bor-

dered invariant of Ozsvdth-Szabo.

3.3 Kawamura bounds and concordance results

From the Kauffman states, and observations on the standard diagrams of three-strand
pretzel knots, one can place bounds on the concordance invariants defined above. In
particular, the concordance invariants defined above provide lower bounds for the slice

genus, see [15, Prop. 2.3].

Consequently, if one can bound these concordance invariants from below, then one restricts
the possible values for the slice genus. In the case of quasipositive knots, this restriction

is enough to determine v(K), 7(K) and g4(K).

Definition 3.13 /2, Ch. 2] From an oriented knot diagram for K, one can form a dec-

orated set of Seifert circles by smoothing each crossing agreeing with the orientation (to
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form Seifert circles), and at each crossing decorating the region with a signed arc, positive

or negative, as exemplified by Figure 3.2.

A knot diagram is defined to be quasipositive if it admits smoothing to a decorated set of
Seifert circles such that the signed arcs can be partitioned into single crossings and pairs

of crossings, such that
o Fach single crossing is positive.

o FEach pair of crossings consists of a positive and negative crossing joining the same

two Seifert circles.

o Traversing a Seifert circle from one element of a pair to another, one does not meet

both elements of any other pair.

Quasipositive knots (and more generally quasipositive links) bound Seifert surfaces cor-
responding to the above set of decorated Seifert circles called quasipositive surfaces. As
demonstrated by Rudolph [57, Thm. 90], quasipositive Seifert surfaces are ambient iso-
topic to subsurfaces of the fibre F' of a torus knot 7}, ;. Using this fact, and that from [37,
Cor. 1.7] one has

pg—p—q+1
() = H = = 0i(T),

Livingston proves the following.

Theorem 3.14 /26, Thm. 4] If K is a quasipositive knot, bounding a quasipositive Seifert

surface, then

Idea of proof Since quasipositive surfaces are subsurfaces of the fibre F' of a torus knot
T, the connect sum T#K bounds a surface in a cobordism between 7, p,q and K. Using
properties of slice genus, and properties of 7 proved in [37], one can bound g4(K) and

93(K) on each side by 7, yielding the result. |

As a simple corollary, since the three-strand pretzel knots P(—2a, 2b+1,2c+1) are positive
knots, and clearly the corresponding set of decorated Seifert circles has purely positive

decorated arcs one has the following.

Corollary 3.15 For K = P(—2a,2b+ 1,2c+ 1), the concordance invariants T and v are

T(K)=v(K)=gs(K)=9g3(K)=b+c+ 1.
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Proof K is positive, hence quasipositive, then the result is implied by Theorem 3.14 and

Lemma 2.7, together with the fact that 7(K) < v(K) < g4(K). |

Figure 3.2: The decorated Seifert circles from an oriented knot diagram for the figure
eight knot 41. Note, since there is a Seifert circle with two negative crossings, this is not

a quasipositive diagram.

3.3.1 Sharper slice Bennequin inequality

For S C B* with 0S = K C dB*, in [56] Rudolph examines the slice Bennequin inequality
for quasipositive knots, which places bounds on the Euler characteristic x(5) for quasi-
positive knots K. Since S is a surface bounding a knot smoothly embedded in B one has

that x(S) =1 — ¢(S5), and hence such bounds also bound g4(K).

Motivated by this, in [18,19] Kawamura uses a closer examination of the Seifert circles as

pictured in Figure 3.2 to bound the concordance invariant 7.

Definition 3.16 A Seifert circle S as in Figure 3.2 is strictly negative if there are no
positive arcs incident with this circle in the decorated collection of Seifert circles. If a

Seifert circle is not strictly negative, then it is defined to be positive.
Furthermore, associated to a knot diagram Dy for a knot K, define the quantities

w(Dg) = # ( positive crossings ) — # ( strictly negative crossings )
O>(Dg) = # ( positive Seifert circles )

O<(Dg) = # ( strictly negative Seifert circles ) .

Using the above definitions, the concordance invariant 7 can be bounded as follows.



CHAPTER 3. CONCORDANCE INVARIANTS 50

Theorem 3.17 [18, Thm. 5.3] For K any knot with diagram Dy, such that the associated
set of Seifert circles has O>(Dg) > 1, then

7(K) > 5 (w(Dk) — O>(Dk) + O<(Dk) +1).

DO | =

Although the knots in the family P(2a, —2b—1,2c+ 1) are clearly not positive or negative,
as can be seen through the examination of Figure 3.3, using Theorem 3.17 one can place

bounds on 7(P(2a,—2b — 1,2¢ + 1)) as follows.

Proposition 3.18

c—b—1 < 7(P(2a,—-2b—1,2c+1)) < c¢—b

b—c < 7(P(—2a,2b+1,-2c—1)) < b—c+1.

Proof From Figure 3.3, abusing notation slightly, it is clear that

w(P(2a,-2b—1,2c+1)) =2c—2b—2a
Os(P(2a,—2b —1,2¢ + 1)) = 2

O<(P(2a,—2b—1,2c+ 1)) =2a — 1.

Hence, applying the bound from Theorem 3.17, one has that

1

7(P(2a,—2b—1,2¢+1)) > = (2¢—2b—2a—2+2a—1+1)=c—b—1.

O |

Then, noting that the mirror reverse P(—2a,2b+ 1, —2c — 1) has the same set of Seifert

circles with opposite decorations on the arcs, one has that

w(P(—2a,2b+1,—2¢c— 1)) = 2b+ 2a — 2¢
O>(P(—2a,2b+1,-2c—1)) =2a+1

O<(P(~2a,2b+1,—2c — 1)) = 0.

Applying the same theorem, one has that 7(P(—2a,2b + 1,—2¢c — 1)) > b — c¢. But, as
7(P(—2a,2b+1,—2c — 1)) = —7(P(2a, —2b — 1,2¢ + 1)), this implies that 7(P(2a, —2b —
1,2¢+1) <c—b. |

This limits the possible values of 7 to two values for the family of pretzel knots P(2a, —2b—

1,2¢+1). But by using simple band moves, and the crossing change formula presented in

Theorem 3.4, one can determine 7 and v for subfamilies of these knots.
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%
%

Figure 3.3: The associated Seifert circles for the standard diagram of P(2¢+ 1,—2b —

OO
OO

1,2a). The corresponding Seifert circles for the knot P(—2c—1,2b+ 1, —2a) can be found

by multiplying all of the decorations on the arcs by —1.

When b = ¢, it is simple to see that the P(2a,—2b — 1,2b+ 1) is slice. In particular, for
any knot P(2a,—2b — 1,2¢ + 1), Figure 3.4 demonstrates the placement of a band that,
after surgery along this oriented band yields a link isotopic to Ty 9. If b = ¢, this link

is isotopic to the two-component unlink.

In the familiar movie format describing cobordisms between surfaces bounding knots, band
moves between arcs on the same knot correspond to saddle points in a cobordism. If there
is a surface F' ¢ B* such that 0F = J C 53, and there is some oriented band move
between K and the two-component link J, then there is a genus 0 cobordism between K

and J, and so g4(K) < g(F).

Lemma 3.19 For K = P(—2a,2b+1,—2¢ — 1), with b > ¢, one has that
r(K) = b c = gu(K).

Proof For b = ¢, the band move demonstrated in Figure 3.4 yields an unlink, which is
slice. The surface corresponding to this cobordism, together with the slice disks for each
component of the unlink imply that P(2a,—2b+1,2c+1) is slice, since the knot bounds a

genus 0 surface with only one saddle point and two minima. Applying Theorem 3.4, this



CHAPTER 3. CONCORDANCE INVARIANTS 52

Figure 3.4: Diagram demonstrating the band move for the pretzel P(2¢+ 1,—2b— 1, 2a)
that results in a link isotopic to Ty op_¢. Here, b =2, ¢ =1 and a = 2. There is an
isotopy of the above diagram to the standard form of P(2a,—2b—1,2c+ 1) by rotating the

entire diagram about the third strand.

implies that 7(P(2a, —2b—1,2b+1)) = 0, and hence the reverse knot P(—2a, 2b+1, —2b—1)
also has 7(P(—2a,2b+1,—2b—1)) = 0.

Restrict now to the case b > c. Since the standard diagram for the pretzel knot P(2a, —2b—
1,2¢ + 1) is isotopic to the diagram in Figure 3.4, and the suggested band move gives a
genus zero cobordism between K = P(2a,—2b—1,2c + 1) and T5 (). This cobordism
and then implies that g4(K) < g4(T52(5—c)) = b—c. It is a well known fact that taking the
reverse of the knot does not affect the slice genus, hence it is also true that g4(P(—2a,2b+

1,-2c—-1))<b—c.

Using Proposition 3.18, one thus has that

b—ec<7(K)<g(K)<b-—c,

which yields the result. |

Remark 3.20 One can also recover this lemma using the crossing change formula from

Theorem 3.4, in a similar way to the proof of the statement below.
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Lemma 3.21 If 7(P(2a,—2b—1,2c+ 1)) =c—b—1, then for any A > a, one has that
T(P(2A,—2b—1,2¢+1)) =c—b— 1.

Proof As depicted in Figure 3.5, the encircled crossing is positive. So, in the cross-
ing change formula depicted in Theorem 3.4, denote the knot P(2¢ 4+ 1,—2b — 1,2a) =
P(2a,—2b—1,2c+1) as K.

Changing the circled crossing to negative yields the knot K_ = P(2(a+1),—-2b—1,2¢c+1).

If 7(K4+) = ¢ —b—1, then the crossing change inequality implies that

r(Ky)—1 < r(K_)

IN

T(Ky)

c—b—2 < 7(K_) < ¢c—b—1.

Applying the bounds from Proposition 3.18, one thus has that 7(K_) = ¢ — b — 1, since
the bounds presented in the proposition do not depend on a. Repeating this process with

the Reidemeister two move, and relabelling K_ as K yields the result.

ol

Figure 3.5: An example of the oriented knot P(2a, —2b—1,2c+1), where a = 1. Changing
the circled crossing from positive to negative yields the knot P(2(a +1),—2b —1,2c+ 1).



Chapter 4

Algebraic objects in the

construction

As described during the description of Zemke’s reformulation of classical knot Floer ho-
mology in Section 1.3, in [46,49], Ozsvéth-Szabé defined an algebraic invariant associated
to a knot which takes the form of a chain complex over R’ = F[U, V]/(UV). Note, that
this is the same ring over which Dai et al defined the complex CFKg/(K) and reduced

knot-like complexes.

In [49], Ozsvath-Szabé use a cut-and-paste construction to associate a (Z @ Z)-bigraded,
bifiltered chain complex C(D) to an oriented knot diagram D for the knot K such that every
Morse event projects onto the (z,y)-plane at a different y-coordinate. This construction is
described in more detail in Section 4.1 and Section 4.5. As a cut-and-paste construction, to
smaller pieces of the knot diagram D one associates algebraic objects that can be ‘pasted’
together in the appropriate algebraic sense to form the larger algebraic invariant C(D).
The filtered chain homotopy type of the complex C(D) is invariant under Reidemeister

moves, as proven in [49, Thm. 1.1].

Theorem 4.1 (Ozsvath-Szabd) If D and D’ are isotopic oriented knot diagrams for
the oriented knot K, such that in both D and D’ every maximum, minimum and crossing
appears in a projection to the (z,y)-plane at a different y-coordinate, then there is a filtered

chain homotopy equivalence C(D) = C(D'). Hence, the filtered chain homotopy type C(D)

for D a diagram of K is an invariant of the oriented knot K.

54
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In [49, Thm. 1.1], it is stated that only the homology of the complex C(D) is an invariant
of the oriented knot. However as remarked in [1, Thm. 5], in [49, Sec. 8] the filtered
chain homotopy type of the complex does not change under the application of bridge
moves and Reidemeister moves to the corresponding knot diagram. More specifically, each
Reidemeister move or bridge move applied to the knot diagram corresponds to a different
sequence of algebra elements used in the cut-and-paste construction: however in the proof
of [49, Thm. 1.1] it is verified that the corresponding D A-bimodules associated to the

partial knot diagrams before and after these moves are equivalent.

As a consequence, the filtered chain homotopy type of the entire complex is a knot invari-
ant, not just the homology of the complex. This is because the complex is constructed
from the box-tensor product of the algebraic pieces corresponding to subsets of the knot
diagram (see Section 4.5), and if the algebraic pieces from which the complex is determined
are invariant under the application of Reidemeister and bridge moves, then so is the full

complex.

The cut-and-paste method lends itself to a computer implementation, and indeed Ozsvath-
Szabé in [47] have developed C++ code to implement the calculation of the invariant C(D)
from a given PD-code for a knot diagram. This has been adapted by the author in [58] for
the simple calculation of this invariant for three strand pretzel knots without the need to
manually determine a PD code for a specific example. Moreover, [58] includes the ability

to terminate the algorithm at any point in order to examine intermediate invariants.

The algebraic pieces into which the full knot invariant C(K) is decomposed are Type D
structures, DA-bimodules and As.-algebras. The specific examples of the objects asso-
ciated to crossings, maxima and minima in the construction of [49] are presented in this
chapter, after first defining the objects following [24,25,46]. Furthermore, since the main
consideration in this thesis is the determination of C(D), for D a diagram of a three strand
pretzel knot, when adaptations have been made of the objects used in the constructions

of [47,49], this will be highlighted.

4.1 The complex C(K)

For D an oriented knot diagram for the knot K, the invariant C(D) defined by Ozsvéth-

Szabd in [49] is a bigraded chain complex over the ring R’. This chain complex has a
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generating set over R’ that is in one to one correspondence with Kauffman states for the

oriented knot diagram D.

The reformulation of knot Floer homology from Dai et al described in Section 1.3.1 and [4]
is determined from a Heegaard diagram associated to a knot. Theorem 2.3 implies that the
Kauffman states for a knot diagram are in one to one correspondence with the intersection
points of a Heegaard diagram for this knot, and so provide an R'-basis for the complex

CFKpg/(D), the local equivalence class of which is a knot invariant.

In [49, Sec. 1.3], Ozsvath and Szabé conjectured that the two formulations are equivalent,
with this equivalence to be proven in a forthcoming paper. Very recently, this conjectural
equivalence was proven in [48]. However, the two chain complexes are defined in two
completely independent ways. In [4], Dai et al adapt Zemke’s reformulation of knot Floer
homology to be taken over the ring R’, and the definition of the differential involves
counting pseudo-holomorphic representatives of Whitney disks between generators. The
construction of C(D) is purely algebraic, with algebraic objects associated to each ‘piece’
of the knot diagram with no reference being made to a corresponding Heegaard diagram

or Whitney disk.

But, as in the construction of Heegaard diagrams associated to knot diagrams for which
Kauffman states correspond to generators (see Section 2.1), from a thickened up projec-
tion of any partial knot diagram one can produce a partial Heegaard diagram: simply
the excised piece of the Heegaard diagram for the full knot. This partial Heegaard dia-
gram, although not used in the constructions of [46,49], does motivate the definitions of
the maps in the DA-bimodules. This Heegaard diagram interpretation will be explained
further in Section 4.2.2, but the very recent work of Ozsvath-Szabé in [48, Sec. 2.6] also
gives the correspondence between the algebraic objects and appropriate partial Heegaard

diagrams.
More formally, the complex C(D) is defined as follows.

Definition 4.2 Let D be an oriented knot diagram for the oriented knot K , such that every
mazimum, minimum and crossing appears at a different y-coordinate in the projection of
the knot diagram to the (x,y)-plane. Call such a knot diagram a special knot diagram for
K. Mark the global minimum of a special knot diagram, such that any Kauffman state of

this diagram has the edge containing the global minimum as the distinguished edge.
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As described in [49, Secs. 1,8/, the complex (C(D), ) associated to a special knot diagram
diagram D is a chain complex over R', generated by Kauffman states for the special knot
diagram. This complex is bigraded, with two integer gradings A and A, such that the

complex splits as

C(D) = P Cs(D, ).
4,8
Here, § is the A-grading, and s the A-grading (or Alexander grading).

These graded components are then equipped with the actions:

U:Cs(D,s) = Cs—1(D,s — 1),
V:Cs5(D,s) = Cs—1(D,s+ 1),

0 : C(g(D, s) — C5_1(D7 S),

where U and V act on elements of the chain complex over R' 2 F[U,V]/UV by multipli-
cation. The differential O will be defined later in Section 4.5.

Note, the bigrading of the chain complex C(D) is not the same as the (gry, gry)-graded
complex CFKg/(K). This is most clearly seen by the fact that multiplication by U and
multiplication by V affect both gradings in this setting, whereas in CFKg/(K) gry is
unaffected by multiplication by U, and gry is unaffected by multiplication by V.

The A-grading of C(D) is identical to that of the A-grading introduced in Section 2.2, and
can be related back to the familiar Maslov grading from [39], by the equation A = M — A.
Furthermore, the A and A gradings can be read off directly from the Kauffman states, in

a similar method to Definition 2.2.

Definition 4.3 Let C be the collection of crossings in a special knot diagram D. Then
for z a Kauffman state of this special knot diagram, the integer valued gradings A(z) and

A(z) are defined as

A) =) Ale),

ceC

Alx) =) Alo),

ceC

where A(c) and A(c) are the local contributions at each crossing as displayed in Figure 4.1.

Remark 4.4 Note, for a Kauffman state x, since the values A(z) and A(x) are deter-

mined through local contributions, one can consider the same total of local contributions
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Local A contributions

Figure 4.1: The contributions to A and A at each crossing, following [49, Fig. 1]

for a Kauffman state for a partial knot diagram. This is discussed in more detail when

considering the specific Type D structures associated to three strand pretzel knots.

Although the Ozsvéath-Szabd’s invariant C(D) and Dai et al’s invariant CF K/ (K) have
different gradings, the filtration provided is the same: i.e. in terms of U and V pow-
ers. An example is given for the trefoil 753 in Figure 4.2, which is a simplification of

Figure 1.5.

As remarked in [49, Sec. 1], and [46, Cor. 11.11], if one sets U = V' = 0, the resulting com-
plex — denoted C (D) — has a homology that has (by construction) an Euler characteristic
that is equal to the (symmetric) Alexander polynomial Ax(q). Modifying the grading

slightly back to the Maslov grading d = A — A, one has:
X (H (5(1)))) =3 (-1)%rk (H (@(D, s))) ¢ = Ax(q).
deZ

In a similar way to classical knot Floer homology and Zemke’s reformulation, one can take
subcomplexes and quotient complexes as formulated in Section 1.2.3 and extract bigraded
groups and associated homology theories that are also knot invariants. For example,
setting V' = 0 yields a complex C~ (D) that was originally proposed to be conjecturally
equivalent to CF K~ (K), see [46]. Once more, this equivalence was recently proven in [48,

Thm. 1.1].

As will be elaborated upon later, the complex C(D) is the result of taking an appropriate

tensor product of a Type D structure and an A,.-module. These are modules associated
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Figure 4.2: A special knot diagram D for the trefoil To 3. The complex shown is then
a common pictorial simplification of the complex C(D) — which is identical to the repre-
sentation of CFKg/(T>3). Recall, Figure 1.5 gives the diagrammatic representation of
CFKgr(T»3). Here, only the differential is displayed, and one can yield the non-simplified
diagram by setting UV = 0 in Figure 1.5. The state b is shown in the knot diagram, with
a the Kauffman state with the leftmost region occupied at the bottom crossing, and c the
Kauffman state with the leftmost region occupied at the top crossing. Following Defini-
tion 4.3, the (A, A)-bigrading of a is (—1, 1), the bigrading of b is (—1,0), and the bigrading
of cis (—1,—1).

to partial knot diagrams (respectively upper and lower knot diagrams), with a common

differential graded algebra A associated to each object.

4.2 Differential graded algebras

For a special knot diagram as defined in Definition 4.2, except at finitely many values,
a generic line y = ¢ will intersect the special knot diagram at 2m points, which can be
labelled using the set {1,2,...,2m}. In [49], building upon the definition in [46], Ozsvéth-
Szabd associate to every one of these level sets a differential graded algebra (DGA), which

is a type of Ay.-algebra.
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Definition 4.5 [25, Def. 2.1] Over the ground ring F, an A -algebra A is a graded

F-module, equipped with F-linear multiplication maps
. A®i .
pi t A — A2 — i,

defined for all i > 1, such that for all i one has that

n—j+1
Z Z pilar ® - ®@ap1 @ pjar® - @apj1) @ apj - ® a,) = 0.
itj=n+1 (=1

All tensor products are taken over the idempotent ring of the algebra, Z(.A).
More intuitively, the terms in this relation correspond to an equivalence class of trees with
two vertices. Let the vertices of degree j + 1 of the tree represent operations p;, where j

incident edges are above the vertex, representing the j-inputs to p;. Trees are considered

equivalent when the collapse of an edge between the two vertices yields the same graph.

VARV

H2 + He

This is displayed in Figure 4.3.

Figure 4.3: The collapsing tree relation for i = 2. Fach edge within the tree represents
a tensor coordinate A, for A an As-algebra. The vertices correspond to maps g, with
the 1 + 1 incident edges, i of which point upwards, representing the domain of the map.
Collapsing the edge between the two wertices in any tree yields an identical tree with a

single degree 3 vertez.

A differential graded algebra A is then an As.-algebra such that the multiplication maps
w; = 0 for i > 3. The (possibly non-zero) maps p; and g2 in a DGA can then be thought
of as a differential and product in the graded algebra respectively. Differential graded

algebras have been used in the calculation of bordered Heegaard Floer homology of 3-
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manifolds, with examples including the torus algebra [25, Ch. 11] and the algebra defined
for matched circles [25, Ch. 3].

In [24,25], modules are defined over these algebras which correspond to partial Heegaard
diagrams for a three-manifold, which are then pieced together algebraically in order to
calculate the Heegaard Floer homology of the three manifold. This setting motivates the
construction of C(D) through taking appropriate tensor products of Ay-modules and Type
D structures. The algebras in the construction of bordered Heegaard Floer homology
track the interaction of domains in the partial Heegaard diagrams with the boundary,
similar to the interpretation presented here in Section 4.2.2, and recently outlined in

depth in [48].

4.2.1 The algebra A(n)

Following the definitions in [49, Sec. 2], the algebra A(n) used in the construction of the
knot invariant C(D) is defined as the extension of an algebra B(2n,n). As highlighted
above, a special knot diagram cuts the line y = ¢ in 2n places at any point. One can then
index these intersection points by the set {1,2,...,2n}. One then defines I-states in this

algebra B as follows.

Definition 4.6 Let x be an n-element subset of {1,2,...,2n —1} C {1,2,...,2n}. Then
I, is an idempotent or I-state in B(2n,n) that can be represented by n occupied positions,

where each position is to the right of some wall i, as in Figure 4.4.

For every I-state, one has that p1(I;) =0, and

Ix fo =Y,
N2(Ix’ly) =

0 else.

Figure 4.4: A geometric interpretation of the idempotent, or I-state I1o5 in B(6,3). Each

region bounded by walls in this diagram is then assigned the label matching the wall to the

left.
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This definition, restricting the possible occupied positions to the subset {1,2,...,2n — 1},
is in fact a truncated version of the idempotents presented in [49]. The possible truncations
of the idempotents are presented in [27, Sec. 3.4]. As explained in [49, Prop. 8.2] and [46,
Sec. 12], since the bigraded chain complex C(D) is generated by the Kauffman states
of a special knot diagram, and by construction this has the distinguished edge as the
global minimum, one can restrict all algebraic objects to an algebra with this truncated

idempotent ring and yield the appropriate knot invariant.

This will be clarified in Section 4.2.2: one can interpret the idempotents as providing in-
formation about where in the special knot diagram there is an occupied state. The regions
in Figure 4.4 must, excepting if they are incident to the global minimum, have a Kauffman
state somewhere within the region. The idempotent I, then has the interpretation that
i € x as an n-element subset of {1,2,...,2n—1} if the region to the right of wall ¢ does not

have an marked point in this region in the subset of the knot diagram with y > £.

Motivated by [46,49], pure algebra elements in B(2n,n) are defined by triples [I, I, w],
where I, I,, are I-states in B(2n,n), and w € (%Z) s a half-integral weight. Informally,
the idempotents I, and I, will be referred to as incoming and outgoing idempotents
respectively. Hence, one can represent an algebra element b € B(2n,n) as I, - b- I, to give
information regarding the incoming and outgoing idempotents. The pure algebra elements

in B(2n,n) are thus defined as follows.

Definition 4.7 1. Idempotent elements: Let the triple [I,, I, ﬁ] denote an idempotent
element of B(2n,n). Here, I, is an I-state as defined in Definition 4.6. Note, the
weight of idempotent elements is 0 in every coordinate. Together, the idempotents
make the ring of idempotents Z(B), and one can define the unital element

1— 3 [Ix,lx,ﬁ} .

all n-element subsets of
{1,2,..2n—1}

2. L;: For x an n-element subset of {1,2,...,2n — 1}, such thati € x, but (i — 1) ¢ z,
define y = (z\{i}) U {i — 1}. Then, the element I, - L; - I, is defined as the triple

Iy, Iy, %ei], for e; the standard basis element of Z>" with 1 in the it coordinate.

3. R;: Similarly, let x be an n-element subset of {1,2,...,2n — 1} such that i ¢ x, but
(i—1) € x. Then definey = (x\{i — 1})U{i}. The element I- R;- I, is then defined

as the triple [I,, I, 3€;).
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4. U;: Let U?P denote the triple [I, I, e;] for some I-state I,,. Then, let U; denote the
formal sum
U= > U
{i,ifll]gfﬂx;é@
When specifying the specific idempotents associated with U;, the notation used will

often be I, - U; - I, = U?”.

(2

The elements L; and R; can be intuitively thought of as taking an incoming idempotent,
and moving the marked position in region ¢ left across wall ¢ for L;, or moving the marked
position ¢ —1 right across wall ¢ for R;. In a slight abuse of notation, in a similar way to the

definition of U;, the terms L; and R; may also denote the formal sum of all triples

1
Li - IZ [I:v; Iyu 561‘],
iEIx
(i—1)¢x
1
Ri = ; [Ix,ly, 561]
(i—lm)ex

Here, define I, in the appropriate way for each of the terms, as shown in Definition 4.7.

Remark 4.8 As described above, every pure algebra element in B(2n,n) has an associated
imcoming and outgoing idempotent. When I-states were defined in Definition 4.6, they were
described as n-element subsets of {1,2,---,2n — 1}. Throughout this work, idempotent
elements in B(2n,n) will often be denoted as simply I, for some n-element subset x.
However, as seen in Definition 4.7, they are more formally triples [Iw,fz,ﬁ], with the

same incoming and outgoing n-element subsets, and 0 weight in every component.

To define a differential graded algebra B(2n,n), one must also carefully define the maps
w1 B(2n,n) = B(2n,n) and ps : B(2n,n) ® B(2n,n) — B(2n,n), recalling that all higher
maps are 0 for a DGA. For now, the grading information will be omitted, since the full
algebra A(n) will be equipped both with an Alexander multigrading, and a homological
grading A, following [46,49].

Definition 4.9 Define B(2n,n) as the algebra generated over F = 7Z/2 by the elements
above, namely:

B(QTL,TL) = <Ixa Liijv Up> )

taking all possible I-states I, and all possible L;, R; and U, as defined in Definition 4.7.
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Define p1 : B(2n,n) — B(2n,n) to be trivial, so every element in B(2n,n) lies in ker(u).
Then, for any two algebra elements A = [I, Iy, wa] and B = [I,,I,,wy], with weights
wp,wp € %ZQ”, define the product ps(A,B) :== A- B as

Iz, I,,wa +wp] when I, =I,,

p2(A, B) =
0 else.

Here, one is taking wa + wp to be the component-wise sum of the two vectors. Note,
this means that the outgoing idempotent of A must be equal to the incoming idempotent
of B in order to have a non-zero product. Furthermore, use the convention that the
product

Los Loy e) - (L, Loy €3] = (L, Lo, 2¢)) = U - U = (UF)?.

Before extending this algebra B(2n,n) to define the algebra A, used in the construction
of C(D), the definition in [49] takes the quotient of the above to define By.

Definition 4.10 Define By as the quotient algebra of B(2n,n), as follows.
By = B(Qn, TL)/ ~

where ~ denotes the relations:
1. Liv1- Ly =0 for every 1.
2. R;- Ri11 =0 for every 1.
3. UF = I, Iy, e)] = 0 when {i,i — 1} Nax =0, for every i.

After taking this quotient, all non-zero elements in By have the same weights as in

B(2n,n), and the products pe and differential py are defined as in Definition 4.9.

In the literature, the idempotents associated to the algebra elements L;y1-L; and R;- R; 11
are said to be ‘far’, see [46, Def. 3.5]. Using Figure 4.4, an algebra element is then equal to
zero from one of the first two relations if the marked position by some wall moves across

more than one wall.

However, when taken with the appropriate idempotents, the terms L; - L; 11 and R; 11 - R;
are non-zero, as these would involve moving two marked positions across one wall each,

see Figure 4.5.
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Los - Rg - Ry~ Ihys l l LIos - R3 - Ry - Io3s

Figure 4.5: A geometric interpretation of the two algebra elements [I195, 1145, %(63 +eyq)]
and [I125, I35, 5(e2 + e3)] in B(6,3). The first algebra element is zero in the quotient
By, since a marked point moves across two walls, whereas the second algebra element is

non-zero.

As remarked upon, the algebra B(2n,n) is associated to every level set y = ¢ of a special
knot diagram, since a special knot diagram intersects the line in 2n points for some natural
number n. The part of this knot diagram above this level set — i.e. the intersection of
the special knot diagram with {y > [} — is called an upper knot diagram. An upper
knot diagram provides a complete matching! on the set {1,2,...,2n}, obtained through
following the arc incident with position 7 at line y = ¢ through the upper knot diagram to
some other position j on the line y = £. From the upper knot diagram at this level, one

thus defines a term Cj;.

Definition 4.11 Let M be the complete matching on {1,2,...,2n} arising from the upper
knot diagram above the line y = €. For every pair {p,q} € M, define elements
Cpq = Z Ly, I, ep + €4] -
Iy
Note that although the number of strands may not change as one passes from the line
y = £ to y = £ — 1, the matching may change due to the change in the upper knot
diagram. For example a crossing between strands ¢ and ¢ + 1 will swap ¢ and ¢ 4 1 in the
matching M to yield a new matching M’. With these matching elements, the definition

of the algebra A(n) is as follows — see [49, Sec. 2.1], with grading conventions provided

by [46, Sec. 2].

LA complete matching M on the set {1,2,---,2k} is a partition of the set into k subsets, each with two

distinct elements.
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Definition 4.12
A(n) = Bo U (Cpg)pgenrs / ~
where ~ denotes the following relations.
1. Cpg- X = X - Cpq for X any element not equal to Cp,.
2. Cpq - Cpg = 0, for any matching element C,.

Recall, By is already the quotient of the algebra B(2n,n) as defined in Definition 4.10.

The only non-zero differentials p1 : A(n) — A(n) are given by
11(Cpq) = Up - Uy,

for every matching element Cp, with {pq} € M.

The grading A(X) € Z for an algebra element X € A(n) is then given by
2n
A(X) = # (Cpq dividing X) =Y " wi(X),
=1

where w;(X) is the i coordinate of the weight w(X). The weights w(X) defined above

provide a second %ZQ"-gmdmg, called the Alexander multi-grading.

The algebra A(n) then splits as a direct sum with these gradings. One can decompose

An)= B A
deZ
te(32) an

such that the maps p1 and pg in A(n) act by

p1 o Age = Ad—1e p2 : Ady oy © Ady e = Adytdo 1402

Using the above definition, Ozsvéth-Szabd proved in [46] the useful proposition that pure

algebra elements are uniquely determined as follows.

Proposition 4.13 [/6, Prop. 3.9] A pure, non-matching element [I,,I,,w(X)] = X €

A(n) is uniquely characterised by the idempotents I, I, and the weight w(X).

Remark 4.14 The proof of this proposition presented in [46, Prop. 3.9] uses a formulation
of the algebra B(2n,n) in terms of an identification of F[Uy,- - , Uay]-modules, presented
in [46, Sec. 3.1]. Using this proposition, non-matching elements of the algebra A(n) can
be thought of as determined by these triples.
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As a consequence, one can make the observation that, for certain idempotents, I - L; -
R; - I, = UF. To see this, note that if L; = [I, Iy, %ei], and R; = [Iy, I, %ei], then since

elements are defined uniquely by their idempotents and weight, one has that

MQ(szRZ) = [Iz7Izyei] =U/".

7

4.2.2 Interpretation of algebra elements on a Heegaard diagram

The algebra A(n) is defined purely algebraically: i.e. by triples as given in Definitions 4.9,
4.10 and 4.12, together with a complete matching on {1,2,...,2n}. As highlighted by
Figure 4.4, idempotents I, = [I, I, 6>] have an interpretation in terms of arcs intersecting
the level set {y = ¢} in a special knot diagram, but algebra elements R;, L; and U, also

have a similar interpretation.

A special knot diagram intersects the line y = £ in 2n points for some n, and using the
construction in Theorem 2.3 one can yield a Heegaard diagram from a knot diagram by
considering the ‘thickened up’ surface of the knot as a handlebody. Such a Heegaard
diagram associated to a knot would intersect this level in 2n-circles, with a local picture as
displayed in Figure 4.6. Algebra elements then have an interpretation as the intersection of
a domain in the partial Heegaard diagram with the boundary at the level y = £. This has
recently been explained in more depth in [48, Sec. 13|, which formalises how the algebra

elements correspond to regions in upper and partial Heegaard diagrams.

Motivated by the idea that algebra elements correspond to regions bound by « and 3 curves
in partial Heegaard diagrams arising from the Kauffman state construction of [36], one can
associate the following regions in the local picture about y = ¢, with visual representation

as demonstrated in Figure 4.6.

The element L; corresponds to the ‘back’ of the tube for strand 1.

The element R; corresponds to the ‘front’ of the tube for strand <.

The element U; corresponds to the whole of the tube for strand 1.

For pg € M a matching, the element C),; would correspond to the whole of the tubes
for strands p and ¢, with the domain in the upper knot diagram connecting these

tubes.

In this way, one can see that the view of U; as the product of L; and R; corresponds to
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the fact that the sum of the domains on the back and front of tube 7 would be the whole
tube.

L] o= L] Nk LT ‘b LT MANS

Figure 4.6: The representation of the algebra element [I13, I23, %62 +eq] = 13- Ro-Uy-In3 €
A(2) in a partial Heegaard diagram. Note that A(2) in a special knot diagram is associated

to four arcs intersecting the line y = £ for some £.

Furthermore, this gives some intuition as to the idempotent elements in the algebra. The
outgoing idempotent of the element I13- RoUy - Io3 pictured in Figure 4.6 is the I-state Io3.
Since only the front of the second tube (corresponding to arc 2 in a special knot diagram)
is shaded, then in order to yield a valid domain in a Heegaard diagram, one would need to

have an intersection point with a 8 curve somewhere along this a curve below y = /.

It is then relatively simple to check that appropriate 8 curves — for example corresponding
to the -curves at crossings between arcs 1 and 2 or 2 and 3 — require an intersection point
on one of the a-curves of the tube corresponding to a point of a Kauffman state in this
region in order to yield a valid domain according to appropriate restrictions on the corners

of such domains (see [23,53]).

Hence, when using this algebra, one can carry the intuition that an idempotent state I,
means that there is some decoration of a Kauffman state in region ¢ for ¢ € x below y = £.
Equivalently, this would imply that there is no decoration of a Kauffman state in this
region above y = ¢. Figure 4.14 may clarify this slightly by introducing an example of
a DA-bimodule map between Kauffman state generators using a corresponding partial

Heegaard diagram.

4.3 Type D structures

As described earlier in the chapter, one of the algebraic objects used in the construction

of the invariant C(D) by Ozsvath-Szabé is a type of object called a Type D structure,
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defined over an A.-algebra A. The A-algebra in question will be the algebra A(n) as

introduced in Section 4.2.1. Such objects are associated to upper knot diagrams.

Definition 4.15 For D a special knot diagram for a knot K, there are only finitely many
levels £ such that the level set is at a crossing, maximum, or minimum. For all other
choices of £, an upper knot diagram is then the part of the special knot diagram above this

chosen level, namely D N {y > (}.

Note, this subset of the special knot diagram also provides a matching M on the set

{1,2,...,2n}, as discussed in the previous section.

In the construction of the knot invariant defined by Ozsvath-Szabd in [47,49], the As-
algebra A(n) is a differential graded algebra. As a consequence, the only Type D structures
considered in this thesis are those over differential graded algebras. Specialising to this

case, the definition of a Type D structure is as follows, as presented in [25, Def. 2.18].

Definition 4.16 Let M be a graded F-module, and fix a differential graded algebra A,
also over F. Let ' : M — (A® M)[1] be a map satisfying the condition

0= (e ®Idy) o (Idy®0") 00" + (uy @ Idps) 00" - M — A® M.

Denote by AM the pair (M,0"). A module and map pair satisfying this compatibility
condition is a Type D structure over the differential graded algebra A.

This compatibility condition is more easily pictured using trees, as in the case of the A.-
algebra relations. See Figure 4.7 for a visual representation of this. For the more general
setting of a Type D structure defined over an Ay.-algebra that is not a differential graded
algebra, the reader is referred to [24, Sec. 2.2.3].

Importantly, the tensor products within the Type D structure relations are taken over the
ring of idempotents Z(.A) as defined earlier, and any element in the module M of the Type
D structure thus has an associated idempotent. Hence, for the map 9! to be non-zero, if
0'(x) = a®y, where a € A and 2,y € M, then a must have an (outgoing) idempotent
matching that of y. For example, 9' (If-x) =15 -a-I;® I -y is only non-zero when
I, =1, €Z(A).

A useful intuition when considering Type D structures is that the compatibility condition
roughly corresponds to the d> = 0 relation for chain complex. In the tree on the left

in Figure 4.7, one takes one differential in A, and one in M; whereas on the right the
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Figure 4.7: The Type D relation for “M, where A is a DGA. The solid edges represent

elements of M, and the dashed edges elements in A.
differential is taken twice in M.

4.3.1 Gradings and adaptation to a one-manifold

The algebra A(n) introduced by Ozsvéath-Szabé in [49] is a graded algebra, and the Type D
structures used in the construction of C(D) admit similar gradings: namely the half-integer

valued A-grading, and the multi-grading S.

This multi-grading is not quite the same as the Alexander multi-grading, defined before as
the weight of an algebra element. Instead, the multi-grading S for a Type D structure is
a quotient of %ZQ” that is determined by the upper-knot diagram. The Alexander multi-
grading in the algebra A(n) takes values in %Zzn, so the weight w of an algebra element
a € A can be thought of as a half-integer valued function on the points DN {y = ¢}. This
is denoted by w(a).

An upper knot diagram can be thought of as a one-manifold W with boundary OW =Y.
The zero-manifold Y is the intersection of the upper knot diagram with the level {y = ¢}.

From the relative long exact sequence in cohomology, there is a map
0 1 1 1
H Y;iZ — H VV,@W;§Z
given by y — d°(y). This provides an action of H(Y)) on H*(W,0W).

Definition 4.17 [49, Def. 2.6] A Type D structure AX is called adapted to the one-
manifold W if X is graded by S = H'(W,0W) with the above action. Furthermore, one

must have that:
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e There is an additional $Z-grading Ax such that when 8'(z) > b®y € A® X, one
has that
A(d) +Ax(y) = Ax ().

o X is a finite-dimensional vector space over F.

Informally, forcing that all Type D structures are adapted to one-manifolds allows one to
consistently assign gradings to each piece — and moreover to each generator of Type D

structures and DA bimodules.

The generators of the Type D structures used in the construction of C(D) are in correspon-
dence with upper Kauffman states. Upper Kauffman states can be assigned half-integer
valued gradings from the local contributions at each crossing, as seen in Figure 2.2, as was

the case for full Kauffman states of a knot diagram.

Moreover, the other algebraic objects used in the construction of the invariant, such as

D A-bimodules, are adapted to their corresponding one-manifolds, see [46,49].

Since the Type D structures used within this thesis are constructed iteratively as tensor
products — see Section 4.5 — all of the Type D structures considered are adapted to
a one-manifold by construction. The full detail is presented in [46, Sec. 3.9] and [49,
Def. 2.6].

Following [46, Sec. 2.4], a Type D structure over A(n), A" X admits gradings d € Z,s € S
such that X splits as the direct sum
ANX = P Xas
deZ,seS
Furthermore, the map 9! for the Type D structure acts as follows:

o' Xd,s — @ 'Ado,So ® Xd1,81‘

d() +di1=d-1
so+s1=s

Equivalence of Type D structures

In the literature, Type D structures are sometimes referred to as Type D modules [24].
Moreover, following [24, Rmk. 2.2.28], Type D structures over a differential graded algebra
A give rise to a differential graded category fMod. One can suitably define the module
maps between Type D structures to be Type D structure homomorphisms if they obey
the following relation — see [25, Def. 2.18]
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Definition 4.18 Let (M,0n) and (N,0n) be Type D structures over the same algebra
A. Then, if one defines the map ¢ : M — AR N such that

(2 ®@1In)o(la®@)odny + (2 ®1N) 0o (la®IN) 0o+ (11 ®1y) o p =0,

then ¢ is a Type D structure homomorphism.

Note, that the algebra in question does not change here. From such homomorphisms
between Type D structures, one can define a homotopy h between homomorphisms in a
similar way to that of chain complexes. Two Type D structures are then thought of as
equivalent if the composition of maps between the two type D structures are homotopic
to the identity. It is homotopy classes of Type D structures that are then objects of the

category above, and homomorphisms give the morphisms.

4.3.2 Visual representation of Type D structures

As an aid to the inductive proofs that will be much featured here, one can visualise Type
D structures as directed weighted graphs (possibly with loops), an example of which can

be seen in Figure 4.8.

The vertices of such a weighted, directed graph correspond to the elements of the Type D
structure AM = (M, 0"'). Then, if there is a non-zero map from x € M such that a ® y
appears in the result 9! (z), one would draw a directed edge from the vertex corresponding
to x to the vertex corresponding to y. The weight on this edge would thus correspond to

the algebra element a € A.

At no point has the restriction been made that d'(z) is a pure element of A ® M. Some-
times, this may be the case, which will be denoted by 9'(x) = a ® y for such elements

x,y € M, a € A. However, if one has that
0'(z) = (ai®y;) € A® M,

then each summand will be denoted by either 9'(z) — a; ® y;, or a; ® y; € O'(x). This is
notationally easier, and also highlights the link between directed edges in the graph and

non-zero maps in the Type D structure.

All of the Type D structures studied in the computation of invariants for three strand

pretzel knots are standard type D structures, as defined by [49, Sec. 2.8].
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N\ &

Figure 4.8: Example of a directed graph corresponding to the Type D structure for the

unique global maximum. Note, that such a directed graph can have loops.

Definition 4.19 For A(n) the DGA defined above, and A X a Type D structure, A" X
is said to be standard if it is adapted to a ome-manifold with boundary, and for every
x € X, one has that

81(93): Zcpq ®z + e(z),

pgeEM

where M is the matching induced by the upper knot diagram on which the algebra depends,

and €(x) is a sum of elements b ® y, where b is an element of By C A(n), andy € X.

A Type D structure over A(n) is then standard if in the associated graph every vertex
has n self-loops, weighted by the n matching elements, and all of the other directed edges

from that vertex are weighted by non-matching elements.

For simplicity, the graphs corresponding to Type D structures shown here will often omit
the self-loops, since these would decorate every vertex, and by construction all of the
Type D structures within the construction by Ozsvath-Szabé are standard. This is proven

in [49, Prop. 8.3].

4.3.3 Type D structures of upper knot diagrams

The generators of the Type D structure for upper knot diagrams correspond to upper
Kauffman states. The correspondence between Kauffman states for a special knot diagram
and intersection points in the Heegaard diagram constructed from the projection [36,
Sec. 2.2] gives a similar correspondence between upper Kauffman states and intersection

points in a suitable partial Heegaard diagram associated to the upper knot diagram.

Definition 4.20 For an upper knot diagram, regions are either closed, and so bounded by
arcs of the upper knot diagram, or are not closed, so are bounded by arcs of the upper knot
diagram and the horizontal level. The upper knot diagram intersects this horizontal level

at 2n points, enclosing 2n — 1 regions.
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An upper Kauffman state I, - X then corresponds to decorating a crossing in each of the
closed regions and n—1 of the non-closed regions, as in the definition of a Kauffman state
presented in Definition 2.1. The n remaining non-closed regions which are undecorated
then determine an n-element subset of {1,2,---,2n — 1}, denoted p. The idempotent
associated to the upper Kauffman state X is then denoted I,,.

In this way, if ¢ € p, then the decoration in this region must be lower in the knot diagram.
It is worth noting however that not all upper Kauffman states extend to Kauffman states of
the full knot diagram. However, it is true that all Kauffman states for a full knot diagram
do restrict to upper Kauffman states at every level y. An example of an upper Kauffman

state for an upper knot diagram of the three-strand trefoil is presented in Figure 4.9.

A NP

Figure 4.9: An upper Kauffman state Is3-X for an upper knot diagram of the right-handed

trefoil. Completing any upper Kauffman state to a full Kauffman state, the distinguished
edge in the special knot diagram is by convention the global minimum. Note here, that the
undecorated non-closed regions are to the right of the second and third intersection points
with the horizontal level. Hence, the associated idempotent to this upper Kauffman state

18 Io3.

The idempotents associated to each generator are important for dictating the possible
position of lower Kauffman states. They can also restrict the possible maps within the

Type D structure.

Lemma 4.21 In a Type D structure “M, all non-zero maps 9* : AM — A ® AM are
such that
NIy X) = Iy, Ijw) @1, Y =1, a- 1, @1, Y.

Note, the proof of this statement is obvious, as the tensor product A ® M is taken over
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the ring of idempotents Z(A). Hence, the outgoing idempotent of the algebra element,

and the associated idempotent to the Type D generator must match.

Example 4.22 As an example, assume one has a Type D structure with elements I134- X
and I35 - Y. The only half-integer weight algebra element between these idempotents is
I134 - R5 - I135. Then, if there is a map in the Type D structure between X and Y, one has

ot (X) = Liga-my - Rs-ma- I135 @Y, where my and ma are integer weight elements in A.

Also, if there is no non-zero algebra element between the two idempotents, then there is no
map between gemerators with these idempotents. As an example, since Ry - R5 = 0 € A,

one has that there is no possible arrow between I193 - X and I125 - Y.

4.3.4 Simplification of Type D structures

One of the strengths of the computer implementation of the determination of the invariant
C(D) for a special knot diagram D in [47] is the fact that the Type D structure can be
simplified at every step (Morse event) to yield a (filtered) homotopy equivalent Type D

structure with fewer generators.

Following the language of [49, Sec. 13.2], this simplification is the ‘contraction of arrows’ in
the Type D structure. For AX a Type D structure, the aim is to yield a Type D structure
AY such that for every y € Y, d'(y) has no terms with an algebra element of non-zero
weight. Recall, in A, the only non-zero weight elements are the idempotent elements,
which sum together to form the unital element 1. In [49, Def. 3.2], Ozsvath-Szabé define

the following.

Definition 4.23 A Type D structure *X is defined to be small if for every z,y € X with
A(z) = A(y) + 1, one has that the A®y coefficient of 9*(z) is zero.

Ozsvéth-Szabé then prove in [49, Lem. 13.3] that any standard, A-graded, finitely gen-
erated Type D structure is homotopy equivalent to a small, finitely generated, standard,

A-graded Type D structure over the same algebra.

The lemma, and associated proof, are very similar to the zig-zag lemma as presented in [63,
Sec. 3.1] and the edge reduction algorithm presented in [21, Sec. 2.6]. More generally, [63,

Thm. 5] proves the following, when A has some unital element 1.

Theorem 4.24 (Zig-Zag Lemma) Let G be a set of generators for the Type D structure
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AX. Then for any = € G, one can expand 0" (z) as
al(x) = Zczy XY,
yeg
for algebra elements c,y € A. An algebra element e € A is invertible if there exists some

element f such that f -e =e- f = 1. Denote the inverse of algebra element e by e~ !.

If a,b € G are such that c,, € A is invertible, the Type D structure X' generated by
G' = G\{a, b} is homotopy equivalent to X, with map 0%, defined by
% () = Z (Cay + C2bCrp Cay) ® Y.
yeg’
Note, that the only invertible elements in A(n) are the idempotent elements, and so

the simplification of Type D structures to ‘small’ Type D structures is essentially an

implementation of the zig-zag lemma.

The zig-zag lemma is a well-known method for simplifying chain complexes by removing an
acyclic pair. As stated in Theorem 4.24 presented above, there is a similar simplification of
Type D structures. Moreover, [63, Sec. 3.1] continues to prove that similar simplifications

exist for D A-bimodules and As,-modules.

However, a crucial method in this thesis is the determination of Type D structures through
inductive proofs, and it is thus helpful to consider how a Type D structure changes upon
extending the upper knot diagram. The correspondence between upper Kauffman states
and generators of the Type D structure is useful in this, and so in the inductive proofs
of Type D structures for three strand pretzel knots presented in Chapter 5, the Type D

structures are not simplified in the intermediate stages.

4.4 DA-bimodules

The algebraic objects associated to the Morse events in a special knot diagram are D A-
bimodules over the differential graded algebras. Such Morse events are crossings, maxima
and minima, and by construction of the special knot diagram necessarily occur at finitely

many distinct values y;.

The specific examples of these DA-bimodules as defined by [49] will be given later in
this section, but first the general definition of DA-bimodules over a DGA is presented
following [46, Sec. 2.6] and [24]. As with Type D structures, such bimodules can be
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defined over a general A,-algebra, but since the algebra A(n) is a differential graded

algebra, one can specialise and define a D A-bimodule as follows.

Definition 4.25 [2/, Def. 2.2.43] Let A and B be differential graded algebras over the
rings k, j respectively. A type DA-bimodule *Mpg is a graded (k,j)-bimodule, with (k,j)-
linear maps

514t M@BY - A M.

The tensor products are taken over the rings of idempotents in each of the As-algebras.
These maps also satisfy similar compatibility conditions to As-algebras and Type D struc-

tures.

To define these compatibility relations, first note that one can compose 5%+j and 5%+k maps
by separating the algebra inputs. One can define the maps
Ay A" — Z Al @ A,
i+j=n

Using this, one can define A =5 A,.

Then, define 6' = ijo 5%+j’ the sum of those §' maps taking any number of algebra

inputs. Define the maps 6% for k > 1 inductively, so

M = (10 ®6") 0 (' ®1ps) 0 Iy ®A).

Figure 4.10 displays this definition of 5t from the composition of 6 and &' pictorially,
which is perhaps easier to understand. Note, the base case for the induction is the 6' map

defined above. For each j > 0, the maps must satisfy the following compatibility conditions.
0= (/ff‘@lM) 05%+j(x®a1®---®aj)

J
+Y 0 (e ® - ®ap @ pfa) ® arn © - @ a)
k=1
j—1
+ Z(;JI (m a1 Qa1 ® Mg(ak & ak+1) & g2 ® aj)
k=1

—|—(,LL§4®1M)O(S%+3»OA]'.

Once more, this definition can be intuitively thought of as forcing that the sum of the

possible ways to ‘differentiate’ twice is zero.

e In the first part of this sum, one differentiates once in A, and once in M.
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g

M

51’,

51
/|
A@H»l M

Figure 4.10: Pictorial representation of the maps 671 : M @ B® — A®+1 g M.

e In the second and third parts of this sum, one differentiates once in B, and once in

M.
o In the fourth part of the sum, one differentiates twice in M.

The DA-bimodule relation is displayed in Figure 4.11 for 6{,, : M ® B& B - A® M.
Elements of a DA-bimodule then have an associated incoming and outgoing idempotent.
Unlike with algebra elements, such as I123-R4-I124, whose incoming idempotent is displayed
on the left, following the notation for a bimodule as “Mpy, the incoming idempotent
(associated to B) is presented on the right, and the outgoing (associated to .A) on the left.
An example might be I1o - X - I134, where I13 € A(2) = A, and 1134 € A(3) = B.

Remark 4.26 As described in Definition 4.25, when defining the map §' = >, 5,% mn a
DA-bimodule, all tensor products are taken in the ring of idempotents for the algebra in

question.

Consequently, if there is some map 5%+k :AMp @ B®*F - A® AMap, such that there are

bimodule elements X,Y € M, and algebra elements b; € B and a € A with
01 1(X,b1,ba,...,b) = a®Y,

then in order for this map to be non-zero one must have the following restrictions upon

idempotents.

o The element X € AMp with associated idempotents I, - X - I,. Hence, I, € Z(A),
and I, € Z(B).

e Idempotents I, , -b;- I, for each b; € B in the sequence.
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m

Figure 4.11: Figure displaying the D A-bimodule compatibility condition of the map 5%+2.
If this expression sums to zero, and the same is true for all other values of j, then the
bimodule A Mg is said to be a DA-bimodule. Note, the last term in the sum is the sum of

all possible ways to divide two algebraic inputs as input to ' o §*.

e I, -a-I,. Note, that the idempotent I, is the same as the outgoing idempotent of
X € 'AMB.

e I,-Y - I, , where the incoming idempotent for the element Y is the same as that

associated to the element by,.

4.4.1 DA-bimodules associated to Morse events

For DA-bimodules as defined by [49] in their construction of the invariant C(D), every
Morse event has an associated bimodule M 4. Here, B is the outgoing algebra A(n’) asso-
ciated to the bottom of the Morse event (the lower value of y in the special knot diagram),

and A is the incoming algebra A(n) associated to the top of the Morse event.

Note, that if the event is a maximum or minimum, one would have n’ =n+1lorn’ =n—1
respectively. Whereas if the event is a crossing, one would have n = n/. However, in
nearly all cases, the incoming and outgoing differential graded algebras associated to a
DA-bimodule are different, since any crossing, maximum or minimum changes the upper
knot diagram, and so the matching. The algebra A(n) has elements C,, associated to
arcs in the upper knot diagram matching arc p with arc q. More properly, one should
annotate each algebra Aj;(n) in order to demonstrate that there is a dependence upon

the matching, however this is hopefully clear from context.

The only case in which the incoming and outgoing algebra of a D A-bimodule associated to
a Morse event are equal is when there is a crossing between strands ¢ and ¢ + 1, and there

is an element {i,i+1} € M, for M the associated matching of the incoming algebra.

Although the definitions for the bimodules associated to crossings and maxima are exactly
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as presented in [49], the definition of the bimodule associated to a minimum in [49, Sec. 7.2]
has been adapted to the case of a three-strand pretzel knot. More specifically, Ozsvath-
Szabo only present the explicit definition of the bimodule for a minimum between strands
one and two. Since every special knot diagram admits an isotopy such that all minima
always occur between these strands, at the expense of introducing additional crossings,
this is sufficient for the construction. However, it is algebraically simpler not to introduce
additional crossings that may complicate the determination of the Type D structure at
any level of the upper knot diagram, and so a specialisation to the case of three strand

pretzel knots is presented here in Section 4.6.2.

Exceptionally, the global minimum of the special knot diagram contains by convention
the distinguished edge used in the determination of any Kauffman state. This minimum
will have an A.-module associated to it, rather than a DA-bimodule. Moreover, as one
can determine from the interpretation of idempotent states within an upper knot diagram
as presented in Section 4.2.2, the idempotents associated with the global minimum differ

from those of local minima.

In particular, idempotent elements I, that are an associated idempotent to a generator of a
Type D structure or D A-bimodule indicate that there is a decoration of a Kauffman state
in the region above when i ¢ x. This must necessarily be true for the incoming idempotents
of all generators of a non-global minima between strands ¢ and 7 + 1, because the local
diagram associated to a non-global minimum has no positions that may be marked by a
Kauffman state?. This is explained more fully in terms of preferred idempotents in the

construction of the specific bimodule.

However this property of the associated incoming idempotent is not true for the global
minimum: since the distinguished arc is by construction the global minimum, and in the
construction of [36] there can be no decoration placed in the region incident to the global
minimum. As such, one would require — since the global minimum is between strands 1
and 2 — that 1 is in the incoming idempotent for any generator of the object associated
to the global minimum, since this implies there is no Kauffman state in this region above

this horizontal level.

As noted, the generators of a DA-bimodule have an associated incoming and outgoing

idempotent, and the ring of idempotents for an algebra is the ring over which tensor

2Recall, Kauffman states mark one of the quadrants at each crossing in unoccupied regions.



CHAPTER 4. ALGEBRAIC OBJECTS IN THE CONSTRUCTION 81

products are defined. The generators of the D A-bimodules associated to crossings, maxima
and minima are all in one-to-one correspondence with the valid partial Kauffman states for
the Morse event in the special knot diagram, which have a pair of idempotents associated

to them.

Definition 4.27 Let D be a special knot diagram for an oriented knot K, such that there
is only a single Morse event between vy, < ya. Then the associated bimodule *Mg to this
Morse event has generators that are in one-to-one correspondence with partial Kauffman
states for this subset of the special knot diagram D: that is decorations of the subset
of the knot diagram agreeing with the interpretation of the idempotents as described in

Section 4.2.2.

A partial Kauffman state I, - X - I, € AMpg has an associated incoming idempotent I, €
Z(B), and an outgoing idempotent I, € Z(A). If M is the bimodule associated to any
crossing that is not between strands i and i + 1, then when the Kauffman state decoration
at this crossing is placed in a region i incident with the line yo (the upper horizontal level),

one must then have that i € I, but i & I,.

If M is the bimodule associated to a maximum or minimum, then the generators of the
bimodule correspond to partial Kauffman states with no decorations, simply all possible

valid assignments of incoming and outgoing idempotent.

Since D A-bimodules are associated to Morse events, and such Morse events can be thought
of as one-manifolds with boundary, there is a corresponding notion of a D A-bimodule being
adapted to the underlying one-manifold. This is similar to the adaptation of a Type D
structure to a one-manifold as presented in Definition 4.17. Informally, being adapted
to a one-manifold ensures consistency in gradings in the construction, particularly under

taking tensor products of these objects, as outlined in Section 4.5.

Definition 4.28 [/9, Def. 2.6] From the construction of [49], to every Morse event there
is an underlying one-manifold W, to which a DA-bimodule is associated. The boundary
of W can be partitioned as OW = Y1 UYs, where Y] is the finite collection of points at the

‘top’ boundary of W, and Y the collection of points at the bottom.

The Alexander multi-grading in each algebra Ay and Az associated to the level sets the
top and bottom of W respectively can be thought of as half-integer valued functions on Yi

and Yo — i.e. taking values in H°(Y;;Q). From the relative long evact sequence, there
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is a corresponding action H°(Y1;Q) @ H(Y;Q) — HY(W,0W;Q) given by (y1,y2) —
—d’(y1) + d°(12).

The DA-bimodule “' M 4, is then defined to be adapted to W if:

o M is multi-graded by H*(W,0W) as described above, with additional Q-grading
A, compatible with the A-grading on the algebra. Namely, if there is a map

0yk(m,ar,...,ar) > b®y, then

k
AD) + Ap(y) = Ap(m) —k+2+ > Ala).

i=1
o M is a finite dimensional vector space over F.

This condition of being adapted to a one-manifold will always be satisfied for the D A-
bimodules used in the construction of the invariant C(D) as described in [49]. For the
D A-bimodules associated to crossings, this condition means that generators of the D A-
bimodule have an associated (%Z) " _valued grading, where 2n is the number of strands in

the local diagram of the crossing.

4.4.2 DA-bimodules associated to crossings

As described in Definition 4.27, the generators of bimodules associated to crossings cor-
respond to partial Kauffman states for each crossing. However, although there are only
four marked positions at each crossing (corresponding to the four cardinal directions IV,
E, S, W), there can be more than four generators of the D A-bimodule, since there could

be two states with the same cardinal direction but different idempotents.

For a positive crossing between strands i and i + 1, the associated D A-bimodule is P?, and
for a negative crossing between the same strands the D A-bimodule is N. The generators of
the D A-bimodules P* and A/ are in one to one correspondence, and indeed the bimodules

are said to be ‘opposite’; following [49, Def. 3.5].

Definition 4.29 If AMpg is a DA-bimodule, with A and B both examples of the DGA
A(n) defined in Definition 4.12, then there is an opposite bimodule CNp, with the same

generating set as M.

For the differential graded algebra A(n), following [46, Sec. 5.5], define the map o : A(n) —
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A(n) by
O(RZ) = Li O(LZ) = Rz
O(UZ) = UZ' O(Cij) - Cz
o(a-b) =o(b) - o(a) o(I;) = I.

Then, the opposite bimodule *Np is such that C = A, D = B, and with maps 5}“ :
N @B - AN as follows.

o If in M there was some map i such that 61(X) =b®Y, then in N there is a map
51(Y) =o(b) @ X.

e More generally, if there is a map 5il+1(X, ai,...,a;) = b®Y in M, there is a
corresponding map 6}, (Y, 0(a;),...,0(a1)) = o(b) @ X in N.

Since the bimodules P? and N are opposites of each other, defining one fully and applying
the definition of opposite bimodules over A(n) is sufficient to define the other.
Generators of the bimodules P’ and A"

Corresponding to the four cardinal directions, one can separate the generators of a bi-
module corresponding to a crossing into four types. In [49, Sec. 3.2], Ozsvath-Szabé then

define these types as follows.

Definition 4.30

N=)I,-N-I E= Y Ingtyui-EB L.
i€ly i+1e€l,
i¢l,
S=Y IS 1L W= Y Ly W L
i¢l, i—1€l,
¢,

When taking a tensor product of the D A-bimodule associated to a crossing with a Type
D structure, as will be defined in Section 4.5, only one idempotent representative from a
class will be picked out by the tensor product. This is because the generators of a Type
D structure corresponding to an upper knot diagram have a single associated idempotent.
However, when defining the maps §! in a DA-bimodule for a crossing, algebra inputs to

the map will be considered that may not be valid for all possible idempotents.

Following Definition 4.28, one can assign a multi-grading to all generators of P’ and

N
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Definition 4.31 With the generators N, E, S and W for the D A-bimodule P*, as outlined

in Definition 4.30, the (%Z)Qn—valued grading, gr, of each generator is as follows:

(V)= Jleitem)  gr(B)=(—ei+ein)
gT(S) = i(_ei - ei+1) gr(W) = %(61 - 6i+1).

For the same generators in N, the corresponding gradings are (—1) times the grading for

P?, as outlined by [46, Sec. 4.4].

Maps in the bimodule P*

The maps in a D A-bimodule are most easily described using a weighted, directed graph,
similar to the weighted directed graph for Type D structures as defined in Section 4.3.2.
In particular, the vertices of such a graph correspond to generators of the DA-bimodule,

and the weights correspond to algebraic inputs and outputs.

More specifically, if there is a map 5%+k(X, b1,bo,...,br) = a®Y in the DA-bimodule
AMap, then from the vertex corresponding to X to the vertex corresponding to Y there is
a directed edge with weight a ® (b1, be,...,b;). Edges corresponding to maps 5% without
any algebraic input may also be highlighted by a dashed line.

Correspondingly, the graph depicted in Figure 4.12 defines the maps 1 and 63 between
generators of different types in the bimodule P?, following [49, Sec. 3.2].

Between generators of the same type, one also has the following maps, where X denotes

any cardinal generator.

e 03(X,a-b) = a-0i(X,b) for algebra element a with weight outside of span{e;, e;11}-
Algebra elements with weight outside the crossing region are said to commute with

the map 63.
® 03(N,L;iLi11) = LiLi+1 ® N, and 63(N, Riy1R;) = Rix1R; @ N.

e 53(X,U;-a) = Ui41-63(X, a) when U; and U; . are non-zero following the idempotent

conditions described in Remark 4.26, and 0 otherwise.
e 53(X,U;y1-a) = U; - 63(X, a) likewise following Remark 4.26.

e Similarly, with the idempotents as described in Remark 4.26, one has 63 (X, U;U; 1 -
a) = UiUi-i-l . (5%(X, a).
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U1 @ Li + Ri1 R ® Riyq Ui ® Rij1 + LiLisa ® L;

N

1® R; + LiLHI ® LHlUi
1® Liy1+ Ri1Ri @ RiUiq

W - LiLis1 ®@U; " E

N Ri 1R @ Ui .’

URi ® Cig1q UpLiys @ Cip

Figure 4.12: The maps §{ and 03 in the DA-bimodule P?, following the definition pre-
sented in [49, Sec. 3.2]. The maps highlighted in red feature the matching elements C;,
and Cit1,4. These are only non-zero when i and i + 1 are not matched in the incoming

algebra associated to P°.

The last three points correspond to the crossing switching the role of 4 and 7 + 1, which
is hopefully clarified by the interpretation of DA-bimodules and their associated maps as

regions in partial Heegaard diagrams, as described in Section 4.4.4.

The only remaining non-zero maps 4, in the DA-bimodule P* are the maps 3(S, —, —).

Those maps 5% used in the calculations within this thesis are:

58S, R;, Ri11) = R; @ E.

5 S U27Uz+1 Z+1U ®E

65(S, Lit1, L Liy1@W.

531, S)Li-i-l? l+1®N'

) =
3( ) =
( i) =
63(S,Uir1,Ui) = RiUjy1 @ W.
( i) =
a( )=R;® N.

5 S R27U1+1

The list of all possible maps d3(S,—,—) in P! is slightly more extensive, and the full
description can be found in [49, p. 21]. Within the calculations presented in Chapter 5,
only the above maps are ever used when the tensor products between the Type D structures
associated to three-strand pretzel knots and P? are taken. With the complete list, one
can verify in every calculation that the required idempotents and algebra elements for the

other maps are not found in the subject Type D structures.
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For the opposite bimodule N, as described in Definition 4.29 the D A-bimodule maps can
be completely recovered from the definition of the bimodule P?. Intuitively, using the
directed graph representation of bimodule maps as presented in Figure 4.12, to find the
maps for the opposite bimodule, reverse the direction of all arrows, swap L; for R; and
R; for Lj, and reverse the order of any terms in parentheses. For example, in N/ ¢ there is
a non-zero map

O3(N,Uiy1,Li) = Li ® S,
corresponding to the last bullet point in the list above.

The DA-bimodules P* and AN are as defined above, but the proof that the maps &7, d;
and 5% satisfy the structure relations presented in Definition 4.25 is omitted here. For the
bimodule P?, this is proven in [49, Prop. 3.3], and the fact that N is a DA-bimodule
follows from the fact that an opposite bimodule to a DA-bimodule is a DA-bimodule,
see [46, Prop. 5.15].

4.4.3 DA-bimodules associated to maxima

In [49, Sec. 5.2], Ozsvath-Szabé define the D A-bimodule QF corresponding to the Morse
event of a maximum introduced to the left of strand ¢ in the special knot diagram. As
remarked in Section 4.4.1, the incoming and outgoing algebra for this bimodule are differ-
ent: the incoming algebra is A(n) for some n € N, and the outgoing algebra is A(n + 1).
By necessity, since there is an arc between the new strand ¢ and new strand ¢ 4+ 1, the

matching element Cj ;41 must be a matching element in A(n + 1).

A slight special case is that of the unique global maximum, AM¢Q. Here, t denotes the
fact that this is the ‘terminal’ maximum. Since there is no incoming algebra in this case
(or, alternatively, the empty algebra), to the global maximum one associates a Type D
structure with a single generator C12 € A(1). This Type D structure is presented as a

weighted directed graph in Figure 4.8.

The definition of the D A-bimodule Az(”H)Qih (n) 18 exactly as is presented in [49, Sec. 5.2].
One can specialise the construction to when the maximum introduced gives either the
left-most or the right-most strands, however the DA-bimodule is defined generally, and
the truncation of the idempotents to the case of knots gives the appropriate simplifica-

tion.



CHAPTER 4. ALGEBRAIC OBJECTS IN THE CONSTRUCTION 87

Motivated by the interpretation of idempotents in terms of possible positions of marked
points in upper Kauffman states, the generators of the DA-bimodule 2’ correspond to

idempotent pairs, with outgoing idempotent in Z(.42) and incoming idempotent in Z(.A;).

More specifically, the generators of the DA-bimodule AQQQI correspond to compatible

idempotent pairs where the outgoing idempotent is said to be allowed.

Definition 4.32 Fory an n-element subset of {1,2,--- ,2n— 1} for some n, the idempo-
tent I, € Z(A) is defined to be an allowed idempotent if i € y and [{i —1,i+ 1} Ny| < 1.

Allowed idempotents are then separated into the following three types, based upon the in-

tersection of y with the set {i — 1,7+ 1}.
o [, is of type X tfyn{i—1,4,i+1} = {i—1,i}.
o I, isoftype Y ifyn{i—1,i,i+1} = {4, + 1}.
o I, is of type Z ifyn{i—1,4,1+1} = {i}.

Following [49, Sec. 5.2], one can find a map from idempotents in .4; = A(n) to idempotents
in Ay = A(n+1). In AQQZI, this is a map ¢; : {1,2,...,2n} — {1,2,...,2n + 2}, defined
by
I .
i+2 ifj>
Note that the map ¢; is not surjective, since the elements {i,i + 1} Nim(¢;) = (). Using

the map ¢;, one can construct a map from allowed idempotents in Ay = A(n + 1) to

idempotents in A;. Define this map ) as

¢; () ifi+l¢a
oMy U{i—1} ifi+1ea

1

b(z) =

The map 1 is then used in the definition of the generators of the DA-bimodule §*: recall,
every generator is a compatible idempotent pair, with an allowed outgoing idempotent. If
this allowed idempotent is I, (of any type), one has that the incoming idempotent of this

generator is Iy ().

Definition 4.33 o [For every allowed idempotent I, € T(A2) of type X, define the

generator I - Xy - Ly(z)-

e For every allowed idempotent of I, € Z(Az) of type Y, define the generator I, - Y, -

Typ(y)-
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A(2)

A(3)

Figure 4.13: An example generator for the bimodule A(?’)Qi@). This is a generator 1123 -
Xi93 - I12 of type X, with highlighted incoming and outgoing idempotents. The idempotent
Loz € Z(A) is an allowed idempotent, since 3 € {1,2,3}, and [{2,4} N{1,2,3}| = 1.

o For every allowed idempotent I, of type Z, define the generator I, - Z, - Iy ).

FEach allowed idempotent is an (n + 1) element subset of {1,2,...,2n+1}. The incoming
idempotent (rightmost) is then an n-element subset of {1,2,...,2n — 1}.

Truncating the idempotents to the case of knots, as explained previously, one sees that
the bimodule Q! thus has no idempotents of type X, and the bimodule 22"*! has no
idempotents of type Y, since the outgoing idempotents would be outside the permitted
range. An example of a generator of type X for the bimodule A(3)Q?4(2) is presented in

Figure 4.13.

In the DA-bimodule ', the maps 47, : ' @ A(n)®* — A(n+1)® Q! with k > 0 take as
algebraic inputs sequences of algebra elements in A(n). Following [49, Lem. 5.2], one can
then use the map 1 in order to find a correspondence between algebra elements in A(n)

and A(n +1). Lemma 4.34 is quoted from [49, Lem. 5.2].

Lemma 4.34 For I, an allowed idempotent in Ay = A(n+ 1), and I, an idempotent in
A = A(n), such that ¢(x) and y are not ‘far apart’, then there is an allowed idempotent
state I, in As such that 1(z) =y, so that there is a map

(I)zifw(m)-Al'Iy—)Ix-Ag'Iz,
with the following properties:

o &, maps the portion of L) - B1 - Ly(.) with weights in span{ey, e, ..., e} surjec-
tively onto the portion of I, - By - I, with weights in span {{e1,...,eant2}\{€i,€it1}}.
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o . satisfies
Q,(Uj - a) = Uy, (j) - Pz(a) and D,(Cp - a) = Cy,(p) - Pu(a)

for any 7 € {1,...,2n} and p € M the matching for A;.
Moreover, the state z is uniquely characterised by the existence of map ®,.

Example 4.35 As an example, consider the algebra element Ia3 - LoUs - I1s € A(2). In
A(?’)Qi‘@), the map Pogs carries this element to Iogs - LoUs - I135. Both Isss and Ii35 are

allowed idempotents in O3, with ¢3(Iass) = Iaz and ¢3(l13s) = I13.

Moreover, the map ®a35 takes LoUs € A(2), an element of weight %624—63, to LaUs € A(3),

an element of weight %62 +e5 = %e¢3(2) + €45(3)-

Using this correspondence between algebra elements in the incoming algebra and outgoing

algebras of €2, one can then define the maps 6' for this bimodule.

Definition 4.36 Let X be the sum of all generators of QO of type X. Likewise, define Y
and Z as the sum of all generators of the corresponding types, defined by Definition 4.33.
The maps 61 : Q' — A(n + 1) @ QF are then defined as follows:

H(X)=Cii1® X+ Ry Ri®Y,
5%(}/) =Ciit1®Y +L;iLiy1 ®X,

5%(Z) =Cii41® Z.

The maps 03 : V@ A(n) — A(n+1)@Q¢ are then defined by the ®,. Namely, for generator
Q. corresponding to the allowed idempotent I, let z be the allowed idempotent defined by
the map ®,. Then

5%(@:):7‘1) = ®y(a) ® Q..
The maps (5]1 =0 forj > 3.

An important part of this definition is that for the algebra element a € A(n), the map

&, (a) defines the allowed idempotent I, as remarked in Lemma 4.34.

The maps 67 and 6} as defined then satisfy the D A-bimodule structure relations, outlined

in Definition 4.25. This fact is proven in [46, Thm 8.3].
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4.4.4 Interpretation of DA-bimodules in partial Heegaard diagrams

As described above, for example in Figure 4.6, the algebra elements in A(n) have a repre-

sentation in a subset of the Heegaard diagram derived from a special knot diagram.

With the same interpretation of the algebra elements, and motivated by the [46, Sec. 4.4],
one can view the maps 6] M B®*F — A® M in terms of domains in the partial Hee-
gaard diagrams corresponding to Morse events. Specifically, the algebraic inputs (elements
of B®¥) represent the sum of domains corresponding to the algebra elements as outlined in
Section 4.2.2 at the top of the Morse event. Likewise, an element outgoing algebra a € A

has a corresponding domain exiting at the bottom of the Morse event.

Using the association of the differential graded algebra B to the top of some Morse event,
and A to the bottom of the same Morse event, the algebra elements represent sums of
domains intersecting the upper and lower boundary of the corresponding partial Heegaard
diagram. The corners of the domains — as introduced in Remark 1.6 — correspond to
the intersection points in a partial Heegaard diagram that are in bijection with the partial

Kauffman states for this Morse event, see Section 4.4.1.

Furthermore, for the map to be non-zero, the sum of domains must satisfy the same
conditions as corners of the domains in a full Heegaard diagram. If there is a map between
two different generators of the bimodule, then the corresponding intersection points in the
partial Heegaard diagram should be acute or obtuse corners of the domain. Whereas if the
map is from a generator to itself, then the corners in the Heegaard diagram are degenerate,

as in the sense of [23].

Example 4.37 As an example, consider the domain pictured in Figure 4.14. This is the
partial Heegaard diagram associated to a positive crossing between strands one and two,

namely associated to the DA-bimodule P".

In the definition of the maps §' in P, one has that there is a non-zero map 63(S, Ry, Uz) —
R1 ® N. Here, the solid dot on the intersection between red o and blue B curves is in
correspondence with partial Kauffman state S, and the open dot is in correspondence with
the partial Kauffman state N. Together, the two algebra elements Ry and Us form a
domain with an obtuse corner at N, and an acute corner at S. This domain intersects the
bottom of the partial Heegaard diagram at the front half of the first tube, corresponding to

the algebra element Ry.
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Figure 4.14: A domain on a partial Heegaard diagram corresponding to P*. The domain
shown corresponds to the map 83(S, R1,Uz) — Ry ® N. The Uy input corresponds to the
full tube incoming on the right, and Ry the front half of the tube in both incoming and

outgoing algebras.

This correspondence between D A-bimodules and partial Heegaard diagrams has recently
been further described by [48]. For example [48, Sec. 2.6] describes partial Heegaard
diagrams for Morse events. Moreover, in this paper, Ozsvath-Szabé discuss the appropriate
gluing of partial Heegaard diagrams, which corresponds to taking the box-tensor product

of the algebraic objects defined over A..-algebras.

4.5 Tensor products of algebraic objects over A, -algebras

In order to utilise the strength of a cut and paste construction, it must be possible to con-
struct C(D) from smaller algebraic objects. Moreover, from the physical interpretation of
upper knot diagrams and partial knot diagrams, one should intuitively be able to construct
a Type D structure from a DA-bimodule and a Type D structure, since by attaching a

Morse event to an upper knot diagram one yields another upper knot diagram.

Algebraically, this operation is the box-tensor product X between a D A-bimodule and a

Type D structure to yield another Type D structure.

As defined in [24, Sec. 2.3.2], given a bimodule “*Mp with map 6§ and Type D structure
B A/ with map 0, one defines the Type D structure AX = A Mg R BN . Generators of AX
correspond to elements of M ® A, with this tensor product taken over Z(B). The map
Ox : X - A® X is then defined by

Ix(m®@mn) = (5%(m) ®n)+ Z(é%ﬂ- 0 ) (m @ n).

j>1
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Figure 4.15: Representation of how to take the tensor product of a Type D structure and
a DA-bimodule, yielding another Type D structure.

The tensor product forming a new Type D structure is demonstrated pictorially in Fig-
ure 4.15. Note, this is a finite sum (and so the product is well defined) if there is an
N € N such that the DA-bimodule map has 6%+j = 0 for j > N. In the construction of
the algebraic invariant by Ozsvath-Szabd , this tensor product will be well defined for this

reaso1l.

The fact that the pair (X, dx) defines a Type D structure is a specialisation of the result
in [24, Prop. 2.3.10], which states that the tensor products of bimodules of certain types
also result in bimodules. Tensor products of bimodules are only well defined when certain
conditions on boundedness are satisfied, see [24, Sec. 2.2]. However, as proven in [49,
Prop. 2.8], the Type D structures and DA-bimodules used in the construction of C(D) are
bounded.

Remark 4.38 By construction, the box-tensor product can only be taken when the out-
going algebra of the Type D structure matches the incoming algebra of the DA-bimodule.
Since the tensor products in the definition of the map Ox are taken over the ring of idem-
potents for this common algebra, if there are no generators in the Type D structure N
with a certain idempotent, then there are no generators of X with this as an incoming

idempotent to the M-tensor coordinate.

This is a useful property, since a DA-bimodule may have many possible generators with
different idempotents, for example in the case of the DA-bimodule associated to the mazx-
imum: Q. The generators of this bimodule are all compatible pairs of idempotents with
an allowed outgoing idempotent. However, under taking the tensor product with a Type D

structure, only those generators in ' with incoming idempotents matching the outgoing
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idempotents of the Type D structure will appear in the tensor product.

This motivates why three strand pretzel knots are so amenable to the cut and paste de-
termination of C(D). Placing each set of crossings together in the special knot diagram,
the possible upper Kauffman states that generate the Type D structure restrict the possible
idempotents that give non-zero tensor products after the next crossing is added. Hence,
the Type D structures at any point have relatively few (and well structured) generators,

making inductive methods for the determination of Type D structures easier to utilise.

4.5.1 The tensor product of two bimodules

As described by [24, Sec. 2.3.2], under certain restrictions, it is possible to take the box-
tensor product of two bimodules to yield another. In particular, the tensor product of two
D A-bimodules is another D A-bimodule. The composition of two partial knot diagrams is

also a partial knot diagram, and has an associated D A-bimodule in this construction.

Let (AMB, 5]1\4) and (BNC, 6]1\,) be bimodules over Ay-algebras A, B and C'. One can then
define the bimodule AX;, which is generated by the elements of M ) N. Note, this
tensor product is taken over Z(B) the ring of idempotents for the A-algebra B. As in the
case of a tensor product between a Type D structure and a DA-bimodule, the outgoing
algebra of the rightmost DA-bimodule must match the incoming algebra of the leftmost
D A-bimodule. This once more places restrictions upon the generators of the 4Xe, due to

the enforced compatibility of idempotents.

The map 5}( for the bimodule A X, is defined similarly to the map shown in Figure 4.15.
For any DA-bimodule, say ©)g with map &', recall that one can define the map §* :
Y ®G® — F® @Y iteratively, as demonstrated in Figure 4.10. Using this, the map
6 1 X ®C% - A® X is defined as

0k =3 (O11n ® Idy) o (Idpg & 5F).
n>0

Once more, this is more intuitively displayed pictorially, as in Figure 4.16. Note that in
the left-most tensor product there is only a single bimodule map, since the map 5}( has

only a single algebra output.

Observe, if one specifies that in the bimodule BN the maps 5]1\, 14x = 0 for all k > 0, then
N would be a Type D structure over B, and the map displayed in Figure 4.16 would be
precisely as displayed in Figure 4.15.
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Figure 4.16: Pictorial representation of the definition of the DA-bimodule map 5}\/@]\[
for the bimodule A Mp RBNe, as displayed in [24, Fig. 4].

The fact that this map §% : X ® C® — A ® X satisfies the structure relations of a DA-
bimodule as outlined in Definition 4.25 is proved in [24, Prop. 2.3.10]. The proof is not
presented here, but is a relatively simple consequence of the fact that the maps in both

M and N satisfy the structure relations.

Remark 4.39 Determining the DA-bimodule associated to k half-twists between neigh-
bouring strands would make the determination of the Type D structure at any point in an
n-strand pretzel knot simpler, and possible extend the amenability of this construction to
pretzel knots with more than three strands. This is beyond the scope of the current thesis,

but could provide a useful direction for further work.

4.5.2 Yielding a chain complex via box-tensor product

As remarked above, if a D A-bimodule has a trivial incoming algebra, it has the structure
of a Type D structure. Likewise, if the output algebra of the DA-bimodule is empty, the
DA-bimodule has the structure of an A,,-module, see Definition 4.40. Hence, one can
specialise the definition of a tensor product between two D A-bimodules presented above

to define the tensor product of an A.-module and other algebraic objects.

Following [46, Sec. 2.5], let (A X, d) be a Type D structure, and (M4, m14;) an As-module.
Recall, from Definition 4.40, that each m4; : M ® A%/ — M takes j algebraic inputs
from A. The box tensor product M X X is then defined as the module generated by the

tensor product M ®z4) X, with map

Oumx (t @ @) = Y (mjp @ Idy)o (t® & ().

M

Il
=)

J
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The resulting pair (M X X, Oyxx) forms a chain complex when either X is a bounded
Type D structure or M is a bounded A,-module. This is demonstrated in [25, Lem. 2.30],

and by construction, the invariant C(D) of [49] is thus a well-defined chain complex.

This notion of boundedness is important in making sure that tensor products are well
defined. Roughly speaking, this notion of boundedness is when the sum displayed above
is finite. For example, a Type D structure 4X is a bounded type D structure if for each
r € X, there is some n such that for i > n, 9'(z) = 0. Boundedness for A,.-modules is

defined similarly, see [24, Def. 2.2.18] and [24, Def. 2.2.23].

By virtue of being adapted to one-manifolds associated to special knot diagrams, the

objects used in the construction of C(D) are bounded, as proved by [49, Prop. 2.8].

4.6 A, -modules

As remarked in the special case of the module assigned to the global maximum in Sec-
tion 4.4.3, the Type D structure A(¢Q! can be thought of as a D A-bimodule with empty
incoming algebra. Hence, the compatibility conditions outlined in Definition 4.25 and
Figure 4.11 simplify to the relations necessary for a module to be a Type D structure as

presented in Definition 4.16.

As-modules are in some sense dual to Type D structures, being equivalent to D A-
bimodules with empty outgoing algebra. As presented in [25, Def. 2.5], when A is a

differential graded algebra, define an A,.-module as follows.

Definition 4.40 An Ay,-module M over differential graded algebra A is a graded F-

module M, with operations
Mmiti: M® AP M1 -],
for all v > 0, such that the following compatibility condition holds.

0= Z mi(mj(z®a1 ®...aj-1)Qa; @ ...0p-1)
itj=n+1
n—1
—G—Zmn(x@cu®...®al_1®,u1(al)®...®an,1)
g
+Zmn_1(x®a1®...®al_1®u2(al®al+1)®...an_1).
=1
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An inspection of these relations, and those presented in Definition 4.25, reveals that the

As.-module relations are a specialisation to the case where the algebra output of every

1

map 0 ;

is trivial. Furthermore, following [24, 25], one can define A,,-modules over a

general A.-algebra, rather than the special case of a differential graded algebra.

Type D structures are associated to upper knot diagrams, and similarly A..-algebras
are associated to lower knot diagrams in the construction of [49]. Then, as described
in [1, Sec. 4.3], the generators of these A,-module are in correspondence with the partial

Kauffman states of this lower diagram.

Remark 4.41 The duality between Type D structures and Aso-modules can be formalised
in terms of the cobar resolution of a differential graded algebra. Informally, if there is
an Aso-module M4, such that for some © € M with map myyi(x,a1,...,a;) =y, then

there is a Type D structure with the same generators, such that §'(z) = a} ® -+ @ af ® y.

*

j
explicitly described in [24, Rmk. 2.2.35] and [63, Def. 6].

These algebra elements a* are in the dual algebra to A, denoted A’. This duality is more

4.6.1 The terminal minimum as an A.-module

In [49, Sec. 7], Ozsvath-Szabé associate a DA-bimodule A(")Uh(n 4+1) to the Morse event
of a minimum between strands one and two. The case of a generic minimum U? between

strands ¢ and 7 + 1 is defined inductively in [49, Sec. 7.5], so that
O =0""TRPRP

Defining the D A-bimodule in this way, one need only introduce the specific maps and
generators for the DA-bimodule U0, and add crossings to the special knot diagram to
yield an isotopic special knot diagram with all non-global minima between strands one
and two. The isotopy in question is given in Figure 4.17. Note that the expense of
this procedure is adding more crossings, and so a greater number of Kauffman states as

generators. This makes inductive calculations more complicated.

The global minimum is treated differently, as this is by construction the distinguished
edge of the decorated projection associated to Kauffman states of a special knot diagram.

Associate to the global minimum the bimodule ¢U.

Let R’ = F[U,V]/(UV) be the same ring as defined previously. The overall chain complex

C(D) for a special knot diagram D is a chain complex over R’, and so a module over R’.
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Figure 4.17: Diagram showing the isotopy required in the inductive definition of the DA-
bimodule U' associated to a minimum between strands i and i + 1. Although all special
knot diagrams admit isotopies to special knot diagrams with all minima between the first

and second strands, this comes at the expense of adding additional crossings.

The Kauffman states for a special knot diagram correspond to generators of C(D) over

this ring R'.

This ring R’ can be given the structure of a differential graded algebra, and moreover a
type of bimodule called an (left,right) AA-bimodule. The full definition of an AA-bimodule
will not be presented here, although it can be found in [24, Def. 2.2.38]. Furthermore,
one can yield another (left,right) AA-bimodule under taking the box-tensor product with
a DA-bimodule. Namely, there is a well-defined operation (under certain boundedness
conditions, which these bimodules satisfy) such that r/Rf, B 7' X Ay 18 a (left,right)
AA-bimodule.

Definition 4.42 Let R’ be defined as above. Define the operation us : R' @ R\ — R/
by P® Q — P -Q, where - denotes multiplication of polynomials in F[U, V|, followed by
setting UV = 0. Equip R’ with the additional operation p1 : R' — R’ such that P+ 0 for

all P € R'. Together, iy and ps give R’ the structure of a differential graded algebra.

Define the bimodule r'RY, to be generated by the elements of R, together with actions
migo: ROAR Q@R - R, my11 : ROR @R = R and mp10: RROR @R - R’
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defined by:

m1,1,0(r ®s @ u) = pa(r,s)
mo11(r ®s®@u) = pa(s,u)

mo,1,0(r ® 8 @ u) = p1(s).

Let all other relations m; 1y : R'®* @R’ @ R'®* be zero. Then, g'Ry, has the structure of

a (left,right) AA-module as defined by [24, Def. 2.2.38].

Using Definition 4.42 and viewing R’ as an AA-bimodule, define as follows the AA-
bimodule Y, motivated by [49, Sec. 8.2].

R YA = =Ry B0 4.

The definition presented here is slightly different than that presented in [49], since from the
beginning of the construction within this thesis, it has been assumed that the idempotents
of the differential graded algebras have been truncated to the case of knots. This is left
until just before the addition of the global minimum in Ozsvath-Szabd’s construction,

see [49, Prop. 8.2] and [46, Rmk. 11.2].

The effect of this is that the original definition of tU by Ozsvath-Szabd has an output
algebra for tU that is S = Flu, v]/(uv). However, as remarked in the proof of [49, Prop. 8.2],
restricting to the idempotents considered here can be done for all the bimodules used in
the construction, and the effect of this is that the output algebra of tU is then R’ C S,
where u? = U,v? = V.

Definition 4.43 Let thUA(l) be generated by a single element Q1 - Iy. Then, define the

maps

03 (QuUY) =U @
53(Q1,U5) =V @ Q1

5(Q1,1) =1® Q1
63(Q1,UFUD = 0@ Q)
33(Q1,C12) = 0® Q1.

Let all other maps 5]1- be zero.

Using the AA-bimodule 'R, as defined above, define the AA-bimodule /R, @R/tUA(l).
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This has a single generator — corresponding to 1 @ Q1. The left action of R’ corresponds

to multiplication of this generator by polynomials in U or V in R'.

Consequently, one can think of this as an Asc-module Y,il(l) generated by 1@ Q1, UF ® Qy
and VI ® Q, for all k,j € N. The non-zero maps miy, : Y' @ A(1)®" are then defined as

follows:

ma(X,1) =X for any generator X
mg(Uj®Q1,Uf)=Uj+k®Q1 for any j, k € Z>o

ma(V? @ QU3) =V @ Q1 for any j k € Zso.

Definition 4.43 is strongly motivated by the correspondence between partial Heegaard
diagrams for the global minimum and As.-modules. Using the construction of a Heegaard
diagram associated to a special knot diagram, as in Section 2.1, there is a meridional
curve on the partial Heegaard diagram corresponding to the distinguished edge in the
decorated projection of the lower knot diagram, on either side of which are the z and w

basepoint.

In the construction of the invariant C(D) for three strand pretzel knots, the global mini-
mum will be oriented right to left, which corresponds with placing the z-basepoint on the
right of the meridian, and the w-basepoint opposite. If the global minimum is oriented

left to right, the role of U and V' are switched, see [49, Sec. 8.2].

4.6.2 The other minima

Pretzel knots, and in particular three strand pretzel knots, admit knot diagrams such that
all minima are at lower y-coordinates than the crossings and maxima, see Figure 5.1. In
particular, in order to yield the special knot diagram associated to a three strand pretzel
knot with an upper knot diagram as demonstrated in Figure 5.1, one would take the tensor

product with the A, -module
Vi B AT g BATY ).

From the construction of [49, Sec. 7.5], the bimodule U2 is inductively defined as U X
P2RPL

Using the fact that all idempotents used in the construction are truncated as described on

page 61, one can define the the bimodule A(I)U}‘m) as follows.
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Definition 4.44 Let A(l)Uh(g) be generated by a single generator Iy - Gag - Ia3. In A(2),
denote the matching elements by C1a42 and Cy gyo, where o # B, and each take one of

the values 1 or 2. As a shorthand, let C1 o42 be denoted by C1, and Cy g4a by Cs.

By virtue of being a knot, one has that C15 is not a matching element in A(2). Then, the

maps in the bimodule are defined as follows.
5%+1+m(G23a Uéna C{@m) = Ug[n X Ggg,

03 (Gas, C1,C2) = Cy 3 ® Gas,
6L (Go3, ULy, CT*, . ..
L, UmT opa gt ot et oo
UL O UP Ry, CP™) = UZUE ® Gos.
Here, A=m+n+ > b;, and B =Y a;, with a;,b;,n,m € Z>g.

This is not exactly the same as the definition presented in [49, Sec. 7.2], which is described
in terms of walks on a directed graph with fixed start and endpoints, although this is

similar to the presentation of this bimodule in [49, Sec. 13.1].

In order to provide an algebra input to the A.,-module Y’ that gives some non-zero
module element output, one would require that at most one of A or B to be non-zero,
since UV = 0 in R/. In particular, this restricts the algebra inputs yielding non-zero maps

in the As-module Y/ X U1,

The DA-bimodule 2

As mentioned, the downside of defining the D A-bimodule U2 inductively for minima is
that there is a cost to increasing the number of generators in the corresponding partial

knot diagram.

Specifically, consider Figure 4.18. In the leftmost diagram, there is only a single possible
Kauffman state. Let the corresponding bimodule be 62, and denote the generator by

I - Q- I13. For the rightmost diagram, the corresponding D A-bimodule is
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Figure 4.18: Diagram of two partial knot diagrams, corresponding to the DA-bimodules

02 (left), and U2 = B' K P2R P! (right), as defined by Ozsvdth-Szabs .

This D A-bimodule (the tensor product of three D A-bimodules) has three generators:

Il-G®W®N'113
Il'G®W®E'123

Il'G®N®S'123,

where G is the generator of U! as defined in Definition 4.44. Of these three, only GRW QN

has idempotents that match the single generator of the bimodule 02

Definition 4.45 Let A(l)f}i‘@) be a bimodule generated by the single generator I1-Q - I13.
Let the map 6* : 02 @ A(2)® — A(1) ® O? be defined by:

33(Q, Cax, Csy)
61(Q, L3, Uz, R3) = 1®Q
5(Q,UN) =Ur®Q for k>0
5(Q.Uf) =U50Q forl1>0
)

6%+1+n(Q7 U3n7 02@;1”

U/ ®Q forn >1,

where ¢ =1 when p =1, and ¢ = 2 when p = 4. Note, Ca3 cannot be an element of A(2),
as the corresponding diagram would yield a link of two components. Define all other maps

5; to be zero.

Lemma 4.46 The bimodule “4(1)6?4(2) with the associated maps has the structure of a

DA-bimodule.
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Proof Clearly, 0? has a single generator to which incoming and outgoing idempotents
are associated. In order to prove that this has the structure of a D A-bimodule, it remains

to verify that the structure relations in Definition 4.25 are satisfied.

Since 6} is trivial, start by considering 6. Examining Figure 4.11, as there is only a single
algebra input to 63, it remains to verify that only the first two terms sum together to give

0.

For 63(Q,Uy), note that since p1(U1) = 0 in both A(1) and .A(2), one has that

(11 ©1)06,(Q,U1) =0
630 (1® 1) (Q,U1) =0.

The same is true for d4(Q,U,), since ui(Uy) = 0 in both the incoming and outgoing
differential graded algebras.

For 63(Q, Cax, C3.), note that the fourth and fifth terms in the sum displayed in Figure 4.11
will be zero, since §] = 0 and §3(Q, Ca, - C3.) = 0. Likewise, no non-zero d3 map takes
C3, or 1u1(Csy) as an input, hence the second and third terms are zero. Finally, the first
term is zero, since p1(Ci2) = U1Us € A(1). However, I} - U Us - I has identical weight and
idempotents to I - L1 R1RaLo - I, which is zero in A(1). By Proposition 4.13, UyUs = 0

in A(1), and so all terms in the sum are zero.

For the term 6}(Q, L3, Us, R3), note that since u1(1) = 0 € A(1), and all three algebra
inputs are in the kernel of p; in A(2), the first three terms in the sum of Figure 4.11 are
zero. Similarly, since there are no non-zero (5; terms with similar inputs for & < 4, the
other terms in the sum are also zero. So the structure relation is satisfied for this set of

inputs.

Similar logic applies for §j 11 +n(Q,U§L,C§"). The first term is necessarily zero, since
p1(Uy) = 0 € A(1). Likewise, the last two terms in the sum are zero, since ¢! is zero if
only U3 or Cy), inputs are supplied. No non-zero arrow has UsU,, as an input, so the second

and third terms in the sum are zero. Hence, 0? is a D A-bimodule. |

Using this definition, one can then define the A,.-module Y’ X 6?4(2). This is a simple
result of applying the tensor product as defined in Section 4.5.1, specialising to the case

of an empty outgoing algebra for the leftmost D A-bimodule.
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Lemma 4.47 The As-module Y' X 6?4(2) has generators:

19G®Q- s,
U@ Go Q- I3,

VFeG® Q- L,

with maps my 1 : (Y R0%) @ A2)% — Y'KO? defined as follows.

me(U* @ Go QUM =U""9G®Q, k,l € Zsg
ma(VEeGoQ,U)=V"2GQ, t,s € Lo
ma(Uf @ G®Q, L3, Uy, R3) =U' @ G2 Q, (€ Zsg
ma(VPG®Q,Ls3, Uy, R3) =V @GR Q, s € ZL>o
m11140(UP @ G® Q, UL, C) =UPT" @ G ® Q, p € Z>p,m €N
mi1m(VI® G Q,Uy,CSM) =VIT" e G e Q, q € Z>p,m €N

All other maps in the Aso-module are trivial. Note that only one of the last two relations

may be non-zero, as the matching element in A(2) is either Cia or Cay.

The dual algebra and canonical bimodule

Having defined the bimodule 62, and the As-module Y’ &6?4(2) as described in Lemma 4.47,
the aim is to prove an equivalence between this and Y’ X Ui\@), where 02 is defined in-

ductively following [49].

In [46,49], a common method for demonstrating the equivalence of two D A-bimodules is
to prove that the two yield identical Type D structures (over some algebra) after a tensor

product is taken with an invertible bimodule.

Before explaining some of these terms, the dual algebra to A(n), denoted A’(n) needs to
be introduced. This is defined in [49, Sec. 2.2], and after the usual truncation, can be

described as follows.

Definition 4.48 Adapting the definition of an I-state presented in Definition 4.6, let an
I'-state be an (n — 1)-element subset of {1,2,---,2n — 1}. Define the algebra B' in the

same way as B was defined in Definition 4.9. Namely, elements in the algebra consist of

1 2n

triples [I, I, w;|, where I, and I, are I'-states, and w; is a weight in (ﬁZ)
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Then, augment B' with the elements E; for i € {1,---,2n}. More formally, let E; denote

the formal sum

Ei = Z[IKM I:E7 67;],
Iy
where I, are the I'-states as defined above. Hence, define A'(n) as
A'(n) =B U(E;)/ ~

where ~ denotes the relations:

~

. Liy1-L; =0 for all 1.

2. R;- Ri11 =0 for every 1.

3. UF = I, I, e)] = 0 when {i,i — 1} Nz =0, for every i.
4. E;-b=0b-FE; for any b € B.

5. B2 =0 for all i.

6. When {i,j} ¢ M, where M is the associated matching as in the definition of A(n),
then

[[Ei,Ej]] =Lk -E;j+FE;-E =0.
Otherwise, this element is non-zero.

The only non-trivial map py is p1(E;) = U; for every i. Furthermore, define the integer

valued grading A(a) by

Aa) = # (E; dividing a) — Zwi(a).

The duality of this algebra with the algebra A(n) is not discussed here, however is presented

in more detail in [49, Sec. 2.4].

As described by [46, Sec. 2.6], when B and C are differential graded algebras, a (left,left)
DD-bimodule B€X is a module X that is a Type D structure over B ® C. Using this

notion, the canonical bimodule A4 (M is defined in [49, Sec. 2.3] as follows.

Definition 4.49 Let the canonical bimodule AM™-A (MK pe generated by idempotent pairs

Iz ® Iy) - Ky, where I, is an n-element subset of {1,2,...,2n — 1}, and I, is the comple-
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mentary (n — 1)-element subset®. Define the element A € A(n) ® A'(n) by
A= Z(Li®Ri+Ri®Li) +ZU1’®E1' + Z Cij ® [Ei, E;] € A(n) @ A'(n).
i i {i.jyeM
The map 0 : K — A(n) @ A'(n) @ K is defined by d(v) = A ® v, where this tensor product
is taken over Z(A(n)) @ Z(A'(n)).

The fact that this map 8, and the bimodule A™-A (MK satisfy the Type D relations is
proven in [49, Lem. 2.2]. From [24, Def. 2.3.9], one can suitably define the tensor product
of a DA-bimodule and DD-bimodule. If AMp is a DA-bimodule, and 5°N is a DD-
bimodule, then there is a DD-bimodule 4¢X whose generators correspond to elements of

MeN.

The maps in the tensor product are defined similarly to the tensor product of a DA-
bimodule and Type D structure, as in Section 4.5, excepting that the resulting algebra
element in C is the product of the algebra elements in C from the map 9%;. This is presented

in more detail in [24]

Remark 4.50 A useful result is that the canonical bimodule is invertible (see [49, Thm. 2.3]).
A corollary of this is that if there are two DA-bimodules APy and 4 Qp, then if the tensor
product APz K K is equivalent to QX K, then the DA-bimodules are equivalent. This
is used to great effect in the construction of the invariant C(D), for example in the proof
of [49, Thm. 4.1], which states that the bimodules for positive and negative crossings satisfy
the relation corresponding to the second Reidemeister move: i.e. P'RIN® = Id = NTX P,

The DD-bimodule for a minimum

Unlike the definition of the D A-bimodule U2, which is defined inductively, Ozsvath-Szabé
define the D D-bimodule associated to a minimum between strands ¢ and ¢ + 1 explicitly.
Adapting their definition in [49, Sec 7.1] to the truncated algebras in question, the DD-

bimodule Uy is defined as follows.

Definition 4.51 Define the Type DD-bimodule *MA @Gy to be the bimodule as gener-

ated by Py, corresponding to the idempotent pair Iy @ I € A(1) @ A'(2), namely

(Il ® 12) - Py,

3Hence, the two collections partition the set {1,2,...,2n — 1}. If y is not a complementary set to z,

define I, ® I, - K, to be zero.



CHAPTER 4. ALGEBRAIC OBJECTS IN THE CONSTRUCTION 106

Define the element A € A(1) @ A'(2) as

A=U1FE1 +Us® Ey+1® EyUs
+Us ® [[E¢>(oz)7 EQ]]E3

+ Ca,s @ [Eg(a), Bol[Es, Eg(s)]-

Here, ¢ is the map ¢ : {1,2} — {1,2,3,4}, as defined on page 87. The above uses
the fact that 2 and 3 cannot be matching in A'(2), hence there are non-zero elements
[Eg(a); 2] and [E3, Egg)], corresponding to the matching elements Coo and C3pg in
A(2). Necessarily, Co g = Ci2 € A(1).

Then, the map 0' : Ua — A(1) ® A'(2) ® Uy is defined by 0*(Py) = A® P, similar to the
map in the canonical bimodule K.

By [49, Lem. 7.1], U2 has the structure of a Type DD-bimodule, so this will not be
proved here. However, as a Type D D-bimodule, one can define the tensor product YA(l) X

AM)A(2)15,. This is a simple consequence of the tensor products defined in [24, Def. 2.3.9]

and Definition 4.43

Lemma 4.52 The boz-tensor product Y' X Uy has the structure of a Type D structure
over the differential graded algebra A'(2). This module has generators U¢ @ G ® Py and
VF® G ® P, with £,k € Z>o. The maps  in the Type D structure are defined as follows.

AU @GR Py) = (FU3) U @GR Py

+ (E1 + [E1, B2 E3) @ U @ G @ Ps.
AVFRG® P) = (EUs)@VF @ G® P

+(E) @Vl eGe .

Here, the matching elements are assumed to be C1s and Csy, but are easily adapted to the

other case.

This is a Type D structure as a consequence of the fact that Y’ is an A,.-module, and Uy
a DD-bimodule. Recall, in Lemma 4.47 an As-module Y’ X 0?2 was defined. Using the

canonical bimodule K, one can define a Type D structure over A’(2),
Y R q RACACIL,

Proposition 4.53 The Type D structures Y' X 631 KADAQK gnd Y K Uy over the

2
differential graded algebra A'(2) are equivalent.
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Proof Firstly, the generators of (Y’ X 62> X K are:

1G®Q -Liz®(lis®h) Kiz=L-19G®Q ® K3
U@ GoQ -Iis®(Ls®h) Ks=1, U'9 GoQ® K3
).

VFoGoQ I3®(I130h) Ki3=5L-VFeG®Q® Ks.

Calculating the tensor product of (Y’ X 6?4(2)) and A@A QK essentially reduces to find-
ing inputs for the maps mi4; <(Y’ X 02?) ® A(2)®i> that are in the A(2) coordinate of the
term A € A(2) ® A'(2) as defined in Definition 4.49. After finding the required inputs, the
algebra coefficient in A'(2) ® (Y’ X 6?4(2)> is the product of the algebra coeflicients in the
A’(2) in the coordinate of A.

e From the term ma(U’ ® G ® Q,U;) = U @ G @ Q, one pairs this with U; ® Ej in
A, to yield

W' @GoQoKy) >E e (U e6eQek;),
e Similarly, the term my(VF © G ® Q,U;) = V¥l @ G ® Q is paired with the term
U, ® Ey4 in A to yield
V0GR Qe Ky) 3 Ey® (vk“@G@Q@Klg) .
e For any generator X in Y/ X 02, the map ma(X, L3, Uz, R3) = X is paired with the
terms L3z ® R3, Uy ® Fs and R3 ® L3 to yield
I(X ® K13) > EoUs ® (X ® K13).

This follows from the fact that in A’(2), the product of the rightmost tensor coordi-

nates is R3 - Fy - Ly = E5 - Ry - Ly = E»Us, since FE5 is central.

e Assuming the matching elements to be C12 and Cs4 (the other case is easily adapted),
one has that the map m3(U’ ® G ® Q,Us, C12) pairs with the terms Us ® E3 and
Ci12 ® [[El, EQ]] in A. This yields

AU G ®Qe Kiy) 3 BylEr, Bl @ (UM © G Qe Kis)

There is a simple one-to-one correspondence between the generators of the two Type D
structures, given by G ® QQ ® K13 <> G ® P,, with matching idempotents. Using this and
the result of Lemma 4.52 gives an equivalence between the two modules, as the action of

0 is the same on each. [ |
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Using Remark 4.50, which outlines that the canonical bimodule can be used to show that

two D A-bimodules are equivalent, one has the following simple corollary.
Corollary 4.54 The As-modules Y K G? and Y' R O? are equivalent.

Proof When the D A-bimodule 02 was inductively defined, Ozsvath-Szabé proved in [49,
Thm. 7.10] that there is an equivalence between the two Type DD-bimodules 32 X K and

O2. Including the notation denoting the algebras, this is the equivalence

A(1)752 A(2),A' (2 ~ A(1),A’(2
()U_A(Q)IE @A Q) fc =2 AL)A' ()5,
Hence, Y/ K Uy = Y' K U? K K. Applying the result of Proposition 4.53, one has that
VROPRE=ZY RU?KK.

From the invertibility of the canonical bimodule /C, as proven in [49, Thm. 2.3], one yields

the result. See [49, Lem. 2.13] for example. W

One can go further than this, and demonstrate that the two D A-bimodules A(I)U?‘m) and

A(l)ﬁa are equivalent, by showing that the DD-bimodules U? X K and 02X K are

2)

equal. However, it is sufficient when examining the minima to only prove equivalence of

the A-modules.

Remark 4.55 Examining the motivation behind the definition of 62, one might question
why there is no term m3(Q,Us,C34) =V ® Q. From the DA-bimodule 1%, the only term

with the matching idempotents to Q) is
II®G®W®N'113.

One sees that (5%([13-N-113, UQ) = 113'U1®N m 'Pl, yet (5%([23-W‘113, Ul) = 123-U1®W =0
in P2.

Furthermore, of the three generators presented for U% on page 101, in the associated Hee-
gaard diagram for ' X P? X P, there is a rectangular domain between the generators
GOW®Q®E and G®& N®S. With the recently proven equivalence between C(D) and classi-
cal knot Floer homology, such a domain would provide the term GON®S 3 5(G®W®E),

and so both terms would be trivial in homology.

Using a very similar technique, one can define the D A-bimodule A(Q)ﬁi(s), and then the

Aso-module Y X 02K 6?4(3), corresponding to the lower Heegaard diagram of the global
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minimum, and minima between strands 2 and 3 and between strands 4 and 5. Both of these
are defined here, but the equivalence with Y/ X D2RO? is omitted, since the calculation

is a simple adaptation of the above.

Definition 4.56 Corresponding to the appropriate partial Heegaard diagram, define the
bimodule A(2)6?4(3) to have a single generator, Is- H - I135. In the following definition, the
matching elements in A(3) are assumed to be C1q, Cog and Css, corresponding to the case
of three-strand pretzel knots considered within this thesis. Definitions with other matching

elements are very similar.

Let the non-zero maps 61, : 0% @ A(3)EF = A(2) ® B? be defined as follows.

SMH, UM =UFoH
SH UM =UroH
SMH,UH =USoH
0114e(H, U3, C5) = Ui @ H
S (H,Ls, U, Rs) = 1@ H
S (H,L3,Us,R3) = 1@ H
83(H, Cag,Cs5) = C34 @ H
SL(H, 1) = C1a ® H.

Once more, in [49, Sec. 7.1], Ozsvath-Szab6 define the D D-bimodule A2)A()15,. However,
the forced compatibility with the idempotent of the single generator of the A°°-module
Y'X 634(2) means that there is only a single generator of this bimodule: (I13 ® I24) - Pogy.
Furthermore, the map 9(P) = A ® P», where

A=U1QF +U 3 E4+Us® FEs + Uy ® Fg + 1 ® FoUs

+ Uy ® [Eo, E6] Es + Csyq + [Eo, Es][E3, E5] + C12 @ [Eq, E4].

Using this, and the canonical bimodule A(3)’A/(3)IC, one can prove the equivalence between

Y/ R0, RADAEEG, and Y/ KT

in Proposition 4.53.

@) X A(2)6f4(3) X K as Type D structures exactly as

Then, invertibility of the canonical bimodule yields an equivalence between Y’ X 02K
6?4(3) and Y/ K 02 X U%(g). The former is defined here, utilising Definition 4.56 and
Section 4.5.1.
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Definition 4.57 Define the As.-module corresponding to the three minima, without ad-
ditional introduced crossings as in the inductive definition, as Y' X U2 K 02, Let this be

generated by the elements:

1®GeQ®H - I3s),
(U€®G®Q®H-I135),

(VIeGeQ®H - Iss).

The maps in the Asg-module miyj : Y' X 02R0O2 @ A(3)% — Y RO2K0O? are defined

as follows.

meU' @G Qe H,UN) =U"*"9GoQ® H, k€ Zsg

me(V*@GeQe HUH=V"TeGe Qo H, t,s € Z>o

maU'®@ G®Q® H,Ls,Us,R) =U' @ G® Q@ H, l € Zso

my(V @GR Q& H, L3, Uy, R3) =V GRQRH s € Z>o

my(U*@G®Q® H,Ls,Us,Rs) =U @ G® Q ® H, € Zxg

my(VPRGRQ®H,L;,Uy, R5) =V ' GRQ® H, s € Lo
miau(V"eGeQe H,US,C3) =V e Geo Qe H, r€Zsp,l €N
mi1n(UP0Ge Q@ H UM CEM =UPT" oG o Q o H, p € Zsp,n €N



Chapter 5

Inductive Arguments

As mentioned above, three strand pretzel knots are particularly amenable to study using
the cut and paste argument of Ozsvath-Szabd, since the Type D structure at any point
can be determined using inductive methods. In this chapter, the calculation of the Type
D structure for the upper knot diagram of P(2¢+ 1, —2b — 1,2a) will be determined up

until the three final minima. See Figure 5.1 for an example.

In what follows, much use will be made of the pictorial representation of Type D struc-
tures by directed graphs, see Section 4.3.2. Excepting the case of the Type D structures
Cpq will

associated to Q! and Q? K Q!, the self-arrows with weight given by queMatChing

be omitted.

5.1 Initial maxima

In any special knot diagram, the program developed by Ozsvath-Szabd in [47,49] starts
with a Type D structure for the global maximum of the diagram. This is represented by

AMQ! has a single generator

the directed graph in Figure 4.8. The Type D structure
corresponding to the idempotent I, and as a standard Type D structure has only a single
self-arrow, given by the matching element Ci2. Recall from Definition 4.11 that each
matching element Cp, is the sum ) | 1, Lz Cpq - I, so forms a non-zero tensor product with

all elements in the image of a map from a Type D structure.

More formally, AQ! = (I; - P), with the map ' given by
NI -P)=Crp &1, - P e A1) @ ANQL

111
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5 \//\//\//\/\v

%

Figure 5.1: An example of the (oriented) upper knot diagram for a three strand pretzel
knot P(2c +1,—2b —1,2a). In this case, c=2,b=1 and a = 1. Note that every Morse

event occurs at a different height.

Then, consider the tensor product with the D A-bimodule corresponding to the next max-
imum A(Z)Qil(l)' This is defined in [49, Sec. 5.2] and Section 4.4.3, but from the view of
D A-bimodules as being generated by partial Kauffman states (see Definition 4.27), there

are only two admissible generators, both corresponding to idempotents:
Ly X1,
Irs-Y - I4h.

One can then take the tensor product of each with the generator I - P € AMQ! follow-

ing the procedure outlined in Section 4.5. A pictorial representation of this is given in
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Figure 5.2a. Note, that in 92, the maps 5%_% are given by

63(X,Cr2) =Cu ® X,

(Y 012

Clu®Y,

) =
)
(X) Cy3®X +R3RyQY,
(Y) Cys®RY + Lol3® X.

This is exactly as presented in Section 4.4.3, with generators as defined in Definition 4.33.
Then, taking the appropriate box-tensor product of the D A-bimodule and Type D struc-
ture yields the Type D structure A2)Q2 K Q' as shown in Figure 5.2b.

Ciy+ Co3 Ciy+ Co

- m— Lol

(a) Pictorial representation of the gener-

ator I1o - X ® P. (b) Type D structure for A2)Q2? K Q!

Figure 5.2: The Type D structure for the tensor product of the global mazimum and the

second maximum. Note, this is a standard Type D structure.

5.2 First set of crossings

As can be seen in Figure 5.1, the next part of the special knot diagram for the pretzel knot
P(2¢+1,-2b—1,2a) are 2¢ + 1 positive crossings between strands 1 and 2. Determining

the Type D structure after these crossings corresponds to taking the tensor product

One can determine this Type D structure using induction on the number of crossings.
Hence, one must first consider the base case of two maxima and a single positive cross-

ing.
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Inductive statement

Let Poi11 be the statement that the Type D structure
X2k+1
A2)pl A(2) 02 1
( <>7>A(2)) KA " Q

is as depicted by the weighted, directed graph in Figure 5.3, with the understanding that
all Type D structures are standard, as defined by Definition 4.19. By convention, the

self-arrows corresponding to matching elements are suppressed.

Moreover, it is worth noting that the algebras .A(2) in the above tensor product are not all
equal. Given that a positive crossing between the first and second strand switches the role
of 1 and 2 in the algebra, one has that one of the copies of A(2) has matching elements
{C13,Ca4}, while the other has matching elements {C}4, Ca3}. However, one can see from

a simple diagram that if one adds an odd number of positive crossings, the output algebra

has matching elements {C3, Ca4}.

Figure 5.3: Weighted graph describing the inductive structure of a set of 2k + 1 positive
crossings P! attached to two mazima. A denotes the Kauffman state with only North N
states, By denotes that the E state occurs k crossings from the top, and B~ denotes that

one has only S states.
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Base case: 1 crossing, k=0

The possible positions for Kauffman states in P! are dictated by the idempotents associ-
ated to the Type D structure above, see Figure 5.2b. Using the definition of the cardinal

generators NV, S, £ and W, one sees that the tensor product
PIRO*RO
has only three possible generators:

A:ZIH'N-112®(X®P)
By ::Ilg'E'123®(Y®P)

B> :2123~S-123®(Y®P>.

Remark 5.1 This notation indicates the possible position of the decorations in the Kauff-
man state. As described earlier in Section 2.2, and inspired by Eftekhary [5], one can
separate Kauffman states for three strand pretzel knots by the position of the marked point
in the region enclosed by the global mazximum. Using the local grading information at each
crossing, following Figure 4.1 one can also easily determine the grading of these elements

of the Type D structure.

In this case, and in the case of Figure 5.3, A denotes that one only has N generators on
the strand, By denotes that the marked point in the region adjacent to the strand is the

k" from the top, and Bs denotes that the generators on this strand are all S.

In order for a valid tensor product to be taken with the generator 112+ X ® P, the incoming
tensor product of a generator in P! must be I;5. There is thus only one choice of generator

in order to produce a valid term in P' X Q2 X Q. namely I15 - N - I1s.

This requirement is identical under any number of iterations of tensor product of P!, and
this results in such states being A states. It is behaviour like this that makes inductive

arguments possible in determining the Type D structure.

Let the state with idempotent I15 in Q2 K Q' be X, and let the other be Y. Proceeding
with the calculation of the map d in the Type D structure P' X Q2 X Q! one has the

following.
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d(N ® X) = 63(N,R3Ry) @,
= R3-0,(N,Ry) @,
= R3U; ® EQY,
= R3U; ® By.
AE®Y)=6(B)®Y +03(E, LyL3) ® X,
=Ry®S®Y + L3-05(E,Ls) ® X,
=Ry®Bs +IL3QN®X,
= Ry ® B> + L3 ® A.
d(S®Y) =63(S,C14) @Y,
=Uls @ ERY,

= LUy ® By.

This fits the structure given in Figure 5.3 with £ = 0. In the above calculation, use has
been made of the fact that when tensoring by the bimodule P?, elements with weight
outside span{e;,e;+1} commute with the map 6. Moreover, one has that LoUy = UyLs,
since Proposition 4.13 states that elements are uniquely determined by their weights and
idempotents, and these elements have equal idempotents and weights in %Z‘l. Hence, the

base case is true.

Increasing the number of crossings

It is a relatively straightforward calculation to show that this holds for k£ = 1, i.e. the
special knot diagram with three positive crossings. As remarked upon before, if in the
Type D structure X one has an element 1, - z, then the only possible element in P! with
compatible idempotent is Iy - N - I1,. Hence, the only possible generator with z in the X

tensor-coordinate is 11y - N ® x.

Abusing the notation slightly, tensoring with P! once, yields a Type D structure with four
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generators

[y - A:=N®A
ILi3-B1 =N® B
113-32 ::E®B>

Then, one has the following differentials.

d(A) = 65(N, R3U1) ® Bu,
= R3 - 05(N,U1) ® By,
= R3Us ® N ® B; = R3Us ® B.

d(By) = 63(N,L3) ® A+ 63(N,Ry) ® B>,
=39 N®A+U; ® E® B,
=I3A+U; ® Bs.

d(By) = §1(E) ® Bs + 63(E, LoUy) @ By,
=Ro®S®Bs+U; ® N® By,
=Ry ® B> + Uy ® By.

d(Bs) = 65(5,C13) ® Bs,
=U3Ly ® E® B,

= LoyUs ® Bs.

117

This once more utilises the observation that elements with weights outside the crossing

region commute with the map J. For example, d3(N, L3) = L3 - 63(N,1) = L3 -1 ® N.

Moreover, tensoring by P! swaps the role of 1 and 2, so one has that 5% (N,U1) = U ®

N.

Tensoring once more by the DA-bimodule P! swaps the role of 1 and 2, and the impact

of this is that

d(S® Bs) = 63(S,C14) = UsLy @ E = LyU, @ E.

Hence, the Type D structure (731)@3 X Q2 X Q' also conforms to the form described in

Figure 5.3.
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Using the inductive assumption

X2k 41
Assume that the Type D structure for (“4(2)77}4(2)) X ARO2 KO is as displayed

in Figure 5.3 when k = n: i.e. that the statement Ps,11 is true. Since B, and A have

idempotents I13 and I respectively, the only compatible generator in P! is V.

Tensoring once by P, one has the following calculation for the differential, where 1 < r <

n—1in Bory1, and 1 < r < n for By,.

d(A) = 63(N, RsUy) ® By,
= R3Us ® N ® Bj.
d(By) = 63(N, Ls) ® A + 63(N,Uz) ® Ba,
=L3@N®A+U; ® N ® Bo,
=L3R A+ U; ® Bs.
d(Bar) = 63(N,Us) ® Bay—1 + 63(N,U1) @ Bays1,
=Us ® Bor—1 + Uz ® Bopy1.
d(Bar11) = 05(N,Us) ® Bay + 63(N,Us) @ Boy 2,
= Us ® Bor + Uy @ Bapa.
d(Bant1) = 63(N,Us) ® Bay, + 63(N, Ry) ® Bs,
=U3 ® Bon + U1 ® E® B>,
= U3 ® Bop + Uy ® Bapao.
d(Bany2) = 01(E) @ Bs + 65(E, LyUs) ® Bop 1,
=Ro®S®Bs+Us ® N® Bapya,
=Ry ® By + Uy ® Bopy1.
d(Bs) = 6,(5,C13) © Bs,
=UsLy ® E® B,
= LyUs ® Bap4a.
The graph describing the Type D structure for (7?1)2"+2 KO2KO! is shown in Figure 5.4.

The loops on each vertex have once more been suppressed, but one has that (5% (X,Cip +

Coq) = (C1qg + Cp) ® X for any X € Pl ie. the roles of 1 and 2 are swapped.

This is the intermediate step in the calculation of the Type D structure (Pl)Q(nH)H X

02 X Q' as one needs to tensor by P once more. Luckily, the calculation is practically
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Figure 5.4: Weighted, directed graph showing the intermediate step in the inductive proof,

i.e. the Type D structure with an even number of positive crossings.

identical to the above, but is included here for the sake of completeness.

d(A) = 65(N, R3Us) © By,
= R3U; ® N ® B;.
d(By) = 63(N,L3) ® A+ 63(N,Uy) ® B,
=L3N®A+Uz ® N ® Do,
=L3 A+ U ® Bs.
d(Bay) = 03(N,Us) ® Bar—1 + 63(N, Us) ® Byyi1,
=Us ® Bor—1 + U; @ Boypyy.
d(Bay11) = 63(N,Us) @ By + 63(N,Uy) ® Boyo,
= Uz ® Bor + Uz @ Baya.
d(Ban+2) = 63(N,Us) ® Boni1 + 63(N, Rs) ® B,
=Uy ® Bopy1 + U1 @ E® B,
= Us ® Bopy1 + Uy @ Bopys.
d(Banys) = 01(E) © Bs + 63(E, LoUs) @ Bayya,
=Ry®S®DBs +Us®N ® Bapya,

= Ry ® B> + U3z ® Bopqa.
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d(Bs) = 63(S,C4) ® B>,
=Usl, ® E® B,

= LoUs ® Bayy3.

This matches the form in Figure 5.3, as is required for the inductive proof. So, Pspt1 =
Py(n41)+1, and the type D structure (Pl)Q(nH)H&QQ@QI is thus determined by induction.
|

Remark on the Type D relation.

As one can see from Figure 5.3, it does not appear at first that the Type D relation as
defined in [25, Def. 2.18] and represented in Figure 4.7 is satisfied. This can be thought
of as analogous to the relation d?> = 0 in a chain complex. In this case, note that d(d(A))

contains the term R3U1Us ® Bs.

However, as one can see from the relation
0= (NQ ®]dM) o (]dA ®81) 081 + (Ml ® IdM) 081,

for this to be a Type D structure the above term must be equal to zero. This is clear after
including the information of the idempotents. The term By has associated idempotent
I3 - By, and note that the element I3 - UiUs - 113 has the same weight and associated
idempotents as I13 - RoLoL1Rq - I13. From Proposition 4.13, this information uniquely

determines an element in A(2), yet LyL; = 0, and so I13 - U Uz - I13 = 0.

Traversing two arrows and returning to the same position in the graph is cancelled us-
ing the differential p; : A — A; for example one has that d(d(Bz)) contains the term
(U1Us + UgUs) ® By. However, in A(2), pu1(Chg + Caq) = U1Us + UyUs, hence this term in
w1 o d provides the cancellation. It is relatively straightforward to check this relation at
all vertices in the directed graph, but this should necessarily be a valid Type D structure

as the tensor product of a D A-bimodule and a Type D structure, see [24, Sec. 2.3].

5.3 The next maximum Q*

As one can see from Figure 5.1, the form one takes for the special knot diagram of a three

strand pretzel knot requires the addition of the bimodule associated to a maximum to give
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the new fourth and fifth strands. The generators of this bimodule then correspond to the

permissible idempotents in this situation.

Since this D A-bimodule is tensored with a Type D structure only featuring the idempo-
tents I19, I13 and Io3, one only needs to consider generators with incoming idempotents

matching these.

Following [49, Sec. 5], one has a map
oq4:{1,2,3,4} — {1,2,3,4,5,6}

given by
E ifj<3
¢a(j) =
j+2 ifj=4
This corresponds to the new integer assignments of strands after the tensor product with
the maximum. Moreover, Ozsvath-Szabé define allowed idempotent states in A(3). If y is a
three-element subset of {1,2,...,6}, then y is an allowed idempotent state if [yn{3,5}| < 1.
Thinking of this visually, this means that in the regions on either side of the new maximum,

at most one of them is occupied. See Figure 5.5 for examples of allowed idempotent states

in this case.

Ozsvath-Szabé then divide the generators of the bimodule Q* into classes X, Y and Z,
depending upon the intersection of the preferred idempotent with the set {3,4, 5}, see [49,
Sec. 5.

X34 := Iiga - Xu3a - [13
Xoza := Iogq - Xogq - Iog
Y145 := Tas - Y145 - 13
You5 1= Ioa5 - Yous - Io3

Z124 = I124 - Zho4 - I12

The arrows 61 in the DA-bimodule split in each of the X, Y, Z cases. In particular, one
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Figure 5.5: The lower (outgoing) idempotents in this figure are examples of compatible,
allowed idempotents in the case of the new maximum. Moreover, these two correspond to

generators of the D A-bimodule Q*, namely X134 and Yous.

has the following.

61(X134) = Cy5 ® X134 + Rs Ry ® Yiu5

61(Xo34) = Cys ® X34 + RsRy ® Yaus

61 (Yaas) = Cus @ Yous + LaLs @ X134

)=
) =
61 (Y145) = Cus @ Yia5 + LaLs ® X134
)=
61(Z124) =

Cys ® Zy94.

The remaining arrows 4 in Q* are defined in [49, Lemma 5.2], which roughly gives a
map @, that translates elements from .A(2) to algebra elements in A(3). Since the full
detail is presented in the cited lemma, I will only state that this provides a correspondence
between the weights as one would expect from the map ¢ defined above. So, ®145 maps

Iz - Uy - Itz — Inas - Ug - 1145.

There is some subtlety here, since one expects Uy to map to Ug, but this is only when
this is permitted by the idempotents. For example, with the map ®;34, one has that
113 . U4 . 113 — 1134 . U6 . 1134. HOWEVGI‘, from Definition 4.12, one has that 1134 . U6 . 1134 =0

in A(3).

The full DA-bimodule used in this case is presented in Figure 5.6, following from simple
applications of the definitions in [49, Sec. 5] and [46, Sec. 8]. In particular, note the self-
arrows, which are described in the caption. They contain terms from both ] arrows, and

from &3.
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Ry ® (Ry)

Key

I ‘\ Ly ® (LQ) I \\
1 \ ! \

1

I 1 -

\ 1 L4L5 X | L4L5 > 51
' '
RsRy ! I RsRy ! I
I I

1 I ! ! 1

\\ 1 R2 ® (RQ) ‘\ 1 > 52

R3Ry ® (R3Ry)

Figure 5.6: This is a diagramattic representation of the DA-bimodule Q*. The elements
with different outgoing idempotents are distinguished by colour. Moreover, the dashed
arrows denote 61 maps, and the solid arrows 63 maps, with the bracketted coefficient being
the algebraic input. There are also self arrows, which have coefficient Cy5 + C13 @ (Ch3) +
C24 ® (Ca6) + Up,(p) @ (Up).

5.3.1 Tensoring with the current Type D structure

As can be seen from the idempotents associated to each generator of the D A-bimodule
0%, one has the following set of generators of the Type D structure Q* X (P1)2+1 K02 X
oL
A=7Z124® A
By := X131 @ By,
Ck := Y145 @ By,
B = X934 ® B>

Cs :=Ya5 @ B>.

The states B~ are upper Kauffman states which will not complete to full Kauffman states

for the knot P(2¢ 4 1,—2b — 1,2a) with diagram as shown in Figure 5.1 after the three
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minima are added. This can be seen from the fact that the idempotent I»34 indicates the
presence of a marked point in the region adjacent to the first and second set of crossings.
Since by construction of the special knot diagram all positive crossings between the first
and second strands have already been placed, this indicates that the marked point in this
region must be placed adjacent to the second set of (negative) twists. But, since 3 € {234},
this indicates that all of the marked points on this set of twists must be North N states,
which would contradict the position of the remaining marked point. However, it is still
important to preserve this state in the calculations, because it may be used in later tensor

products.

Proceeding with the calculation of the tensor product, one has the following. Since by
construction the Type D structure is standard, if G is an element of the Type D structure,
one has that d(G) 3 (C13 + Ca6 + C45) ® G. For the sake of brevity, these terms have been

omitted.

d(A) = 61(Z124) ® A + 63(Z124, R3U1) ® By,
= R3U; ® X134 ® By,
= R3U; ® Bj.
d(By) = 61 (X134) ® By + 65(X134, L3) ® A + 65(X134,Uz) ® Bo,
=RsR1®@Yius @ B1 + Ly @ Z124 ® A+ Uz ® X134 ® Ba,
=RsR1®C1+ L3 ® A+ Us® Bo.
d(C1) = 61(Y145) ® By + 65(Yias, L3) @ A + 63(Yi45, U2) @ Bo,
=L4L5 ® X134y @ B1 +0® A+ Us ® Y145 ® Bo,
= LyLls ® By + Uz ® Cs.
d(Bay) = 01 (X134) ® Boy + 05(X134,Us) ® Bor_1 + 03(X134,U1) ® Bory1, 1<r<c
= R5R4 ® Y145 @ Bar + Us @ X134 ® Bar—1 + U1 ® X134 ® Bar1,
= R5Ry ® Oy +0® B, + Uy ® Boyy1,
= R5R4 ® Cop + U1 @ Bapy1.
d(Cyy) = 61(Y145) @ Bay + 05(Y145,Us) ® Bop—1 + 03 (Y145, U1) ® Bopy1, 1<r<c
= L4L5 ® X134 @ Bop + Ug @ Y145 @ Bor_1 + Uy @ Y145 @ Boygq,
= L4L5 ® By + Us @ Cop—1 + Uy @ Copy 1.

d(Bar11) = 01 (X134) ® Bayi1 + 03(X134, Us) ® Boy + 03(X134, Ua) @ Bapy1, 1<r<c
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= R5R4 ® Y145 ® Bar1 + Us ® X134 ® Bar + Uz ® X134 ® Barya,
= R5R4 ® Cop41 + Uz @ Bar + Uz @ Bayyo.
d(Cori1) = 61(Y1a5) ® Bary1 + 63(Y1a5,Us) ® Bay + 63(Yia5,Uz) ® Baypia, 1<r<ec
= L4Ls5 ® X134 @ Bort1 + Us ® Y145 @ Bayr + Uz @ Y145 ® Barta,
= L4L5 ® Bory1 +0® Cop + Us @ Copya,
= L4Ls ® Bory1 + Us ® Copgo.
d(Bact1) = 01 (X134) ® Boct1 + 03(X134, Us) ® Boc + 63(X134, R2) ® B,
= R5R4 ® Y145 ® Bact1 + Us ® X134 ® Bac + Ro @ X234 ® B,
= RsRy ® Cae11 ® Uz ® Bae + Ra ® Bs..
d(Coct1) = 61 (Yia5) ® Boct1 + 63(Yias, Us) ® Boe + 65(Yia5, R2) ® B,
= L4L5 ® X134 @ Bact1 + Us @ Y145 @ Bae + Ro ® Yags ® B>,
=L4Ls® Bocr1 +0® Cor + Ro ® Cs,
= L4L5 ® Baey1 + R ® C.
d(Bs) = 61(X234) ® B> + 05(Xasa, LaUs) ® Bacy1,
= R5R4 ® Yo45 @ B> + LaUs ® X134 ® Bac1,
= Rs5R4 @ Cs +0® By,
= RsR4 ® Cs.
d(Cs) = 61 (Yass) ® Bs + 03(Yoas, LoUs) ® Bocs,
= LyLs5 ® X934 @ B> + LaUs ® Y145 ® Bact1,

= L4Ls ® B> 4 LaUgs ® Cocq1.

The above is represented in Figure 5.7, again as a weighted directed graph. Once more, the
self-arrows are omitted, but correspond to the matching elements. Moreover, as mentioned
previously, not all of the arrows between the By, and By states in the Type D structure
(771)2C+1 X O2 X O are preserved under tensor product with 4, due to the applications

of the relations within the algebra to the idempotents.

The generators of the Type D structure have been labelled in such a way that they indicate
the Kauffman state to which they extend in the full special knot diagram. As remarked
before, not all of the pictured upper Kauffman states in Figure 5.7 extend to full Kauffman

states.
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1145 K@y

I3y

O
O

Figure 5.7: Weighted, directed graph describing the Type D structure Q* X (PI)QCH X

02X Q. Self-arrows corresponding to the matching elements are once more omitted, as
this is necessarily a standard Type D structure. The horizontal arrows incident to B~ and

Cs are between these two states.

Moreover, the same Type D relations are satisfied, despite it appearing at first that they
are not. Taking as an example the ‘double differential’ starting at C', one sees that
d(d(C1)) > UsUp ® C5. But, the fact that the associated idempotent to this algebra
element is Ii45 - UsU; - I145 determines that this must be zero due to having the same

weight and idempotents as an algebra element containing the term LoL; = 0.

5.4 Second set of crossings

Remark 5.2 (Remark on the following inductive proofs:) In the following induc-
tive processes, the DA-bimodules corresponding to the crossings will be box-tensored to

the Type D structure one at a time. If Q, is the inductive statement, the proof will at-
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tempt to show that Q, implies Qry2. This could also be attempted by first determining
the D A-bimodule for the box-tensor product of the two crossings, i.e. for negative cross-
ings determining N W N. As shown in [24], this is a DA-bimodule, which one can then

boz-tensor with a Type D structure to yield another Type D structure.

However, the benefit of doing this one bimodule at a time is that one need not specialise
to the parity case considered. Here, the special knot diagram constructed will be for the
knot P(2¢ + 1,—2b — 1,2a), so the next step is to take an odd number of negative cross-
ings, then an even number of positive crossings. If the intermediate Type D structures
are determined, one could then examine other cases. For example, although in [41] the
ﬁﬁ((P(odd, —odd, odd)) is determined, by fully defining the intermediate Type D struc-

ture one could use this to then determine the bordered invariant C(D) for this family.

Before proceeding with the calculation of the Type D structure after the second set of
crossings, note that the DA-bimodule now utilised in the tensor product is N3, describing
a negative crossing between strands 3 and 4. Although this is given a formal description
in [46, Sec. 5.5], recall from Definition 4.29 this bimodule is the opposite of P3. Intuitively,
one yields the description of N3 from P2 by reversing the direction of all arrows, and
swapping L for R.

For ease of notation, define the module A3 X = AGQ! K (Pl)zc—H

XO2K Q' as the Type
D structure defined through induction in Subsection 5.3.1. The aim is now to determine

the Type D structure for (./\/ 3)2bH X X using similar methods.

The upper Kauffman states that correspond to generators of this module can again be
split depending on the position of the marked points in each region. Figure 5.8 depicts
the possible different positions of the marked points after adding additional crossings
between strands 3 and 4. There are also other upper Kauffman states not depicted in this
figure, such as Is34 - B~.. This has all .S generators on the first set of crossings, and all N
generators on the second set of crossings, and will not extend to a full Kauffman state of

the three-strand pretzel knot P (2¢ + 1, —2b — 1, 2a).

Before making the inductive statement, it is informative to determine the Type D structure
N3 X X, where X is defined as above. This has (6¢ + 10) generators, as can be seen from
an examination of the possible upper Kauffman states. Using the description given in

Figure 5.8, one has the following collection of upper Kauffman states corresponding to
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Iy - Crs

2]

Figure 5.8: Diagrams depicting the different categories into which Kauffman states rep-
resenting the generators of (/\f?’)%+1 X X may fall. As described above, there are also >
states, such as the C~ state pictured. The associated idempotents to each generator have

been shown.

generators of this module.

{A17A>7D1} U
{Blv"'7BQC+17B>} U

{0117 s 7020+1,17 C’>,1> Cl,>a ey CQC+1,>5 C>,>> Sl}

The idempotents force the position of Kauffman states in the tensored DA-bimodule N,
or rather restrict the positions in which they might be. Using the idempotents noted
in Figure 5.7, since 3 belongs to the idempotents of both By and Bs, non-zero tensor
products will have the generator N in the A tensor coordinate. In a similar way: I1o4 - A
forces either E, S or W in the tensor product; I145 - C) forces E or S; and a5 - C's forces

E,SorW.

One then has the following calculation of the differential map d in N/ X X, which is also

presented as a weighted directed graph in Figure 5.9. Matching terms are omitted, for
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ease of notation.

d(Ay) = d(W @ A)
= 83(W, RsU1) ® B + 83(W, Cu5) © A + 65(W, RsUy, RsRy) © Cy
=U1Us N @B+ L3Us @ S® A+ RsRyU1 © S ® Cq
=U1Us® B1 + L3Us ® As @ RsRyU1 @ C1 >

d(As) = d(S @ A)
—5}(S) @A
=RsQQWRA+ LI QERA
=R3® A1+ Ly ® Dy

d(Dy) = d(E ® A)
= 63(E,C13) ® A+ 63(E, RsUy) @ By
=R{U1®S®RA+ R4R3U; @ N ® By
= R4U; ® A> + R4RyU1 ® By

d(B;1) =d(N ® By)
= 03(N, L3) ® A+ 63(N,Us) ® By + 63(N, ®Rs R4) @ C,
=1IWRA+U: N®By+ Rs @ E® Cy
=1® A1+ Uz ® By + R5 ® Ch1.

d(Bar) = d(N ® Ba;)
= 03(N,U1) ® Bary1 + 63(N, R5Ry) @ Co,
=U1 ® N ® Borj1 + Rs @ E® Cyy
=U1 @ Bary1 + B5 @ Corn

d(Bart1) = d(N ® Ba11)

= 03(N,Us) @ B, + 03(N, Us) ® Bayy2

+ 63(N, RsRy) ® Copy1 + 03(N,Us, R5Ry) @ Coy
—Us®N® Bay + Us ® N @ Baysa + Rs @ E® Cary + RsRi ® S @ Cay
= Uy ® Boy + Uy ® Bopio + Rs ® Cop1 + R5s Ry @ Coy >

d(Bacy1) = d(N @ Bacy1)
= 03(N,Us) ® Bac + 03(N, RsRy) ® Cocy1 + 63(N, R2) ® B>

+ 63(N,Us, RsRy) ® Ca,

129
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=UsON®@By+RsQFE R Cocy1 + Ro@N ®@Bs + R5s R4 @5 ® Cae
=Us ® Bac + Rs @ Cacy1,1 + Ry ® B> + RsRy ® Coc >
d(Bs) = d(N ® B) = 65(N, RsR4) @ Cs
=RsQFERCs =Rs®Cs 1
d(C1) =d(E®C1)
= 63(E, L4L5) ® By + 03(E,Us) ® Cy + 05(F, LyLs, L3) ® A + 63(E, C13) @ C4
=LsUs @ N@B1 +Us@N®Co+ L3Ls @ S@ A+ RyU1 © S ® Cy
=LsUs® B1 + Uy ® C91 + L3Ls @ As + RyU1 @ C1 >
d(Car1) = d(E @ Cyy)
= 03(E,Us) ® Cop_1 + 63(E,U1) @ Copy1 + 03(E, LyLs5) @ Ba,
+ 63(E, C13) ® Oy
=Us QERCoy_1+U; ® E®Coyrq1+ LUz @ N @ By, + RyU; © S ® Coy
=Us ® Cor—1,1 + U1 ® Cory1,1 + LsUs ® Bar + RyUy @ Cop >
d(Cor41,1) = d(E ® Copy1)
= 03(B,Us) ® Cayrya + 63(E, C13) ® Carp1 + 03(E, LaLs) ® Boyi
=Us @ E®Copyo+ RiU ®S®Cori1+ LsUs @ N @ Bayiq
=Us ® Copq21 + RyUr ® Cory1,> + LsUz @ Bayya
d(Coct1,1) = d(E @ Cocq1)
= 05(E, R2) ® Cs + 83(E, C13) ® Cacy1 + 6 (B, LaLs) ® Bacar
=Ry ®FERCs + RyU1 ® SR Coeq1 + LsUs @ N ® Bacyq
=Ry ®Cs 1+ RyU; @ Cocq1,> + LsUs @ Baet
d(Cs1) =d(E®Cs)
= 03(E, LoUs) ® Cacy1 + 03(E, LyLs) ® Bs + 65 (E, C13) ® C-
= LUs ® E® Cocy1 + LsUs @ N @ Bx + RyUy @ (1245 - C)
= LoUs ® Coeq1.1 + LsUs @ By +0® Cs
d(Carq1,>) = d(S @ Corp1)
= 61(8) ® Cpy1 + 05 (S, Uz) @ Capig
= Li®E® Capy1 + Uz ® S ® Capya

=L ®Cyi11+Us®Corya~
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d(Co>) = d(S @ Coy)
= 01(S) @ Cay + 63(S,Us) @ Cop_1 + 63(S,U1) @ Copin
=LiERCy+Us®S®Coy_1+U1 @5 ®Coriq
=Ly ®Co;1+Us®@Cor1>+ U1 @ Cory1 >
d(C>5) =d(S®C5)
= 01(S) @ Cs + 05(S, LaUs) @ Coeyr
=L@ FERCs+R3@WRCs + LaUg @ S ® Cocy1
=Ly ®Cs1+ R3® 51+ LaUs @ Coeg1,>-
d(S1) = d(W @ C>)
= 05(W,Cys5) ® Cs + 03(W, LyL5) ® B~
=L3Us ® S®Cs + L3L4Ls ® N ® B>
= L3Us ® Cs > + L3L4L5 ® B-.
Note, the idempotents do restrict certain differentials being present. For example, in the
term d(C 1) one has that R4U; ® Cs = 0 since Iog5 - Uy - Iaa5 = 0. Moreover, except in

the case of C -, the term §1(S) = Ly ® E by virtue of the idempotents enforcing that
Ry W =0.

5.4.1 Inductive statement

Let Pop11 be the inductive statement that the Type D structure for
(W) R x

is as displayed in Figure 5.10. Note, that the idempotents do not change from the case
with a single added negative crossing, and once more, the structure in the blue box can
be copied and pasted for the remaining rows. Once more, since by construction all of the

Type D structures are standard, the self-arrows have been suppressed.

5.4.2 Base case

The base case in this inductive proof is shown by calculating the Type D structure for
k =1, that is determining the bimodule (./\/ 3)®3 X X takes the form as demonstrated in

the inductive statement and Figure 5.10.
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Figure 5.9: Directed weighted graph describing the Type D structure N X X. Note
that the boxed area is not dependent on the position of the marked state on the first set

of crossings. Hence, to determine the full Type D structure, simply copy and paste this

section until r = c.
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RiRs

LsLy

133

RyR;

L3l

Figure 5.10: Directed weighted graph displaying the Type D structure for the module
(N3)2b+1 X X. The blue highlighted box can be copied and pasted for the rows (2k,2k+1),

as this structure is inherited from the first set of crossings.
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In the following, it is instructive to note that the number of B, states does not change,
because there is only a single choice of generator for A3 corresponding to a cardinal
direction that yields a non-trivial tensor product, namely I134 - N - I134. Moreover, any

algebra element with weight outside of span{es,es} commutes with the map ' = 3", &}

in (/\/,51).

Since the Type D structure N'X X has already been determined, as shown in Figure 5.9.
The determination of this base case then proceeds in two steps: determining (/\/ 3)®2 XX,
then (N 3)&3 X X. Determining that P; = P3 requires tensoring by the D A-bimodule N3
twice. The taking of the second tensor product is nearly identical to the first, with some
care needed only when considering the ‘right’ hand edge of the diagram: for example the
map 63 (F, C3p) = R4U,® S is sometimes zero based upon the value of p and the associated

idempotents of the generator in the Type D structure.

First tensor product with A/

The generators of the Type D structure are as displayed in Figure 5.8, and are simply
enumerated by determining the possible cardinal generators of N that pair with generators

of the Type D structure A’ X X. With a slight abuse of notation, these are:

Al =N® A
Ay =W @ As
As = S® A-
Di=N®D;
Dy=E® A-
By, =N ® By,
B. = N® B>
Cr1 = N®Ciy
Cro=FE®Cg>
Cr> =S Q@ C>

Co1=N®Cs;

C>72 == E ® C>7>

Css=500Cs >
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S1=N®S5;

SQ - W ® C>7>.
The idempotents of these generators are shown in the key of Figure 5.10.

The maps d in the Type D structure are then calculated as follows. It is important that one
considers the idempotents and the algebra relations in A, since in the calculation of d(Dz2)
one has that the algebra coefficient of the map to As must be zero, since I193 - R4Us - 1194

has the same weight and idempotents as I3 - R4R5L5 - I124.

d(A1) = 03(N,U1Us) @ By + 05(N, L3Us) @ As + 63(N, RsR4Uy) ® C4 >
=U1Us@N@B +Us @W R As + RsU1  E® C >
= U1U3 ® By + Us ® Az + RsUy ® Cha.

d(Az) = 65(W, R3) @ A1 + 03(W, L) ® Dy + 63(W, Ca) @ As

+ 65(W, Rs, RsR4Uy) ® Cy >
=UtQONRAI+L3Li@NRXD1+ U1 L3 ®5® A~
+ RsRyUL ® S ® Ch o

— Uy ® Ay + LyLy ® Dy + LsUy ® As + RsRylUy ® C 5.

d(As) = 67(S) ® A
—R3QW®RAs+ L@ E® As
=R3® Az + Ly ® Ds.

d(D1) = 63(N, RyR3U1) @ By + 63(N, RyU;) ® As
=RiR3U1 @ N®@B1 +U1 @ E® As
= RyR3U; ® By + Uy ® Ds.

d(Dy) = 63(E, Ly) ® D1 + 63(E, R3) ® Ay + 03(F, Cs5) ® A
=U1N®D;+RiR3@N® A1 + RyUs @ S ® As
=U; ® D1+ R4Rs ® Ay + T193 - RyUs - [124 ® As
—U,®D; +RR3® A + 0@ A-.

d(B1) = 05(N,1) ® A1 + 63(N, Rs) ® C11 + 63(N, Uz) ® By
=1ON®A +Rs@N®Cy1+Us ® N ® By
=1® A1+ R; ® C11 + Us ® Ba.

d(B2r) = 5%(]\[7 R5) 02 C2r,1 + 5%(]\77 Ul) & B2’r+1
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=Rs N ®Co1 +U1 ® N ® Bary1
= R5 ® Cyp1 + U1 ® Bopg1.
d(Bary1) = 63(N,Us) ® B, + 63(N,Us) @ Bayyg + 63(N, R5) ® Copi11
+03(N, R5Ry) ® Coy
=Us@N ® B + Uy @ N ® Bopyo + R5 @ N ® Cory11
+ R5 @ E® Cop >
= U3z ® Bar + U3 ® Boryo + Rs ® Cory1,1 + R @ Coyr 2.
d(Baet1) = Us @ Bae + R5 @ Coey11 + R @ Coen + 05 (N, Ry) ® B
= U3z ® Bae + R5s @ Cocy1,1 + Rs @ Coc 2 + Ro @ B
d(Bs) = 63(N, R5) ® C= 1
—RsON®Csq = Rs®Cs .
d(C11) = 03(N, L3 Ls) ® As + 05(N, LsUs) @ By + 63(N,Us) ® Coy
+ 63(N, RaUh) ® O >
=LsOWRAs +LsUs@QN®@B + U @ N®@Cy + U1 @ ERCh >
=L5® Ag+ LUy @ By +Us @ Cy1 + Uy @ C1o.
d(C12) = 63(F, Ly) ® C11 + 03(E,Us) ® Co~ + 63(E, La, L3L5) ® As
+ 03(E,C35) ® Oy >
—U3QN®@C+Us @E®Cys + L3Ls ® S ® As + RiUs © S ® C1 >
=Us®C11 +Uzs ® Coa + L3Ls @ As + RyUs @ C .
d(C1s) = 01(S) ® Oy s + 63(S,Us) ® Ca
—LOERC s +Uy®5®Cys
=Li®Cia+Us®Cy .
d(Cor1) = 83(N,Us) @ Cor—1,1 + 63(N, LsUs) ® Boy + 63(N, RaU1) © Cor, >
+ 03(N,U1) ® Carp11
=Us®@N®Co_11+ LsUs ® N ® Bop + U1 @ E® Coy >
+ U1 @ N ® Czrq11
=Us ® Cop—11 + LsUsy @ B, + Uy ® Cop 20 + U @ Copy1 1.
d(Car2) = 83(E, La) ® Cop1 + 83(B, Us) @ Cop—1,5> + 05(E,U1) © Corg,>

+ 6% (E7 C’35) & C2r,>
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=UsQON®Cy»1+Us QERCor_1>+U1 @ E®Copgr,>
+ RyUs © S @ Coys
=U3z® Cop1 +Us ® Cop_12 + Uy @ Copg12 + RyUs @ Cop .
d(Cayr») = 01(S) @ Car» + 63(S,Us) @ Cop—1,> + 05(S,U1) @ Cori1,>
=L QERCy>+Us®@S®Cy_1>+U1 @S ®Cory1 >
=L ®Cyu2+Us®@Coy_1>+ U1 @ Coppr>.
d(Cory11) = 05(N, LsUs) ® Bayy1 + 05(N, RyUy) @ Oy 1.5 + 63(N,Us) @ Oy
+ 03 (N, LsUs, RsRy) @ Oy~
=LsUs @ N ®@Bopi1 + U1 @ E®Copq1> + U2 @ N ® Copgan
4 LsRsRy © S @ Cay»
= L5Uy ® Bor1 + U1 @ Cori12 + Uz @ Corq21 + RaUs @ Cop .
d(Cori12) = 05(E, Ly) ® Copy11 + 63(E,Uz) @ Copyo s + 03(E, Cs5) @ Coppr >
=Us QN ®@Coi11+U2s®FE®Corqas + RiUs © S @ Copgq >
=Us® Corq11 + Uz ® Copio2 + RaUs ® Copyt .
d(Cyri1>) = 01(S) ® Corp1> + 63(S,Uz) @ Copya
=Li®E®Cyi1>+Ua®5®Corya>
=Li®Cop12+Us®Copgas.
d(Cacs1,1) = 63(N, L5Us) @ Bacy1 + 03(N, R2) ® Cs. 1 + 03(N, RaU") @ Cocy1,>
+ 65(N, LsUs, RsR4) ® Cac,>
=LsUs QN @ Boey1 + RoQNRCs 1 +U1 @ F® Cocg1>
+ RyUs ® S ® Ces
= L5Uy @ Bacp1 + R ® Cs 1 + U @ Coey12 + RyUs @ Coc .
d(Coey12) = 05(E, Ly) @ Coei11 + 03(E, Ry) @ Cs » + 03 (F,C35) @ Caer1 >
=Us®N®@Coi11+ R @E®Cs » + RiUs @ S @ Cocy1,>
=U3z ® Cocy11 + Ro @ Cs 2+ RyUs ® Cocey1,>.
d(Caes1,5) = 61(5) ® Cacy1,> + 63(5, R2) ® Cs >
=Li®E®Crq1,>+R2®S5®Cs >
=L ®Cry12+ R0 .

d(Cs1) = 65(N, LsUs) ® Bs + 63(N, LaUs) ® Cacy1,1
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= LUy ® N ® Bs + LU @ N ® Caci11
= L5Uy ® B> + LaUs @ Cocy11.
d(Cs2) = 03(E, L1) ® Cs 1 + 03(E, LaUs) ® Cacy1,> + 63(E, R3) ® Sy
+ 63(E, C35) ® Cs. >
=UsQN®RCs 1+ LoUs @ E® Coeq1> + RiR3 @ N ® Sq
+RUs 25 ®Cs >
=Us®Cs 1+ LoUs ® Cocy12+ R4R3 ® S1+ RyUs @ Cs .
d(Cs.5) = 61(S) ® Cs > + 63(S5, LoUs) ® Coci1,>
=L,FERCs>+R3WRCs s + LU @S ® Coy1,>
=Li®Cs 2+ R3® Sy + LoUs @ Coci1,>-
d(S1) = 63(N, L3L4L5) ® B + 63(N, L3Us) ® Cs -
=L3L4sLs N Q@B +Us QW R Cs
= L3L4Ly ® B> + Us ® Sa.
d(Sa) = 63(W, Ls) ® Cs. 1 + 05(W, LyUs) ® Cocy1,> + 05(W, Rg) @ 5
+ 63(W, Cra) ® Cs >
=L3LiON®Cs 1+ LaUs @ W ® Cocq1> +Us @ N ® Sy
+ L3Uy - o5 @ S Cs
= L3Lys®Cs 1+ LaUg - I345 @ W @ Cocy1,> + Us ® 51
+0®Cs >

=L3Li®Cs1+0® Coeq1,>+ UL ® 51

While lengthy, this calculation is simply applying the DA-bimodule maps detailed in
Section 4.4.2 and [46,49]. The only nuance is as stated above, that the idempotents of
the Type D generators sometimes force the calculated algebra coefficient to be 0. In other
cases, one simply cannot have an upper Kauffman state as suggested by the D A-bimodule
maps. For example d(S® C} ~) would contain the term Ry ® W ® C} ~ from 61 (5) ® C ~;
yet no such upper Kauffman state can exist, as can be seen from the corresponding upper

knot diagram.

There is a little subtlety here. In [49], Ozsvath-Szabé introduce their algebra A(n) in

the most general sense, so that idempotents can include 0 and 2n as part of their n-
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element subsets, unlike the definition presented in Definition 4.12. As noted, following [49,
Prop. 8.2], the truncation of this ring of idempotents is made suitable for the construction
of a knot invariant, since in a special knot diagram the distinguished meridian used in the
construction of a Heegaard diagram from a knot projection [36] is placed on the global

minimum.

Indeed, other truncations of the algebra can be made, as in the case of [27, Def. 3.16],
and these truncations have suitable interpretations in terms of Heegaard diagrams for
bordered sutured knot Floer homology and corresponding quiver algebra representations,

see [27,28].

Second tensor product with A/

The above calculation follows in nearly exactly the same way under the second tensor
product with A. Indeed, the roles of Us and Uy are switched in the same way. Moreover,
all of those states with 3 in the idempotent have the corresponding Kauffman state in
N forced as N, as this region must be occupied. This simplifies the majority of the
calculation, hence the calculation for By, states will be omitted, as it is almost identical to

the above. A visual description of these states is once more provided in Figure 5.8.

d(A1) = 63(N,U1Us) ® By + 65(N,Us) ® Az + 65(N, RsUp) @ Cha)
=U U, @ N® By +Us @ N® Ay + RsUy @ N ® Ci
=U1Us® B1 +Us ® As + RsU; ® Chs.
d(Az) = 63(N,Us) ® Ay + 03(N, LyLs) ® Dy + 63(N, L3Uy) ® As
+05(N, RsRyU1) ® C1 »
—UsQNQ®A +LsLyON@D 1 +U1 9W R As + RsU1 ® E® C >
=U3® A1+ L3Ly ® D1 + Uy ® Az + Rs5U; ® Ch3.
d(A3) = 63(W, R3) @ Ay + 65(W, Ls) © Dy
+ 05(W, Rs, RsR4U1) @ C1,» + 03(W, C5) ® As
=Us®ON®Ay+ L3Ls ® N ® Dy + RsRyU1 @ S ® C1 >
+ L3Us @ S © As
= Uy ® Ay + L3Ly ® Dy + RsRyUy ® Cy. 5 + LsUs ® As.

d(As) = 61(5) ® A
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—RyOW®As + L, 0 E® As
=R3® A3+ Ly ® Ds.
d(Dy) = 63(N, RyR3U1) ® By + 05(N,U;) ® Dy
=R4R3Ui N ®B1 +U; ® N ® Do
= R4R3U; ® B1 + Uy ® Ds.
d(D3) = 65(N,U1) ® Dy + 63(N, RyR3) ® A
=U1®N®D;+RyR3 @ N ® Ay
=U1 ® D1+ R4R3 ® Ay.
d(D3) = 63(E, R3) ® Ay + 03(E, Ly) ® Doy + 63(E, C13) ® As
=RiR3s®N® Ay +Us @ N® Dy + RyU1 @ S @ A
=RiR3® Ay +Us ® Dy + RyU; ® As.
d(C11) = 63(N, Ls) ® A + 63(N, LsUs) @ By + 63(N, Us) ®@ Ca1 + 63(N,Up) ® Cha
=LsONRAs+ LsUs@ N @B +Us @ N®@Co +U; @ N ® Cya
= L5 ® Az + LsUs ® By + Us ® Co1 + Uy ® Cha.
d(C12) = 05(N,U3) ® C11 + 05(N,Uz) ® Oz 4 05(N, L3 Ls) @ A~
+63(N, RaUs) ® C1 >
=U4@NCu+U2@N@Cp+ LW A +Us @ E®C >
=Us®C11+Us®Co+ Ls ® A3+ Us ® Ch3.
d(C13) = 63(E, L) ® Cig + 83(E, Us) @ Co . + 83(E, La, L3Ls) @ As
+03(E,C13) ® C1
—Us@N@Cra+ U ®E®Cas + LsLs © S ® As + RyU1 ® S® Cy
=Us®@Cr12 + Uy ® Co3+ L3Ls @ As + RyUy @ Cy .
d(C15) = 61(S) ® C1 5 + 05(S,Us) @ Ca
=LOERC>+U®S®0 s
=Li®@C13+Us @ Co .
d(Car1) = 05(N,Us) @ Cap_11 + 05(N, LsUs) ® Bay + 03(N,U1) @ Coyo
+63(N,U1) ® Cory11
=Us @ N ®Cor—11+ LsUs @ N ® Bay + Uy @ N @ Cor 2

+U1 ® N ® Cory11
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=Us ® Cop—11 + L5U3z ® Bor + U1 ® Cop2 +Ur ® Copyn1-
d(Car2) = 05(N,U3) ® Cap1 + 05(N,Us) @ Cop_19 + 05(N,U1) @ Capi1 2
+03(N, RaUs) @ Co >
=Us®N®Cor1 +Us ® N ® Cop_12+ U1 ® N ® Cary10
+Us ® E® Cor>
=Us®Co1 +Us ®Cor_12+ U1 @ Copp12 + Us @ Copr 3.
d(Car3) = 03(E, Ly) ® Oy + 63(B,Ug) @ Cop_1. > + 05(E,U1) @ Copy1 >
+03(E, C13) @ Cay >
=UsQN®Co»2+Us @E®Cor_1>+U1 @ E®Copyr1>
+RUL S ® Caps
=Us @ Cgr2 + Us @ C2r—13 + U1 @ Cort13 + Rl @ Coyp .
d(Cars) = 01(S) ® Oz s + 63(S,Us) @ Cop1.5 + 05(S,U1) @ Capi1 >
=L QERCoy>+Us®@S®Cy_1>+U1 ®5®Cory1>
=L ®Cy3+Us®Co_1>+ Ui @ Copgr,>.
d(Cory11) = 05(N, LsUys) @ Bayy1 + 05(N,U1) @ Copi12
+ 63(N,Us) ® Corq2,1 + 63(N, RyUs) ® Cor >
=LsUs @ N ® Bopy1 + U1 @ N @ Copg12+Us @ N @ Copyon
+Us @ E® Cyr >
= L5U3 ® Bory1 + Uy @ Copg12 + Uz @ Copyo1 + Us ® Cop 3.
d(C9r412) = 05(N,Us) ®@ Czpi1,1 + 05(N,Usz) @ Copin o + 03 (N, RUs) @ Czpi1 >
+ 63(N, Us, RaUs) ® Cy. >
=UsONR@Cou411+ U2 N Q@ Coy22+Us @ E® Copiq >
4 RyUs ® 8 ® Cor»
=Us ®Corp11 + Uz ® Cory02 4+ Us @ Copy13 + RyUs @ Cop .
d(Cory13) = 05(E, Ly) @ Ozpi10 + 63(E,Uz) @ Copia~ + 05(E,C13) @ Coppq >
=Us@N®Cori12+ U2 @ E®CCorgo> + Rl ©5 @ Corpr >
=U3z @ Copq12 + Uz @ Corya3 + R4Uy @ Coryr .
d(Cor41,5) = 01(S) @ Copp1> + 63(S,Uz) ® Copia >

=LiR®FE®Coi1>+U2®S5S®Corqa>
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=Li®Coyi13+ Uz ®Coryas.

For the sake of brevity, note that when r = ¢, the only change to the calculations for
d(Coy41x) where k € {1,2,3,>} involves changing the term 83(X,Us) @ Co,42 for the
term 63(X, Ry) ® Cs x, which is equal to Re ® X ® Cs k-

d(Cs 1) = 05(N, LsUs) ® B + 83(N, LoUs) ® Cacr11
= LsU3 ® N ® B + LaoUs ® N @ Caci1.1
= L5U3 ® B> + LaUs @ Cacy1,1-
d(Cs 2) = 63(N,Us) @ Cs 1 + 05(N, LoUs) ® Cocs12
+ 03 (N, RyR3) ® S1 + 63(N, RyUs) @ Cs ~
=Us@N®@Cs1+ LoUg @ N ® Coct12+ RiR3 @ N ® Sy
+U; @ E®Cs >
=Us®Cs1+ LaUs @ Coey12 + R4R3 @ 51+ Us @ Cs 3.
d(Cs 3) = 03(E, Ly) ® Cs 2 + 05(E, Rg) ® Sy + 03(E, LoUs) ® Cocy1,>
+03(E,C13) ® Cs >
=UsQN®Cs 24+ RiR3 @ N ® Sy + LoUs ® Cocy1,>
+RyUL ® Iog5 - S @ Cs >
= Us® Cs g + RyR3 ® Sz + LolUs ® Cogsr.».
d(Cs 5) = 6{(S) ® O > + 65(S, LoUg) @ Cocy1,>
=LiQERC.~+R3OWRCs » + LoUs © S @ Coeq1,>
=Ly ®Cs 3+ R3® 53+ LalUg @ Cocq1,>-
d(S1) = 63(N, L3L4Ls) ® B + 65(N,Us) ® S
=L3LsLs @ N® B> +Us ® N ® Sy
= L3L4Ls ® B> + Us ® Ss.
d(S2) = 65(N, L3Ly) ® Cs 1 + 63(N,Uy) ® Sy
=L3Li @ N®Cs 1 +Us®@ N®S)
=L3Ly®Cs1+Us® 5.
d(S3) = 63(W, Ls) ® Cs 2 + 05(W, R3) ® Sa + 63(W, LoUs) © Cocr1,>
+63(W,Cu5) ® Cs >

=L3LiQNRCs04+Us QN @Sy +00 W @ Coeyr,>
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+ L3U5 ® S ® C>7>

=IL3L4® C>,2 +Us® Sy + L3Us ® C>7>.

Hence, comparing to the form required in Figure 5.10, one can see that the base case is

determined, namely that (N 3)3 X X has the form fitting the inductive statement.

Type D structure relations

Once more, it is a relatively simple calculation to verify that the Type D relations are
satisfied, as presented in Figure 4.7. An example of this relation being satisfied is presented
here, as the sum of the two different terms must be zero. Once more, the fact that algebra
elements are uniquely determined by their idempotents and weight (Proposition 4.13) is

used.

(1 @ Idpr) o d(I234 - B>) = p1 (C1a + Co6 + C35) © B>
= I34 - (U1Uy + UUs + U3Us) @ I234 ® B>
— UsUs @ B-.
(12 ® Idyr) o (Ids ® d) 0 d(Bs) = (y12 ® Idas) o (Ida @ d) (Rs x Cs1)
= R5LoUs ® Caeq1,1 + R5LsU3z @ B
= Ip34 - LoR5Us - I135 ® Cocq1,1 + UsUs @ B

=0® Coep11 +UsUs @ By = UsUs @ Bs.

5.4.3 Inductive assumption and argument

Assume for inductive purposes that the Po, 1 holds, in other words that
( N3)2k+1 5 X

has the form as described by the directed graph Figure 5.10, with the self-arrows coming
from the matching, i.e. d(X) 3 (Cia+ Co + Cs5) ® X. Denote the Type D structure
(V)P R X by V.

Remark 5.3 Under taking the tensor product with N X N, the ‘right’ hand side of the
diagram is extended, i.e. one has new states Aspia, Aok+3, Daky2, Dagts, Cropt2, Crokts
and Sopy2,Sok13. As can be seen in the calculation of the base case in Section 5.4.2, the
left hand side of the diagram does not change. Tensoring once by N swaps the role of Us

and Uy, which is undone by the second tensor product. Moreover, since 3 belongs to all
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of the idempotents on the ‘left’ hand side of the diagram, the only compatible generator in
NKN is N@ N.

It is important to verify that more complicated behaviour on the left hand side is not
introduced by taking a tensor product with N'. Usefully, this can be seen by checking that
there is mo involvement of the 53(N,ay,a2) arrow in the DA-bimodule. There is a finite
list of viable coefficients for such an arrow to be present, as described by [49, p. 21], and
one can easily check that taking the tensor product of the Type D structure with N does

not include maps with these algebra coefficients.

Hence, all the maps on the left hand side — i.e. originating from the states B; for all j,
and the states Aj, Cij, Dj, Sj with j < 2k +1 — arise from maps with 53(N,a), since
§1(N) =0, and so every D A-bimodule map only takes a single algebra element as an input:
i.e. only one step is taken in the Type D structure to calculate the tensor product. Since
83(N,a) maps are very simple for the algebra elements a featured in the diagram, only the

calculation for the ‘right’ hand side of the diagram will be presented.

Calculation for N3 XY

Starting at the right hand side of the diagram (Figure 5.10) consider that in Y, one has
that

dy (Agk) = U1 ® Aggy1 + L3Ly @ Doj—1 + Uz @ Agg—1 + RsUt ® Copyr -

One can then see that after taking tensor product by N, the map dywmy (N ® Ag) is
described by

d(N @ Agi) = Uy ® Aggy1 + L3Ly @ Doj—1 + Uy @ Agg—1 + RsU1 @ Copy 1.
Taking the tensor product once more with N, one yields dygnwy (N @ N @ Agy) as
d(N QRN ® A2k) =U; ® A1+ L3Ly @ Dop_1 +Us ® Agp,_1 + RsU1 ® CQkJrLl.

The calculation is nearly identical for Doy, Cy. 9 and Soi. Hence, start with the right hand

edge of the diagram.
d(Agk11) = d(N ® Agg11)

= 03(N, L3Us) ® As + 03(N,Us) ® Agy, + 63(N, RsRalU1) ® O >

+ 65(N, L3Ly) ® Doy,
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=UsQWRAs +Us @ N ® Ao + RsU1  E®Q Cy ~
+ L3gLy ®@ N ® Doy,
=Us ® Agp12 + U3z ® Ag, + R5U1 @ C1 2p42 + LzLy ® Doy
d(Agk12) = d(W ® A>)
= 65(W, R3) ® Agpr1 + 03(W, L) ® Dopyy + 65(W, C1a) ® As
+ 03 (W, Rs, RsRyU1) ® C ~
=Us N ® Agpy1 + L3Ly @ N @ Dopyq + L3U1 @ S ®@ A
+ RsRUL ® 8 ® Oy
= Uy ® Aoy + L3Ly ® Dop g + L3Uy ® As + RsRaUy @ Ch.
d(Dagy1) = d(N ® Dag1)
= 03(N, RyR3) ® Aoy, + 05(N,Us) @ Doy, + 63(N, RaU1) ® A
=RiR3ON R Ay, +Us QN Q@ Do, + U1 @ E® As
= R4R3 ® Aot + Uy @ Dop, + Uy @ Dajyo.
d(Dag+2) = d(E® As)
= 65(E, L1) ® Dygy1 + 05(E, Rs) ® Agpy1 + 65(E, Cs5) © As
=U3s®N ® Dojy1 + RiR3 @ N ® Agpy1 + RyUs @ I124 - S ® A
= U3 ® Dopy1 + R4R3 ® Aogj1 + 0 ® A
d(As) =d(S® As)
=5(9)®As =L, FE®As + Rz W ® As
= L4y ® Dojyo + R3 @ Agpyo.
d(Ch2k+1) = d(N ® C1 2541)
= 03(N,Us) ® C o1 + 03 (N, Uz) ® Co g1 + 63(N, RyUy) ® Oy >
+ 63(N, L3Ls) @ As
=U4ONR@Ci1op +U2@NQ@Coopy1 T U1 QERC1 > +Ls W ® A
=Us® Cror + Uz ® Coppy1 + Ur @ Cropq2 + Ly @ Agjyo.
d(Ciok4+2) = d(E® C1>)
= 65(E, L1) ® C1gp11 + 05(E,Us) © Ca > + 05(E, Cs5) @ C1 >
+03(E, L, Ly Ls) ® A

=U3ONQ@Ciop+1 + 2@ E®Cos + RyUs @ S® Ch >
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+ L3l; @ S® As
=U3s®Crok1 + U2 ® Coppra + RyUs @ Cr > + L3Ls @ A
d(Cy>) =d(S®Cy )
=61(S) ®Cy > + 03(S,Uz) ® Ca
=Li®ERC >+U05®Cy
=Ly ®Ci 42+ U2 ®Co .

d(Cor2kt1) = d(N @ Cop2k41)

= 03(N,Us) @ Coy ok, + 63(N,Us) @ Cop—1 241 + 05(N,U1) ® Copi1 2k 1

+03(N, RyU1) @ Cop

=Us @ N ® Copo +Us @ N @ Cop_qok41 + U1 @ N @ Copi1 2041
+ U1 ® E® Cyr >

= Uy ® Cop o + Us @ Cop_12k41 + U @ Copp1 241 + Ur @ Cop 2142

d(Corok+2) = d(E @ Cr>)

= 03(E, Ls) ® Corapy1 + 05(E,U1) ® Cors1,> + 03(E, Ug) @ Car_1,>
+ 63(E, C35) ® Cay >

=UsQN®@Coyoir1 U1 O ERCorp1> +Us @ E® Copq >

+ RyUs @ S @ Cap >

= U3 ® Copops1 + U1 ® Copp 242 + Us @ Cop—1 o2 + RaUs @ Coyr .

d(Cor>) = d(S ® Coy )

=61(8) ® Oy s + 05(S,U1) @ Capi1 > + 05(S,Ug) @ Cop1 >

=LiQE®RCys+U105®Cyi1>+Us®@S®Copy >

= L4 ® Copopq2 +U1 @ Copg1 > +Us @ Cop1,>.

d(Cory12k+1) = A(N @ C2py1.2k11)

= 03(N,Us3) ® Copi1,2k + 03(N,Us) ®@ Coypi2 k41
+ 03 (N, RyU1) ® Cpi1,> + 63(N, Us, RyUs) @ Coy. >

=Us®@N ®Corq12t +Us @ N ®Coryookr1 + U1 @ E® Coppr >
+ RyUs ® S ® Coyps

= Uy ® Cory19k + Uz @ Copq29k11 + U @ Copy1 940

146
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+ RyUs @ Cop .
d(Cort12k42) = Ad(E @ Corg1,>)
= 63(E, Ly) ® Copi1.9k+1 + 03(E,Uz) @ Copia >
+ 03(E,C35) ® Cgpi1 >
=Us@N R Cori10k41 + U2 @ E®Copqas + RyUs © S @ Coryr,>
=U3 ® Corq12k+1 + Uz @ Coryo 012 + RyUs @ Copyr >
d(Cary1,>) = d(S ® Cory1,>)
=01(9) ® Cory1,> + 65(S, Uz) ® Corya >
=Li@E®Cyt1>+U2®@5®Corqa>

=Ly ® Copp19p12 + Uz ®@Copyas.

When r = ¢, the states in consideration are Cy.41, at the bottom of Figure 5.10. The
only difference of the calculation of the daxy for these states rather than the calculation
of dymy (Cori1, £) above is that one substitutes the ‘downward’ arrow with the associated
algebra element Us for the algebra element Ry. This is exactly as was remarked in the
verification of the base case in Section 5.4.2. Since both of these algebra elements have
weight outside of the span {es, e4}, the changing U, for Ry in the above gives the required

result.

Continuing with the calculation, one has that:

d(Cs 2k+1) = d(N @ C5 op+1)
= 03(N,Us) ® Cs ok + 63(N, LoUs) ® Coci1,26+1 + 63(N, RyUp) @ Cs
+ 63(N, R4R3) ® So
=Us @ N®Cs o+ LoUg @ N ® Cocy1opy1 + U1 @ o35 E@ Cs
+ R4R3 ® N @ Say,
=Us ® Cs o + LoUs @ Cocy12k41 + 0@ Cs opq2 + RyR3 @ Sop,.
d(Cs 2k42) = d(E @ Cs )
= 05(E, Ly) ® Cs op41 + 03(E, LaUs) ® Cocy1,> + 65(E, R3) ® Sajiq
+65(E,C35) ® Cs >
=Us @ N ® Cs o1 + LoUs @ E ® Cocy1,> + R4R3 @ N ® Sopp

+ R4U5 ® S ® C>7>
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= Uz ® Cs gpy1 + LaUs @ Cocy1 242 + RaR3 ® Sop1 + RaUs @ Cs .
d(Cs5) =d(S® 05 5)
=61(8) ® Cs ~ + 05(S, LoUs) ® Coet1,>
—RyOWRCos + Li®E®Cs s + Lyl ® S ® Cocy1>
= R3 ® Sogq2 + Ly @ C5 op42 + LaUs @ Cocy1,>.
d(Sak41) = d(N ® Sop1)
= 63(N,Us) ® Sap + 03(N, L3Ly) ® Cs o, + 65(N, LgUs) ® C >
=Us@N®Sop +L3La@NRCs 0, +Us W R Cs
= Uz ® So, + L3Ly ® Cs o1, + Us @ Sopyo.
d(Sak12) = 03(W, R3) @ Sap11 + 03(W, Ly) ® Cs ap11 + 83 (W, LaUs) @ Coey1 >
+63(W,C14) ® Cs >
=Us @ N ® Sopt1+L3Ly @ N @ Cs o1 + LoUs @ 0 ® Coeqq>
+ L3U1 ®@ Ing5 - S®@ Cs >
=Us ® Sopy1 + L3Ly @ Cs 011 + 0@ Cs >

=Us ® Sop41 + L3Ly @ Cs op41-

5.4.4 Calculation for N3 XAN? XY

As before, the only elements that have slightly more complicated maps in the Type D
structure to calculate are those at the end of the strand, or equivalently the right hand

side of the diagram. The calculation is similar to the above.

d(Agk+2) = d(N @ Aggy2)
= 65(N,Us) @ Aggr1 + 05(N, L3La) ® Dojy1 + 65(N, LsUs) © As
+ 03(N, RsR4U1) ® C »
=Us®@N® Agg11 + L3La @ N Q@ Doy 1 + U1 @ W @ As
+RsU1 @ E®Ch >
= U3z ® Agpt1 + L3Ly @ Dopy1 + Uy ® Agpyz + RsUr ® C1 ojt3-
d(Aoky3) = 65(W, Lg) ® Dojyo + 63(W, Rg) ® Agkya + 63(W, Cys) @ As
+63(W, R3, RsRqUy) ® C1 >

=L3Li ® N ® Dopio+Us ® N® Agjyo+ L3Us @ S® A
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+ R5RyU1 ® S ® Cl,>

= L3L4 ® Dojyo +Us ® Agpyo + L3Us @ A + RsRyU1 ® C >

d(Dajr2) = d(N & Dojy)
= 03(N,Us) ® Dajy1 + 03(N, RyR3) @ Aggy1
=U; @ N ® Dopy1 + R4R3 @ N @ Aggyq
=Uy ® Dojy1 + R4R3 ® Agjy1.

d(Dak13) = d(E® As)
= 65(E, L1) ® Dygya + 05(E, R) ® Agpys + 65(E, C13) © As
=U3s @ N ® Dajyo+ RiR3 @ N @ Agpyo + RyU1 @ S ® A
=Us @ Dagyo+ RyR3 @ Agpyo + RyUy @ A

d(As) =d(S ® As)

= 61(5) @ As
=LiOERA-+R3 W ® A
= L4 ® Dopy3 + R3 ® Agpys.

d(C1or+2) = d(N @ C1 2142)

= 03(N,Us) @ C1 o11 + 05(N,Us) @ Caop42 + 05 (N, RyUs) @ C1 ~

+ 03(N, L3Ls) ® As
U4 @N®Clopi1 +Us N ® Cogpra +Us ® E® Cs
+LsW®As
=Us ® Cr o141 + Uz @ Coppq2 + Us @ C 9p43 + Ls @ Agjys.
d(Ciok+3) =d(E® C1>)
= 05(E, L1) ® Chok12 + 6(E,Us) ® Cy 5 + 83(E, C13) @ C1 >
+063(E, Ly, L3Ls) @ As
=U3sQN®@Ciopt2+ U2 Q@E®Cys +RiU; © S®Ch >
+ L3l @S ®As
= Us @ Chopsz + Us ® Coopys + Ryl ® Crs + LaLs @ As.
d(Ch,>) =d(S® (1)
= 61(8) @ C1,> + 65(5,Uz) ® Ca >

=LiERC > +U05®Cys
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=Ly ®@Cropy3 + Uz @ Co .
d(Corpit2) = d(N ® Cop2k42)
= 63(N,U3) ® Copap1 + 05 (N, U1) ®@ Copi1 2k + 63(N, Ug) ® Cor_1 2k42
+ 63(N, RyUs) ® Cy. >
=Us @ N ®Corppy1 + U1 @ N @ Cory12k42 +Us @ N ® Cop—1 2542
+Us @ E®Cy >
=Us ® Copap41 + U @ Copp 242 + Us @ Cor_1 242 + Us @ Cop 2p43-
d(Corok+3) = d(E ® Car,>)
= 63(F, Ly) ® Copopro + 05(E,U1) @ Copy1> + 05(E,Us) @ Cop_1.>
+65(E, C13) ® Cor>
=UsQ@N®Coyopt2+t U1 @ EQ®@Corp1,> +Us @ E® Copo1 >
+ RyUL ® 8 ® Cars
= U3z ® Cop k42 + U1 @ Corp12k43 + Us @ Cop_1 op43 + RalUy @ Cop >
d(Cor>) = d(S ® Cor )
= 61(9) ® Car> +65(5,U1) ® Cory1,> + 05(S,Us) ® Cop1.>
=LQE®Coys+U1 ®S®Coprs +Us @5 Copi~
= L4 ®Coropt3+ U1 ® Cop1> +Us @ Cop1 >
d(Cort1,2k42) = A(N ® Copy1 2k42)
= 03(N,Us) ® Cori1,9%4+1 + 63(N, Uz) ® Corio op42
+ 63(N, RyUs) ® Cory1,> + 05(N, Us, RyUs) @ Cap,>
=Us®N ®Corq12641 + U2 @ N ® Coryook42 +Us @ E® Copyr >
+ RyUs ® 8 ® Car»
=Us ® Copp192k4+1 + Uz ® Cory2 042 + Us @ Copy1 2543 + RaUs @ Cop >
d(Cory1,2643) = d(E @ Corg1,>)
= 03(E, L) ® Copi19k42 + 63(E,Uz) @ Copia s + 05(E,C13) @ Copin >
=Us®N®Cyri12k+2 + U2 @ E® Copyo > + RiU1 @ S ® Copi >
= Uz ® Copq12k+2 + Uz ® Copy2.9k43 + BaUr @ Copy1 >
d(Cort1,5) = d(S @ Copy1,>)

=61(8) ® Capy1> + 05(S,Uz) @ Copia s
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=Li®E®Cyi1>+ U @S5 ®Copya>

= L4 ® Copp19p43 + Uz @ Corgas.

As before, the difference between the calculations for Co.y1 ¢ and Coy41¢ where 1 <7 < ¢
is simply changing the role of Uy and Rs. Since the weight is outside the region of the
strands present in the crossing, these algebra elements commute with the map 63. So the

calculation will continue with C , and Sy.

d(Cs 2k42) = d(N ® Cs 2p12)
= 05(N,Us) @ Cs g1 + 03 (N, LaUs) ® Coci1 242
+ 03(N, R4R3) @ Sapi1 + 05(N, RyUs) @ Cs
=U; @ N ®Cs op+1 + LoUs @ N @ Cocq1 2k+2
+ R4R3 @ N @ Sop11 + Us @ EQ O
= Uy @ Cs gp41 + LoUg @ Coeq1 pp42 + RaR3 ® Sopt1 + Us @ O op43.
d(Cs 2k43) = d(E® C )
= 05(B, Rs) ® Sapy2 + 03(E, L1) ® Cs ppeya + 83(E, LoUs) ® Coera >
+03(E,C13) ® Cs >
=R4R3 @ N ® Sop12+ Us @ N ® Cs g2 + LoUs @ E @ Cocq1,>
FRUL®S®Cs s
= R4R3 ® Sopqo + U3z ® Cs g2 + LoUs @ Cocy1,9k43 + RyU1 @ O 5.
d(C55) =d(S®Cs 5)
=01(S) ® Cs > + 65(S, LoUs) ® Coct1,>
=R3OWRCos+LiQERCs s + LoUg @ S®Cs »
= R3 ® Sopy3+ L4 @ Cs op13 + LalUs @ Cocyy >
d(Sok+2) = d(N @ Sap2)
= 63(N,Uy) ® Soi1 + 063(N, L3Lg) @ O 2141
=U3®N ® Sopq1 + LzLs @ N @ Cs 2541
= U3 @ Sopy1 + L3Ly @ Cs op41-
d(Sak13) = d(W ® Cs )
= 03(W, L4) ® Cs apr2 + 63(W, R3) @ Sopy2 + 63(W, LaUs) ® Coci1,>

+ (5%(W, 045) X C>7>
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=L3Ls @ N ®Cs opy2 +Us @ N @ Sopqo + LoUs @ 0 ® Coeq1,>
+ L3U5 ® S ® C>7>

= L3Ly ® Cs o402 + Us @ Sopqo + L3Us @ O .

This completes the calculation of the Type-D structure (AM? RAN3 XY, d), and note that
this agrees with the weighted, directed graph in Figure 5.10. Hence, since the calculation
started from the inductive assumption that Por1 held, one has that Pogy1 = Pogrg1)41-
Thus, by mathematical induction, the Type D structure of (N 3)2b+1 X X is as described

by Figure 5.10, completing the inductive proof.

Remark 5.4 Note, the behaviour of the Type D structure does not depend on b or c,
merely the dimensions of the weighted, directed graph. As will be determined later, the
numerical invariants extracted from C(D) will depend on whether b < ¢ or b > ¢, but the

Type D structure determined in Figure 5.10 does not.

5.5 The third set of crossings

The next step in determining the Type D structure associated to the special upper knot
diagram of three strand pretzel knots — shown in Figure 5.1 — is to take the box-tensor
product of the Type D structure yielded above and 2a copies of the D A-bimodule P°. The
bimodule P? for a positive crossing has already been considered: it is merely a relabelling

of the bimodule P!.

As noted by Ozsvath-Szabé in the definition in [49], algebra elements with weights outside
of the set span{es, eg} commute with the map 5,%. Furthermore, since a crossing between
the fifth and sixth strands is at the ‘edge’ of the knot diagram, and so incident to the
exterior region also incident to the global maximum, it is enforced by the truncation of
the algebra that 6 does not belong to the idempotent of any generator of the Type D
structure or D A-bimodule. Hence, the permissible generators in the PP° tensor coordinate

are N, W and S, since the generator E would have 6 in its incoming idempotent.

This simplifies the calculation, as does the fact that the D, C' and S-states only have a

non-zero tensor product with one element of the set {N, W, S}.

Specifically, since the generators C;; shown in Figure 5.8 have associated idempotent I35,

one must have that the P-tensor coordinate in any product with I35 - C;; must be I35 -
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AR 12 L

Figure 5.11: Diagram depicting some of the categories into which Kauffman states cor-
responding to generators of (775)2a XY may lie. States with > as an index indicate that

the marked point in the vacant interior region lies ‘below’ the current upper knot diagram.

N - I135. Likewise, the states of type S and D have associated idempotents I123 - D; and
I345-SE. As a consequence, the only non-zero tensor product in which these states appears

are I123 - S - I1o3 ® I123 - Dj and I35 - N - I345 @ I345 - Sk

Denote the Type D structure (N 3)2b+1 XX by Y. The possible states and their associated
idempotents in (775)2a XY are displayed in Figure 5.11, where the indices in A, B;; and
C;j denote the position of the marked points in the two interior regions. Where only
one index is present — for example in the case of D, — the index gives the position
of the marked point in the region interior region that is not a value in the associated

idempotent.

The states that gain an extra index are the B, states and Aj;. Hence, if one were to
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describe the associated Type D structure as a weighted directed graph as in Figure 5.10,
the B-states and A-states would now be squares of two dimensions, rather than lines of
one. Such a graph is difficult to display, and it is simpler to describe the Type D structure
separately based upon the type of state to which the map d in (775)& XY is applied.

5.5.1 C-states and S-states

The C-states, since they have only one permissible tensor product with P> have a form
that is easy to determine inductively. Let P be the statement that the states Cj; and
S; in the Type D structure (735)21c XY have maps as displayed in Figure 5.12. The D A-
bimodule (P5, 5%) is defined exactly as in Section 4.4.2, noting that elements with weights

outside of the strands concerned commute with the maps.

Base case: £ =1

As in the calculation presented in Section 5.4.3, the arrows for the states Cj; depend on
the parity of 4 and j, and differ at the end of the strands. So, in P° XY, one has the
following.
d(N ® C11) = d(C11)
= 63(N, LsUs) © By + 63(N, Ls) ® Az + 63(N,Uy) @ Ciy
+ 63(N,Us) ® Cyy
=UsUg W @B +Us @W ® Ay + U1 @ N ® Cl2
+ Uz ® N ® Oy
= U3Us @ B11 + Us @ A1 + U1 ® C12 + U2 ® Ca.
d(N ® Cy2,) = d(C1 2/)
= 63(N,Us) @ Cy2r—1 + 63(N, Ls) ® Agpi1 + 05(N,Us) ® Cr.9011
+ 63(N,Uz) ® Caar
—Us@N®Cror 1+ Us @W ® Agpy1 +Us @ N ® Chori1
+ U@ N ® O
=Us®Cror—1+ Us ® A31 + Us ® C1 2741 + Uz @ Ca 2.
d(N ® C12r41) = d(C1 2r41)
= 63(N,U3) ® Cy.9r + 03(N, Ls) @ Agyyo + 05(N,Up) @ C1 212

+ 5% (Na UQ) & C’2,2r—s—1
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=UsQN®RCi12 +Us @W ® Agpi2+ Ui @ N @ C 2742
+ U ® N ® Ca,2r42
=U3® Cr2r +Us ® Agpyo + U1 ® Cr2r42 + Uz @ Co 94 1.
d(N ® Ci2641) = d(C12p41)
= 63(N,Us) @ Chop + 03(N, L3 Ls) @ As + 65(N, RyUy) ® Cy ~
+63(N,Uz) @ Co 9p41
=Us@N®Ciop+ L3Us @W ® As + RyU1 @ N @ C >
+ U2 @ N @ Co 9541
=Us®@Ciop+ L3Us @ As 1 + RyU1r @ C1 > + Uz ® Ca 9p41.
d(N ® Copy1,>) = d(Cop41,>)
= 63(N, Ly) ® Oz 119511 + 03 (N,Us) ® Copro~
=Li®N ®Copy19641 + U2 @ N @ Copyo >
= L4 ® Cop1,2041 + Uz @ Copya .
d(N @ Ca,1) = d(Cap1)
= 63(N, LsUs) ® Bo, + 63(N,Us) ® Cor—11 + 63(N,U1) @ Cay2
+03(N,Uy) @ Copin
=U3Us @W @ By, +Us @ N @ Cgp—1,1 + U1 @ N ® Cor 2
+ U1 @ N ® Cori11
= U3Us @ Bor +Us @ Cor—1,1 + U1 @ Cop2 + Uy @ Copg11-
d(N ® Car2,) = d(Cap2r)
= 05(N,Uy) x Cap9r—1 + 05(N,Us) @ Cap_1.2r
+ 63(N,Us) ® Cagor1 + 03 (N, Ur) @ Cop1,2r
=Us®@N®Coar1+Us @ N®Co12- +Us @ N ® Cop 41
+ U1 @ N @ Copy1,2r
= Uy ® Copr—1 + Us @ Cop—1,2r + Us @ Cop2r11 + Up @ Copy12r.
d(N ® C22r+1) = d(C2¢2r41)
= 05(N,U3) ® Capar + 03(N, Us) ® Cog—1,2741
+ 05(N,U1) @ Caparia + 65(N,U1) @ Cops1.2r41

=Us @ N ® Copar +Us @ N @ Cop—1,2r41
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+ U1 @ N ®Coporyo+ Ui @ N @ Copy1,2r41
= Uz ® Cop2r +Us @ Cop—1 2r41 + U1 @ Copor42 + U1 @ Copg1,2741-
d(N @ Copop+1) = d(Cap2p41)
= 05(N,U3) ® Cagap + 65(N,Us) @ Car—1,2p41
+ 83(N, RyU1) ® Ca,» + 63(N,U) ® Copi1.264+1
=Us®@N ®Copap+Us @ N @ Cop_1,9p+1 + BaUs @ N ® Cop
+ U1 ® N ® Cop41,2041
= U3z ® Copp + Us @ Cop—1,2p+1 + RaU1 ® Cop > + Ur ® Copy1,2p41-
d(N ® Cy~) = d(Car,>)
= 63(N, Lq) ® Cop2p11 + 63(N,Ug) @ Cop—1 > + 63 (N,U1) @ Copy1>
=Li®N®Coopi1 +Us N ®@Cop1>+U1 @ N ®Copy1 >
= L4 ® Copopy1 +Us @ Cop_1> + Uy @ Copy1>.
d(N ® Cop41,1) = d(Cop41,1)
= 03(N, L5U3) ® Baer1 + 03(N,Us) @ Cars
+ 05(N,U1) ® Copy1.0 + 05(N,Usz) ® Cpy21
=UsUs @ W @ Boyp1 +Us @ N ® Cop 3+ U ©® N @ Copy12
+ Uz @ N® Coia1
= U3Us @ Bapr11 +Us @ Cop3 + Ui @ Copy120+ Uz @ Copya .
d(N @ Copt1,2r) = d(Copt1,2r)
= 03(N,Us) ® Copy1,20—1 + 03(N,Us) ® Capri2
+ 05(N,Us) @ Copy1.9r+1 + 05(N,Us) @ Copy.9r
=Us @ N ®Copq19—1 +Us @ N ® Copop12 +Us @ N ® Copy1,274+1
+ Uz @ N ® Copy22r
= Uy ® Copy12r—1 +Us @ Copry2 + Us @ Copy1,2041 + Uz @ Coppn.2p
d(N ® Copy1,2r41) = d(Copt1,2r41)
= 65(N,Us) ® Copy1.2r + 03(N,Us) ® Cop 2943
+ 63(N,U1) ® Copi1,2042 + 03(N,Us) @ Copy22r41
=U3 @ N ® Copy12r +Us @ N @ Cop 243+ Ui @ N @ Copy1 2742

+ Uz @ N ® Copq2.2r41
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= U3 ® Cop1,20 + Us @ Cop2r42 + Ur @ Copp1,2r42 + Uz @ Copgo9r41-
d(N ® Copy1,26) = d(Cap41,2p)
= 03(N,Us) ® Capy1,20-1 + 63(N, RyUs) ® Caq >
+ 03 (N, Us) @ Capy1.20+1 + 63(N, Uz) @ Coyra9p
=Us® N ® Copy190-1+ RaUs @ N ® Cop~» + Us @ N @ Copyq 2641
+ Uz @ N @ Copqa.2
= Uy ® Copy10p-1 + RylUs @ Cop > + Us @ Copy1,0p11 + Uz @ Coppa 2
d(N @ Copy1,2b41) = d(Copg1,2041)
= 03(N,Us3) ® Copi1.96 + 63(N, RyU1) @ Copy1 >
+03(N,Uz) ® Capy2.0p41
=Us® N ® Copq19 + RiUp @ N ® Copp1> + Uz @ N ® Copio2641
= U3z ® Cop1,20 + RaUr @ Copq1> + Uz @ Copyo 9p41-
d(N ® Cop41,5) = d(Copg1,>)
= 65(N, Ls) ® Copy1,9541 + 05(N, Uz) ® Copya >
=Ls® N ®Copr19p41 + U2 @ N @ Copy0 >

=Ly ® Copy10p41 + U2 @ Coppa >

As in the inductive proof presented in Section 5.4.3, the only change in the above calcula-
tion when ¢ = ¢ is switching Us for Rs. Since the weight of both elements is outside of the
span{es, e}, both commute with the map 04 (N, —), so a practically identical calculation
to the above yields the following.
d(Cacy1,1) = UsUs ® Bacy1,1 + Us @ Coc 3
+ U1 ® Cocq12+ Ro®@Cs 1.
d(Coct1,2r) = Uy @ Cocq1,2r—1 + Us @ Cocor42
+ Us @ Coct1,2r+1 + Ro @ O o7
d(Coct1,2r+1) = Uz @ Cocy1,2r + Us @ Coc2r 43
+ U1 ® Cocq12r42 + Ro @ Cs 2p41.
d(Cacy1,20) = Us @ Cocy100—1 + RalUs @ Coc >
+ Us @ Cocq1,2041 + B2 @ Cs 9

d(Cocy1,2041) = Uz @ Cocq1.26 + RalUs ® Cocq1,> + Ro @ Cs opg1.
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d(Cocy1,>) = Ly @ Coc12p+1 + Ro @ Cs .

Continuing with the calculation, the map for the states C j and S}, is very similar.

d(N®Cs 1) =d(Cs 1)
= 03(N, LsUs) ® Bs + 03(N, LaUs) ® Coci11
=UsUs @ W @ B> + LaUs @ N ® Cocq1,1
=U3Us ® B> 1 + LaUs ® Cocy1,1-
d(N ® Cs ) = d(C> 2r)
= 63(N,Us) ® Cs 21 + 03 (N, LoUs) @ Cocr1.2r
+ 03(N,Us) @ Cs 941 + 05(N, R4R3) @ Sor_1
=Us@N ®Cs 9r—1+ LoUs @ N @ Coci1,2r + Us @ Cs 2r41
+ RyR3 ® N ® Sop—1
=Us ®Cs 2r—1 + LaUs @ Cocy1,2r + Us @ Cs 2741 + R4R3 @ Sop_1.
d(N ® Cs 2p41) = d(Cs 2741)
= 63(N,U3) ® Cs 2y + 05(N, LoUs) ® Coet1.2r+1 + 03(N, R4R3) @ Say
=Us®@N ®@Cs 2+ LoUs @ N @ Coy1,2041 + RaR3 © N ® Sop
=U3z @ Cs 9y + LoUs @ Coci1,2r4+1 + RaR3 @ Sop.
dN®Cs 5) =d(Cs 5)
= 05(N, Ls) ® Cs gy41 + 03(N, LeUg) ® Cocir,> + 03(N, R3) ® Sopi
=L @N®Csop41 + LoUs @ N @ Coeq1,> + R3@ N ® Sopqq
=Ly ®Cs gp41 + LoUs @ Cocy1,> + R3 @ Sopy-
d(N ® S1) =d(S1)
= 03(N, L3L4L5) ® B> + 03(N,Us) ® So
=L3LUs @ W ® B +Us ® N ® So
= L3L4Us ® B> 1+ Us ® Sa.
d(N ® Sa,) = d(S2;)
= 63(N,Us) ® Sar—1 + 65(N, L3L4) ® Cs 21
—Us @ N® Sor_1 + L3La @ N ® Cs 0y

=U3 ® Sop—1+ L3Ls @ Cs 2p_1.
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d(N ® Sarq1) = d(S2r41)
= 85(N,U1) ® Sar + 05(N, Ly L) @ Cs. o7 + 63(N, Us) © Sar4
— Uy ®N @Sy + LyLa ® N @ Coor + Us © N © Soso
=Uy ® Sop + L3Ls @ Cs 2 + Ug @ Sorq2.

d(N @ Sap+1) = d(S2p+1)
= 03(N,Uy) ® Sop + 03(N, L3Ly) @ Cs 9 + 65(N, L3Us) @ O =
=Us ®@N @S9+ L3Ls @ N ®Cs 9p + L3Us @ N ® Cs »

=Us® Sop + L3Lg @ Cs 95 + L3Us @ Cs .

The above calculates the map d for the Type D structure P°XY with domain in the states
Cjj or Si. In order to complete the base case, one must take the box-tensor product with
P> a second time. But, note that every algebra element a € A appearing in d : PP RY —

A®P5XY has only integer weight in span{es,eg}.

Then, observing that since all of the states I135- B; 1, I235- B> 1, I135- C;j and I345- S, have
5 in their associated idempotents, the P°-tensor coordinate in P° X (775 X Y) must be V.
Hence, since in P° only algebra inputs a € A of half-integer weight result in N — W or
N — E, it is clear that the image of d for the states above must fix N in the P° tensor
coordinate. So the effect of taking the second tensor product with P° is to simply swap
Us and Ug. This yields a Type D structure matching that in Figure 5.12, and so P;, the

base case, holds.

Induction

Assume for inductive purposes that the statement Py, is true, so that the Type D structure

(735)% XY has maps and states as shown in Figure 5.12.

Then, the same argument can be applied as when studying the base case. Since all of the
states shown in Figure 5.11 have 5 in their idempotent, the only generator of P° to produce
a non-zero tensor product under taking the box-tensor product of the D A-bimodule and

Type D structure is V.

Since there are no algebra elements featuring Ls, R5, Lg and Rg, every algebra element
commutes with the maps 1, switching the role of e5 and eg. Then, taking the box-tensor

product with P° twice thus leaves the module and associated map unchanged, hence
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T35 . Loy Q I35
Ke
O @ @

Figure 5.12: This is a weighted, direted graph demonstrating the maps from Ci; and Sy,

Y

states in the Type D structure (735)% XY, where k> 1.
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Pop, = Poyio. Consequently, the statement P, is true by mathematical induction.

5.5.2 A-states and D-states

As seen when calculating the map in the Type D structure with domain in the Cj; and
Sk states, since 5 does not belong to the idempotent of I134 - A; € (Y, d), there is more
than one valid cardinal generator in P° that yields a non-zero tensor product in P° X Y:
namely Ii35- W - I134 and I134 - S - I134. But, as noted above, this is not the case for states

I193 - Dy, which only has a valid tensor product with I193 - S - I123.

The generators for Type D structure for (P5)2k®Y that are Aj;, and Dy, states are featured
in Figure 5.14, with the associated maps and algebraic elements. So, define Py as the

statement that the maps and generators are as displayed in Figure 5.14.

Base case: k=1

The Type D structure P5 XY has the following generators that are either Ajj, states or

Dy, states: i.e. have either A; or Dy, as their Y-tensor coordinate.

Aj,> =134 S ® Aj
As > =T - S® As

Dy, = I123 - S ® Dy,.

Then, the calculation of the map d in the Type D structure P> XY is as follows.

d(A11) = 63(W,Us) ® Ay + 63 (W,UrUs) @ By + 6{(W) © A,

+ 85 (W, RsUy) ® Cha

=Us@W @A+ U1Us @W @ B1 + Ls @ S @ A4
+ U1 ® N® Cqo

=Us® A1 + U1Us @ Bi1 + Ls ® A1 + U ® Cha.

d(Agy 1) = 63(W,Us) @ Agy—1 + 03(W, L3 L) @ Dop—1 + 63(W,U1) @ A9yt

+05(W, RsU1) © Ci ap 41 + 61 (W) @ Agy

=Us@W @ Agr1+ L3Ly @ 135 - W ® Do 1 + U1 @ W @ Agpi1

+U1 @ N ®@Cror1 + Ls @5 ® Ay,
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=Us®Ag11+0® Doy + U1 @ Agpy11
+ U1 ®Crar41 + Ly @ Aoy >
d(Agri11) = 63(W,Uy) ® Agy + 63(W, L3Ly) @ Doy + 63(W,Us) @ Agyia
+ 03 (W, RsU1) @ Chap41 + 61 (W) ® Agypiq
=Us QW ® Ay +0® Doy + Us @ W ® Aopia
+UL@N®@Cror42+Ls @5 ® Agppy
=Us® A1 +Us® Agpy21 + U1 @ Crorqo + Ls ® Agpy1 .
d(Agyy11) = 05(W,Us) ® Agy + 63(W, L3Us) @ As + 05 (W, RsRyU1) ® O ~
+ 01 (W) ® Agpa
=Us QW R Ay + L3Us @ W @ As + RyU1 @ N ® C1 >
+ Ly ®S® Aoyt
=Us® Agp1 + L3Us @ As 1 + RyUy @ C1 > + Ls @ Agpi1 >
d(As 1) = 63(W, R3) ® Agpi1 + 65(W, Ls) ® Dopiq + 61 (W) ® As
=R3Q@W @ Agpp1 + La @ W @ Doy + Ls @ S @ A
= R3® Agpy11 +0® Dopyq + L5 @ As.
The matching terms in the outgoing algebra of the Type D structure are C14, Cog and Css.
These are algebraic inputs to the maps 63(S, —), and so one yields the following.
(A1) = 05(S,U1Us) © Bi + 05(5,Us) @ Az + 6,(S, RsU1) @ Chg
+65(S, Cag) ® Ay
=U1Us050B1+Us @134 - S®@ A+ 0® C1a+ RsUs @ W ® Ay
=U1Us® B> +0® Ay > + R5Us ® Any.
d(Agy~) = 05(S,Us) ® Agp_1> + 63(S, LaLy) @ Dap_1 4+ 63(S,U1) ® Agpi1
+85(S, R5U1) ® C1.9741 + 63(5, Ca6) @ Agy
=Us®@S® Agy 1+ LsLy ® S® Dop_1 + U1 ® S @ Aoriq
+0®Cror41 + RsUs @ W @ Ay
=Us® Agr—1> + L3Ly @ Dop_1 + Uy @ Agpi1 > + RsUs ® Aoy 1.
d(Azri1,>) = 05(S,Us) @ Aoy + 65(S, L3Ly) ® Doy + 65(S, Us) ® Agrio
+ 32(S, RsU1) @ Ch2r12 + 05(S, Cag) @ Agyiy

=Us®S® Agp + L3Ly @S ® Doy + I134-Ug @S @ Agyio
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+0RCraorq2+ RsUs @ W @ Agppq
=Us ® Agr> + L3Ly ® Doy + R5Us ® Agry11-
d(Agpi1,>) = 63(S,Us) ® Agp + 03(S, L3 L) ® Doy + 55(S, Cag) ® Agpi1
=UsR@S® A+ L3Ls ® S R Doy + RsUs @ W ® Agpiq
=Us® Agp > + L3Ly @ Doy + RsUz @ Aopiq 1.
d(As ) = 62(S, Rs) @ Asyi1 + 65(S, L) @ D1 + 83(S, Cag) @ As
=R3®S®Aspt1 + Ly @S ®@ Dopy1 + RsUs @ W @ A
= R3® Aopy1,> + Ly ® Dopyq + RsUs @ A 1.
d(Dy1) = 65(S, RyR3U1) @ By + 65(S,U1) © Do
=RiRsU1  S®B1+U;1 ®S® Dy
= R4yR3U; ® B1 > + U1 ® Ds.
d(Day) = 63(S,Us) ® Dar_1 + 03(S, RaR3) ® Agy—1
=Us®S5®Dar—1 + R4R3 @5 @ Agr1
=Us ®Dop1 + R4R3 ® Aop_1>.
d(Day11) = 63(S,Us) © Doy +63(S, Ut) @ Dayya + 63(S, RaR3) @ Agy
=U3®@5® D2 +U1 ® S ®Dapyo+ RiR3 @S @ Agy
= U3 @ Dy + Uy @ Doy o+ RiR3 ® Aoy~
d(Doyr1) = 03(S,Uz) @ Doy + 02(S, RyUL) ® As + 03(S, RyR3) @ Ay
=Us®@5®Dyp+ RiU1 @S ®As + RyR3 ® S ® Ay,

=Us ® Doy + RyUs @ As ~ + RyR3 ® Agy.

This does not yet verify the base case, but do note that because of the idempotents I134
associated to states A; -, the ‘horizontal” arrows in the picture differ between the bottom

Tow Ajl and Aj’>.

Taking the second tensor product with P°, and noting that if 5 € I, for any associated
idempotent with a generator of the Type D structure (735) XY, the only non-zero tensor
product would be with the generator N € P°. Hence, the module (775)2 XY has the

following generators.

Apt = Iizs - N @ Ay

As1=Ts - N®As
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Ao =T135- W ® Ap »
Ass =Ty - S®As >

D, = I23- S ® D;.

The corresponding map d for the Type D structure (775)2 XY are then as follows.

d(A11) = 63(N,Us) ® Agy + 63(N, U Uy) @ Byy

+03(N,Ls) ® Ay~ + 65(N,Up) ® C1a

=Us @NQ@An +U1Us@NQ@B1 +Us QW ® A >
+U;1 ® N ®Cy2

=Us ® Ag1 + U1Us ® Bi1 + Us @ A12 + Uy @ Cha.

d(Azp1) = 05(N,U3) @ Agy_11 + 63(N,U1) ® Agpi11

+83(N,U1) © Cr2041 + 03(N, Ls) © Agy. >

=Us@N®Agr—11+ U1 @ N ® Agry11
FULON®Chors1 +Us ® W ® Agy»

=Us ® Agr—11 + U1 ® Agr 11 + U1 @ Crorq1 + Us @ Aoy 2.

d(Agri11) = 03(N,Uy) @ Agpy + 63(N,Us) ® Agpio1 + 05(N,U1) @ Crorta

+03(N, Ls) @ Agyy1 >

=Us@N® A1 +Us @ N ® Agpin1 + U1 @ N @ Ch 2742
+Us @ W ® Agpp >

=Us® A1 +Us ® Agryo1 + Ui ® Cror42 + Us @ Agpi1 0.

d(Agpi11) = 05(N,Us) ® Agp1 + 63(N, L3Us) @ As 1 + 05(N, RyU1) @ Cy ~

+83(N, Ls) ® Agpy1,>

=Us@N @ Agp1 + L3Us @ N @ As 1 + RyU1 @ N @ C >
YU ®W © Agpyrs

=Us® Agp1 + L3Us @ A 1 + RyU1 @ C1 > + Ug @ Agpi1 2.

d(As 1) = 63(N, R3) @ Agpi1,1 + 03 (N, Ls) ®@ As. >
=R3QN Q@ Agp11 +Us QW @ As >
= R3 ® Agp11 + Us @ As 2.
d(A12) = 63(W,U1Uy) ® Bys + 63(W, RsUs) ® A1y + 61(W) @ Ay >

164
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=UUs W B> +U@N®@A1 +Ls @S ® A1~
=U1Us @ B1a + U ® A1y + Ls @ Ay .
d(Ags2) = 63(W,Us) ® Agy_1,> + 03(W, L3L4) ® Doy_1 + 63(W,U1) @ Agyi1 >
+ 03(W, RsUs) ® Azy1 + 61(W) ® Agy, >
=Us@W R Agp_15> +L3Ly @W @ Dop1 + U1 @ W ® Aoy >
+U2®@ N ® Az + Ls @ S @ Agy>
=Us®A2r12+0R Doy 1 + U1 ® Aopi120+Us ® Aoy 1 + Ls ® Aoy .
d(Asry1,2) = 03(W,Us) @ Agys + 03 (W, L3 Ls) ® Doy + 63(W, RsUs) ® Aoyi11
+ 01 (W) ® Agry1>
=Us@W R Asp > +0®@ Doy + Uy @ N ® Agpyi1
+Ls®S® Agyy1>
=Us ® Agpp +Us @ Agpy11 + Ls @ Aoy >
d(Asgpi1,2) = 63(W,Us) @ Ay~ + 63(W, Ly La) @ Doy + 03(W, RsUs) @ Agpy11
+ 61 (W) ® Agpy1,>
=Us@W @ Agp > + 0@ Doy + Uz @ N @ Agpy11
+Ls @S ® Ayt
= Uy ® Agpa + Uz ® Agp11 + Ls @ Agpyq >
d(As 9) = 63(W, R3) ® Agpy1> + 63 (W, RsUs) @ As 1 + 83(W, Ly) ® Dayiq
+o (W) @ As >
=R3QW @ Agp1>+ U2 @ N ® A5 1 +0® Dopy1
+L;0S®As >
=R3 @ Agpp12+ U2 @ As 1+ Ls @ A .
d(A1>) = 65(S, Ur1Us) ® By s + 65(S, Cs6) @ Ay + 63(S, RsUs, Us) ® A
=U1Us®S®@B1>+RsUs QW @ A1 > + RsUs @ N @ Aoy
=U1Us @ B1> + R5Us ® A12 + RsUz @ Aoy
d(Asr>) = 03(S,Us) ® Aor—1,> + 65(S, L3Ls) @ Dap—1 + 63(S,U1) ® Agpir,>
+ (5%(5, Cs6) ® Aoy >
=Us®S®Aw_1>+L3Ls @SR Do 1+ U1 ®S® Agpi1>

+RsUs @ W ® Agy >
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=Us®Azp1>+ LaLly @ Dop_1 + Uy ® Agpy1,> + RsUs ® Aoy 0.
d(Agyi1,>) = 63(S,Us) ® Asps + 63(S, LyLa) @ Doy + 63(S, Cs6) @ Aopi1,>
+ 048, RsUs, Us) ® Asyyn
Uy ®S® Agys + LsLy® S® Dgp + RsUs @ W @ Agyy1 >
+ RsUs @ N ® Agpia
= Uy ® Agr > + L3Ly ® Dop + RsUz @ Agpi12 + RsUs @ Agryo1.
d(Agpy1,5) = 65(S,Us) ® Ay > + 63(S, LaLy) @ Doy, + 65(S, C36) © Agpy1,>
+83(S, RsUz, L3Us) ® As 1
=Us®S® A+ L3Ls®S® Doy + RsUzs @ W @ Agpi1,>
+RsL3Us ® N @ A
= Uy ® Agp > + L3Ly @ Doy, + RsUs @ Aopy10
+ RsLslUs ® Aoy,
d(As =) = 03(S,Cs6) @ As ~ + 05(S, R3) ® Agpy1> + 63(S, Ls) ® Dapiy
=RsU3@W @A > + R3®5® Agpy1,> + Ly @S @ Dopyy
= RsU3s @ As 2+ R3 @ Agpy1,> + La @ Dopy .
d(Dy) = 63(S, R4R3U;) ® By~ + 03(S,U1) ® Dy
= RyRU1 ® S® B>+ U1 ®S® Dy
= R4R3U; ® B1 + U1 ® Ds.
d(Da,) = 63(S,Us) @ Dap_1 + 63(S, R4R3) ® Agy_y
=Us®8S®D2 1+ RiR3® S ® Agp 1
=Us ® Dyr—1 + R4R3 ® Aoy 1.
d(Dar41) = 65(S,U1) ® Daysa + 03(S, Us) ® Doy + 63(S, RaR3) @ Ag,
=U1®S®Doia+Us®S®@ Do+ RiR3 @S ® Ay
— Uy @ Dayio + Us @ Doy + RuRy ® As,.
d(Doyi1) = 02(S,U3) @ Dgy + 63 (S, RyUy) ® As + 63(S, RyR3) ® Ay,
=U305® Dy + Ry{U1 @ S® As + R4R3 R S ® Agy

=Us® Doy + RyU1 @ As > + RyR3 ® Agp.

As can be seen through checking Figure 5.14, this matches the required form for Type D

structures according to the inductive statement, and so the inductive statement is true for
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k =1, i.e. the base case P, holds.

Remark 5.5 Before continuing by making the inductive assumption, note that under tak-

ing the next box tensor product with the DA-bimodule P°, one would have that

d(Azry1,3) = d(W @ Agri1,>)
5 03(W, RsUs) ® A,

= U2 RN ® A2r+2,1~

This gives the red Us arrows highlighted in Figure 5.14.

Induction

Assume for inductive purposes that Py holds, i.e. that that the Type D structure (P5)2k®

Y has the form specified in Figure 5.14 when restricting to A and D states.

The effect of taking the tensor product with (73)2 leaves all arrows at the bottom of
Figure 5.14 unaffected. This is because all of the gold states — those with associated
idempotent I35, see Figure 5.11 — only have a valid tensor product with N ® N in the

(735)2 tensor coordinate.

For every state Ay, with r < 2k—1, the only algebra elements with weights in span{es, es}
are Us and Ug. Since 5%(N, Us) = Us ® N, and (5%(N, Us) = Us ® N, taking the tensor
product with P° twice has no effect on this part of the Type D structure. More formally,
in the module
(P’ ((P)"®Y),

those generators with Ay, in the right tensor coordinate have maps to the other gener-
ators with the right tensor coordinate as described in Figure 5.14, since every arrow is
preserved (as 01(N,a) # 0 for the algebra elements a in Figure 5.14), and Us and Us

switch twice.

Furthermore, for the D-states, since the only valid tensor product is with S ® S, and
the arrows from the D states have weights outside span{es,es}, every algebra element
commutes with the map 65. Consequently, since By ~ € (735)2k+2 XY isequal to S® S ®
B, taking this tensor product twice yields identical generators with maps with identical

weights.
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Then, consider the states Ay o in (775)% X Y. Using the fact that d3(N, Ls) = Us @ W,
and that 63(W, RsUs) = Uz ® N, taking the tensor product with P> once has the same

effect as in the first part of the proof of the base case. Namely:

d(Aé’Zk) = d(N &® Agygk)
3 63(N,Ls) ® Ag~

=Us@W ® Aps = Us @ Apogi1.

The remaining arrows from this state exhibit the same behaviour as the other A;; states,
since all other algebra elements on the edges starting at the vertex corresponding to Ay

have weight outside span{es, eg}.

Likewise, for the states Agop+1 = W ® Ay, the only edges in Figure 5.14 with weight in
span{es,es} are the RsUs weighted edge to Ay g, and RsUs weighted edge to Agyqox—1.
Every other edge has an algebra element that commutes with d3. The only edges left to

consider are thus:

d(Apari1) = dW ® Ag>)
> 03 (W, RsUs) ® Agap, + 05(W, RsUs) ® Agyq1o—1 + 05 (W) @ Ags
=U3s@N®@Apor +U2@N®@ App1op-1+ L5 @S ® Ag >

=U3z® Apor + Uz @ Apy1 061 + Ls @ Ay >

Similarly, the same edges are of concern in the calculation of d(Ay ) for Ay~ = S® Ay~ €
PSX (735)% XY. The calculation is nearly identical in form to the calculation of (735)2 XY

from P° X Y. There are two cases, depending on whether / is even or odd.

d(Agri1,>) = d(S ® Agri1 )
> 65(5, C26) ® Agrs1,> + 03(S, RsUs, Us) @ Agpi2.2k
=RsUs @ W ® Agri1> + RsUz @ N @ Aoy io 0k
= R5Us ® Agpi12k41 + R5U2 ® Aopy2 0k
d(Agr>) = d(S ® Azr,>)
> 65(S, Ca6) ® Agyp>
= RsUs @ W @ Agy >

= R5Us @ Aoy oky1-
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All other edges from these vertices have weights outside the span where §' has an action

that does not commute with the algebra element.

The Type D structure for these states is then shown in Figure 5.13.

U Us ULy U

Figure 5.13: The weighted directed graph for the Type D structure showing the interme-
diate stage of the inductive proof of the statement Psy.

Continuing with the inductive proof, using the fact that the matching terms in the outgoing

algebra of the Type D structure (P5)2k+1 XY are now Ci4, Co5 and Csg, the maps

53(8,Cs36) = RsUs @ W
6a(W,RsUy) = Uy @ N

(N, Ls) =Us @ W

0 )
63(N,Us) = Us @ N
0 )

2(N,Us) =Us @ N,
applied within the tensor products d(As2k+1) = d(N ® Ay ok+1), d(Agokt2) = AW @A)

and d(Ag~) = d(S ® Ag~) yield the maps in the bimodule (P?)**** &Y, which matches

the form described in Figure 5.14.

So, Py, implies Psg12, and so by induction, since P holds, P, holds for all n € N. This

completes the determination of the Type D structure for these states by induction.

Remark 5.6 Note, applying Proposition 4.13, the algebra elements 1134 - RsUs - I35 and
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I134 - Us Ry - 1135 are equal because they have the same weight and idempotents. From the
original definition of 63(S, Cps) in [49, Sec. 8.2], the form given by Ozsvith-Szabd is that
the result is UyRs @ W € A® P>, But, in the above process p is either 2 or 3, and with
either value, UpRs = [I134, 1135, %65 +ep] = R5U,.

5.5.3 B-states

The remaining states to consider in the determination of the Type D structure for (735) Fx
Y are the B;, states. Using the recently proven equivalence between the Ozsvath-Szabd
bordered construction of [49] and the classical knot Floer homology in the formulation
of [60,62], Lemma 2.10 suggests that these are the states which may not lie in the kernel
of the chain complex C(D), where D is the diagram for P(2a,—2b — 1,2¢+ 1) with upper

knot diagrams as displayed in Figure 5.11.

Indeed, as will be shown, the maps d in the Type D structure (735)2’C XY starting at B;j-
states do have representatives with 1 as the associated algebraic weight. The behaviour of
these states is slightly more complex than can be easily seen in a weighted graph similar

to Figure 5.12 and Figure 5.14.

In light of this, using the forms for the states B;; as shown in Figure 5.11, the following
lemma determines the less interesting behaviour of the By states. Recall that d(X) 3 b®Y
denotes that there is some weighted edge from X to Y with weight b in the corresponding

graph for the Type D structure.

Lemma 5.7 Where By is of the form as described in Figure 5.11, the map d(Bjx) contains
the following terms.
d(B11) 21®C11 +1® A1+ Us ® Bi2 + Uz @ Bag.
d(B2r,1) 31® Cop + Ur ® Bari11 + Us @ Bayo.
d(B2r41,1) 21 ® Cor411 +1® Cop2 + Uz ® Bopya1 + Us @ Bary1,2 + Us @ Boyp.

d(Bact1,1) 21® Cocq11 +1®@ Coco + Ry @ Bs 1 + Us @ Bacq1,2 + Us ® Bae 1.

)
)
)
)
d(Bi2r) 21® A12, + Uz @ B1or—1 + Uz @ Ba gy + Us @ By op11.
d(B12r+1) 2 1® A12041 + Us ® B2y + Uz ® Ba 2p 11 + Us @ By 2r42.
d(B124) 21® A1 24 + Uz ® B12qg—1 + Uz ® By gq + Ls ® By >.
d(Bar,2p) 2 Us @ Bar—1,2p—2 + Uz ® Bayrop—1 + Ui @ Bari1,2p + Us @ Boropyi-
)

d(Barop+1) 2 U3 @ Bap—1,9p—1 + U3z ® Boyop + Ui @ Bari1,2p+1 + Us @ Bayopta.
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Us Us ULy  Us Uy

Us U, U U

UsLs
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1 N . .

S5

Figure 5.14: Weighted, directed graph describing the Type D structure for the module

Us

(775)2]C XY, where k > 1, restricting to the case where the domain is either an A-state
or a D-state. Red arcs are highlighted to show that they have slightly unusual behaviour

relative to the other maps.
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d(Bar2a) 2 Uz @ Boyp_1,2q—2 + Uz @ Boyoq—1 + Ui ® Boyy1,2q4 + Ls @ Bay .
d(Bar+1,2p) 2 U2 @ Bary1,2p—1 + Uz ® Bary2.2p + Us @ Boyy1,2p41 + Us @ Boy_1 2p.
d(Bar4+1,2p+1) 2 U3 @ Bary1,2p + Us ® Boryoopt1 + Us @ Barg1,2p42 + Us @ Baropy.
d(Bact1,2p) 3 Uz ® Baeqi1,2p—1 + Ro @ Bs o) + Us @ Bocy1,2p41 + Us @ Bacop.
d(Baet1,2p+1) 2 U3 ® Bacy1,2p + R2 @ Bs 2py1 + Us @ Bacy12p42 + Us @ Bacapi1.
d(Bar+1,2a) 2 Us @ Boyyi1,2a—1 + U @ Bopyo2q + Ls @ Borg1,> + Uy @ By og.
d(Bact1,2a) 2 Uz ® Bact1,20—1 + R2 ® B 24 + Ls @ Bacy1,> + Us ® Bac2a.

d(B1,>) 21® A1 > + RsUs ® Bi2q + U2 @ By .

)
)
)
)
)
)
)
)
d(Bar,>) > RsU3 @ Bar 1241 + R5U3 ® Bay g + Ur @ Bary1,>.
d(Bar+1,>) 2 RsUs ® Boyi1,2q + Uz @ Bopio > + Uy ® Bo, .
d(Bact1,>) 2 RsU3z @ Baeq1,2¢ + Ro @ B > 4+ Uy @ Bac>.
d(B>1)2>1®Cs 1+ Us ® B .
d(Bs2) 3 Ly ® Cact11 + Uz ® Bs 1 + Us @ Bs 3.
d(Bs 2r) 3 LoUs @ Bacy1,2r—2 + Uz @ Bs 9p—1 + Us @ B 2741.
d(B> 2r+1) 3 LaUs ® Bact1,2r—1 + U3 @ B 2r + Us ® B 212
d(B> 24) 3 LoUs @ Bacy1,2q4—2 + U2 @ Bs 24—1 + Ls @ Bs ~.
)

d(Bs >) 2 LaRsU3 @ Bacy1,2a—1 + Rs5Us ® Bs 2.

Proof of Lemma 5.7

The proof will be by induction, so let (Qo; be the statement that the Type D structure
(735)2t XY has maps as described by the above.

Base case: k =1

Using Figure 5.10, note that the idempotents associated with the B-states are Ii34 - B,
and Ip34 - B~. Similar to the determination of the maps for the states Aj;, in P>XY one

thus has only states

By1=1Ii35-W® B,
Br,> = 1134 S® B,
By =1I35-W® B>

By - =1x4-S® Bs.
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The map d for the Type D structure P° XY is then given by the following.

d(B1,1) 3 63(W,1) ® A1 + 63(W, R5) ® Cp3
+63(W,Us) ® By + 61 (W) ® By
=1oW®AI+1N®Chy
+U2@W ®By+ L5 ®S® By
=10A1+1®C1 +Us® B + Ls ® By >.
d(Bar1) 3 63(W, R5) ® Cop1 + 63(W,U1) @ Baypy1 + 01 (W) ® Ba,
=10ON®Cou1+U1 W ® Bopy1 + Ls @ S ® Ba,
=1® Cor1 + U1 @ Bary1,1 + Ls @ By >
d(Bar1,1) 3 63(W,Us) @ Bay + 03(W, Rs) ® Cayz + 63(W, R5) @ Cari11
+ 03 (W, Uz) ® Bapya + 61(W) @ Bayi1
=Us@W DBy + 10N ®@Co2o+ 10N ®Coyr1

+U2®W®BQT+Q+L5®S®B27’+1

=Us®Bor1 +1®0Cor2+1®Corq11 + Uz @ Bapyo1 + Ls @ Bory1,>.

d(Baet1,1) 3 65(W,Us) @ Bae + 63(W, R5) @ Coea + 03 (W, R5) @ Coey11
+ 63(W, R2) @ Bs + 61(W) ® Baes1
=Us QW @B +10N ®Co%2+ 10N ®Cocti
+ Ry @W ® B> 4+ L5 ® S @ Byt
=Us® B2e1 +1®C22+1®Coeq11 ++Ro @ Bs 1+ L ® Baey1,>.
d(Bs1) 3 65(W, Rs) @ Cs 1 + 65(S, Ca6) @ B>
=10N®Cs1+ RsUa @ W ® B
=1®Cs1+ RsU2 ® B> 1.
d(B1>) 3 65(S,1) ® C11 + 05(S, 1) @1 +05(S, Ua) ® By + 65(S, Cag) @ By
=1SQC11+105SRAI+U3SQBy+ RsUs W @ By
=00Cn+1®A1> +Ux® By > + RsUz ® By
d(Bar,>) 3 63(S,U1) @ Bayi1 + 03(S, Cag) ® Bay + 65(S, Rs, Us) ® Cor_11
=U1®5S®DBoyy1 + RsUs @W ® Bor + Rs @ N ® Cop—11
= Uy ® Borg1,> + R5Us @ Bayr1 + Rs @ Cop11.

d(Bari1>) 2 65(S,Us) @ Bay + 63(S,Us) @ Bapia + 63(S, Oz6) @ Bayy1

173
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=Us1®S® By +Uzs® S ® Bopyo+ RsUs @ W ® Boyyq
= Uy ® Bor> + Uz ® Bopya> + R5Uz @ Bopgq1.
d(Baet1,>) D 05(S,Us) ® Bae + 05(S, Re) ® Bs + 63(S, O26) @ Bact1
=U;05® B+ Ra®S®Bs + RsUy @ W ® Bacy
=Uy ® Bae> + Ry @ Bs » + RsUs ® Bocy11.
d(Bs~) 2 03(S, Ca6) ® Bs + 83(S, Rs, LoUs) @ Coey11
=RsUs @ W ® Bs + R5L2 Q@ N @ Cact11

= RsUs ® B> 1 + LaR5 ® Cocy11.

Note that for any odd or even s, the state By € (775) XY is such that the map d(Bs )
contains terms with weight outside span{es, e} which necessarily commute with d3 (N, —).
Since the associated idempotent to such states is I135-Bs,1, the only non-zero tensor product
in (775)2 XY is N ® Bg 1. If A is the collection of algebra elements in the image of d in
P>RY, and X4 the collection of module elements in P° XY, then the calculation of

d(N ® Bg,) is given by

d(N ©Bs1) 3> 63(N,a) ® X,

acA
:5%(N7L5)®Bs,> + Z a® N ® X,
acA

wt(a)¢span{es,ee}

=Us@W ® By>  + > a® X,
a€A
wt(a)¢spanies,eq}

= U6®Bs’2 + Z a® X,.

a€A
wt(a)¢span{es,eq}

The above calculation of d(Bs 1) for B, € P> KXY, and this observation, gives a calcu-
lation for d(Bs ;) with B, € (735)2 X Y, and this agrees with the statement as in the

lemma.

As an example, in P> XY, it is calculated that
d(B2r11,1) =Us ® Boy1 +1® Cor 90 +1® Copp11 + Uz ® Boyio1 + Ls @ Bayy1 >,
and so in P° X (735 X Y) one has that

d(N @ Bary11) = 03(N,Uy) @ Bayq + 03(N,1) @ Copg + 05(N,1) @ Copy11
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+ 03(N,Us) @ Bayi21 + 05(N, Ls) @ Bapy1,>
=Us@ON®By1+190N®RCou2+10N®Cory11

Uy ®N ® Borio1+Us @W @ Bopy1,>
=Us® Bor1 +1®@Co2+1® Cory11 + Uz @ Bayyo1 + Us @ Bapy 2.

Note that only the last term in each of the above has an algebraic input that is not outside

span{es, eg}, and all other algebra elements commute with 93 (N, —).

Using the above calculation, and the calculation of d(C,.1) in P> XY from Section 5.5.1,
which states that d(Cy1) 3 UsUs ® B,.1, the calculation of the remaining elements of
P>XP>KY continues as follows.

d(B12) 3 05(W,1) @ A1 > + 63(W,Us) @ By >
+ 03(W, RsUs) ® By + 61 (W) ® By~
=1oW®AI>+U2@W®By> +Us®N ® By
+Ls®S® B>
=1® A19+Us ® Boa + Uz ® B11 + L5 ® By >.
d(Bay2) 3 63(W,U1) @ Bayy1,> + 05(W, R5Us) @ Bay 1
+03(W, Rs) ® Cop—1,1 + 01(W) @ Bar.>
=U1 QW ®@Bart1,>+ U @ N ®@Bor1 +10 N ®Copq
+ L5 ® S ® By >
=U1 ® Bory12+Us ® Bap1 +1® Cop_1,1 + L @ Boy .
d(Bar112) 3 63(W,Uy) @ Bay s + 63(W,Usz) @ Bayya
+ 05(W, R5Us) @ Bayi11 + 01 (W) ® Bopy1>
=Us@W @ Bay> +Us@W @ Bopyoa~> +Us @ N ® Barq11
+Ls ® S ® Bori1,>
= Uy ® Boro +Us ® Bapy22+Us @ Bory11 + Ly @ Bopy1 >
d(Baey1.2) 2 05(W,Us) ® Baes + 05(W, Ry) @ Bs
+ 03 (W, RsUs) ® Bacy1,1 + 01(W) @ Bacy1,>
=Us QW R@Bae> +Ro@W R®Bs » +Us @ N ® Bacy11
+ L5 ® S ® Bery1,>

=U;® Baep+ Ry ® Bs o+ Us @ Boey1,1 + Ls @ Bacq1,>-
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d(Bs 2) 3 03(W, R5Us) @ Bs 1 + 63(W, Ly R5) ® Cacp11 + 01 (W) @ B >
=U2@N®Bs1+Ly®N®Cyq11+Ls®S®Bs >
=Us® B> 1+ Lo ® Cocy11 + Ls @ Bs .

d(B1,>) = 03(8,1) ® A1 > + 63(S,Us) ® Ba s + 63(S, Cs6) ® By >
=105S®A>+U®S®By> +RsUs @ W ® By~
=1® A1~ + Uz ® By > + R5Us ® Baa.

d(Bar>) 2 63(S,U1) ® Bary1> + 63(S, Cs6) @ Bay s + 03(S, Rs, UsUs) @ Bay—11
=U1 ®S®Byri1,>+RsUs @W @ By s + RsUz @ N ® Bap_11
=U; ® Byry1,> + RsUs @ Boo + R5Us @ Bay—1,1.

d(Bari1>) 2 05(S,Us) @ Bay s + 63(S, Us) @ Baryas + 63(S, C36) @ Bayi1>

— Uy ®8® Bops +Us ® S® Bapyas + RsUs @ W ® Boy 1>
=Us ® Bor> + Uz ® Bopgo > + Rs5U3z @ Bopyq 2.

d(Bs ) 3 05(5,Cs6) @ Bs > + 05(5, Lo Rs, UsUs) © Baet11
= RsUs @ W @ B> > + LoRsU3 @ N @ Bacyi1,1

= R5U3 ® B> 2 + LoR5U3 ® Bocy,1-

Comparing the above to the form stated in Lemma 5.7, and using the fact that a = 1
here, one sees that the Type D structure maps are of the required form, and hence the

base-case (2 holds.

Remark 5.8 The full behaviour described in the lemma may appear to be absent here,
since for example Boro = Baya2,. In the statement of the lemma, one should make the
assumption that the if a state does not exist by virtue of the available index being less
than or equal to zero, then such a map does not exist. The lemma states that d(Bay24) 2

Us ® Bar_1,2q4—2, however where a = 1, the states Ba,_19 does not exist.
Inductive Assumption:

Assume for inductive purposes that the statement ()9, holds. In a similar method to the
determination of the map d for the Cj; states in Section 5.5.1, the states B; ;, with k < 2a
have only Us and Us algebra terms in d(B;;) within span{es,es}. The effect of taking
the box-tensor product with P° twice is to switch Us and Ug coefficients once, and then

switch back. Moreover, the associated idempotents for such states is I135 for B;; with
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1 <7< 2c+1and k < 2a, and Iz35 for B> i, with k < 2a. Since 5 belongs to both
idempotents, the only non-zero tensor product with P X P contains the term N ® N in

this tensor coordinate.

As a consequence, taking the box-tensor product with P X P yields the same number of
states, with maps with the same algebra elements as weights. So, the behaviour at the
end of the strand, where one can acquire new states is the only part left to study in the

inductive process.

Figures 5.15 and 5.16 are useful in the determination of the Type D structure for PXP X
((775)% X Y), as they display the weighted graphs corresponding to the end of the strand

after each tensor product with P is taken.

As displayed in Figure 5.15, the calculation of d(B,2,) involves algebra elements with
weights outside of span{es, e5}, excepting the term 01 (N, L5) ® B, ~. Evaluating this, one
has that

d(B124) 2 05(N,1) ® A124 + 63(N,Us) ® By 2a—1 + 63(N,Us) ® Baag
+05(N, Ls) ® By >
=10N®A12+U2®@N ® B12g-1+ Uz @ N ® By g,
+Us®@W ® By >
=1® A12q4 + Uz ® B120-1 + Uz ® B2 2 + Us @ B12q+1-
d(Bar24) 2 03(N,Us @ Bay—12q—2 + 05(N,Us2) ® Bay2a—1 + 63(N,U1) ® Bari1.24
+ 03(N, Ls) @ Bay >
=Us®@N @ Bar—120—2+ Uz @ N ® Borog—1+ Ui @ N ® Boyi1.24
+Us @ W ® Bay >
= Uz ® Bay_124—2 + Uz @ Bay2q—1 + U1 @ Bayri1,2q + Us @ Boyogi1-
d(Bari124) 3 05(N,Uz) @ Bayi1.24-1 + 05(N,Usz) @ Bayia2q + 05(N, Ls) @ Bayy1,>
+ 65(N, Us) ® By
=Uy® N ® Byry190-1 +Us @ N ® Bopy9q +Us @ W @ Bayy1 >
+Us® N ® Baaa
= Uz ® Bort1,20-1 + Uz ® Bory22q + Us @ Bori1,2q+1 + Uy @ Barag-

d(Baes1.24) 3 03(N,Usz) ® Baey1.2a—1 + 05(N, Ra) @ B 24 + 05(N, Ls) @ Baci1 >
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Figure 5.15: Part of the Type D structure for P> X ((735)2“ &Y), represented by a

weighted directed graph.

+ 05(N,Us) ® Bac2q
= Uy ® N ® Bogy12a-1 + B2 ® N ® Bs 2 + Us ® W ® Bocy1>
+Us ® N ® Bac2a
=Us ® Bory1,20-1 + R2 ® Bx 24 + U @ Bory1,2441 + Us @ By 2q.
d(Bs 24) 3 05(N, LoU3) @ Baci1,9a—2 + 03(N,Us) @ Bs 2q-1 + 03(N, L5) ® Bs ~

= LoUs @ N ® Bocy12a—2+ U2 @ N ®@ B 9g-1 +Us @ W ® Bs >
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= LoU3 ® Bact1,20—2 + Uz @ Bs 24—1 + Us ® B> 2.41-

For the sake of brevity, in the calculation of d(W ® B, ) and d(S ® B, ), only those
calculations with algebra elements that have weight within span{es, eg} will be expanded.

Hence, the calculation of P X ((735)2‘1 X Y) proceeds as follows.
d(Bi2a+1) 2 05(W,1) ® Ay s + 63(W, R5Us) ® By 24 + 63(W,Us) ® B >
+5 (W) ® B>
=1®A12041 +Us @ N ®@ B12g +Us ® Baogy1 +Ls © S ® By »
=1® A12041 + U3 @ B124 + Uz ® B 2g4+1 + Ls @ By >.
d(Bar2a+1) > 03(W, R5U3) ® Bay_1,24 + 65(W, RsUs) ® Bay.oq + 05(W,U1) ® Bayi1,>
+61(W) ® Bay,>
=U3s®@N ® Baor_124 + U3 @ N ® By oq + Ui ® Bay2at1
+Ls® S ® Bars
= U3z ® Bay_1,2q4 + U3z ® Bay2q + Ui @ Bayrogy1 + Ls @ Boy .
d(Bar41,2a+1) 2 03(W, R5Us) @ Bayi1,24 + 03 (W, Us) @ Bapya s + 03(W,Us) @ Bay >
+ 01 (W) @ Bapy1,>
=U3s® N ® Bary12a + U2 ® Bopy22q11 +Us @ Borogy1 + Ls @ S ® Bary1 >
= U3 ®@ Bory1,2a + Uz @ Bory294+1 +Us @ Bopogy1 + Ly @ Bory1 >.
d(Baet12a+1) 3 63(W, RsUs) @ Boet1,.24 + 03 (W, Rg) @ B~ + 03(W,Us) ® Bac >
+61(W) @ Baey1>
=U3s @ N ® Bact1,2q + Ro ® Bs 2041 + Uy @ Bac2a+1 + Ls @ S @ Bact1,>
= U3z ® Bact1,2¢ + R2 @ Bs 2041 + Uy ® Bocog+1 + Ls @ Bocy1,>.
d(B> 2a+41) 3 63(W, LaR5Us) ® Baci1,2q + 63(W, R5Us) ® B 9 + 01 (W) @ B> >
=LoU3 ® N ® Bocy124 +Us @ N ® Bs2g + Ls ® S ® Bs >
= LoU3 ® Bacy1,20 + U3 ® B> 2q + Ls @ B> >
d(Bi1,>) 2 05(S,1) ® A1 > + 63(S,Uz) ® Ba > + 63(S, Ca6) ® B >
=1®A1>+U2® By~ + RsUs W ® By >
=1® A1~ +Us® By > + RsUs ® By 2g41-
d(Bar~) 2 63(S, RsUs, Ug) ® Bar_1.94 + 63(S, C26) @ Bay> + 63(S,U1) ® Bapy1>

= RsU3z ® N ® Boy_12q + RsUs @ W ® By~ + Uy @ Boyg1>
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= R5U3 ® Boy—12q + R5Uz ® Bayog+1 + Ur ® Boyy1 .
d(Bar41,>) 3 63(S, Cog) ® Bayi1,> + 05(S, Us) @ Bayia> + 05(S,Us) @ Bay
= R5Us @ W ® Bayy1,> + Uz @ Bopy22441 + Us @ By >
= R5Us ® Bory12a+1 + Uz @ Bopyos + Uy ® By~
d(Bact1,>) 3 05(S,C26) @ Bact1,> + 05(S, R2) @ Bs > + 63(S,Us) ® Bac >
= RsUs @ W @ Bacy1,> + Ro @ B> 5 + Uy @ Bae>
= R5Us ® Boct1,2a+1 + R2 @ Bs 5 + Uy @ Bac >
d(Bs ) 3 63(S, LaR5U3, Ug) @ Bacet1.24 + 05 (S, Cog) ® Bs ~
= LyRsU3 ® N @ Bacy12q4 + RsUs @ W @ Bs 5

= LoR5U3 @ Bacy1,2q + R5Uz @ B 2441.

This agrees with the part of the Type D structure displayed in Figure 5.15. An almost
identical calculation yields the result displayed in Figure 5.16, where now the matching
elements Ch4, Co5 and Csg mean that the calculation of d(S ® B, ) includes the term
53(S,C36) = R5Us @ W. Because the process is so similar, it is not presented here, as the
required maps are nearly identical to those taken when calculation P° X P° XY from

PORY.
More visually, to pass from Figure 5.15 to Figure 5.16 involves:
e Swapping Us for Us with arrows B, o4 — By 2441, since (5%(N, Us) =Us ® N.

e A map BT,QQ_H — Br,2a+2 with weight Ug, from (5% (N, L5) = Uz @ W and Br,2a+2 =
W @ B

e A map B,aqi2 — Broa+1 with weight Us, from 63(W, R;Us) = Us @ N.

e Maps B, — Byaq42 with weights Us R since 03(S, Css) = RsUs @ W = Us Rz @ W.

Note, Us and Rs commute, since 3 and 5 are sufficiently ‘far’ from each other.
e Maps B 2q+2 — By~ with weights Ls, from 5%(W) =I;®5.

L] Using 5?1)(5, R5U3,U6) = R5U3 & N, and 531’(5, L2R5U3,U6) = L2R5U3 & N, one
yields the maps B~ — Boy_124+1 and Bs ~» — Bocy124+1 With the corresponding

weights.

Hence, since the rest of the diagram is determined, and Figure 5.16 describes a Type
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Figure 5.16: Part of the Type D structure for P> X ((735)2““‘1 X Y), represented by a

weighted directed graph.

D structure matches the statement of the lemma, @2, implies Q2442. By induction,

Lemma 5.7 then holds for all ¢ € N. [ |

5.5.4 The remaining maps in the Type D structure

As seen in the statement of Lemma 5.7, only some of the maps from the states B;; have

been determined so far. The remaining maps are maps with weight Rs and 1, which will

~

play a key role in the determination of H,(C(D)) for these knots.
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In the above calculation, a map d : (735)2a XY - A® (735)2a XY has an algebra weight of
1 arising from either an arrow in Figure 5.10 that already has 1 as a weight — for example
the arrow By — A; in AY — or from a term featuring 63(W,R5) = 1® N in P°. Tt is
then useful to track where arrows with Ry as a weight appear in (735)2a XY in order to

complete the determination of the Type D structure.

However, a complication is that Rj is an algebraic input to a (531) term that is non-zero,
namely 03(9, R5,Us) = Rs; ® N. This also yields Rs as an output algebra element of
the map. To fully calculate the map d in the Type D structure one thus needs to track
wherever Ug is the weight on an outward edge at a vertex to which Rs is the weight on an

inward edge.

Remark 5.9 From Sections 5.5.1, 5.5.2 and 5.5.3, it has been shown that the Ug arrows
are as follows in the Type D structure (735)t XY:

o When t is even:
+ Copp — Cor_1¢ has weight Us.
+ Agori1 — Agor42 has weight Us.
o When t is odd:
+ Cory10 — Coppq2 has weight Us.
+ Cror — Cyar4+1 has weight Us.
+ Cip — App11 has weight Us.
+ Ayor — Apor1 has weight Us.
+ Aorp11 — Agrio1 has weight Us.

With the positions of the Ug-weighted arrows determined, it remains to determine the Rj

arrows from the B-states.

Lemma 5.10 In the Type D structure P> XY, one has that

d(Bar>) 3 Rs ® Cor11

d(B2r+17>) > R5 ® C’21"71,2'

Proof This is relatively simple to see from Figure 5.10. Since d(Bz,) 3 Rs ® Ca,1 and



CHAPTER 5. INDUCTIVE ARGUMENTS 183
d(02r,1) =Us® Cgr_171 in Y, one has that

d(S @ Ba,) 3 03(S, R, Ug) @ Cay11

=R5 @ N ®Cor_1,1.

Furthermore, since in Y one can observe that d(Ba,4+1) 3 Rs ® Cor2, and d(Cor2) =

Us ® C2,—1,2, the same procedure gives

d(S ® Bary1) 2 83(S, Rs,Ug) ® Cap_19

= R5 @ N ® Car_12.

Since all N ® Cj; are relabelled as Cj; in PP K'Y, this completes the proof of the lemma.
|

From Lemma 5.10, one can then deduce that in (775)2 XY the states W ® Ba,~ and

W ® Ba,41,> have maps

d(W ® Bzr,>) > 5%(1/‘/, R5) ® Cor—11
=1®N®Cy_1,.
d(W ® Bary1,5) 3 03(W, R5) ® Car_1
=1®N ® Cyr—1,2-
In this way, it is the determination of the Rs arrows that yield the arrows with algebra

weight 1 after taking the tensor product with the DA-bimodule P° corresponding with

the next half-twist.
Lemma 5.11 In the Type D structure (775)% XY, the arrows with weight Rs from the

states B; ~ are:

d(Bar>) 2 Rs ® (Cor—2n2n+1 + A2r2n—2r41)
d(B2r+1,>) > R5 & (C2r—2n,2n+2 + C2r—2n+1,2n+1 + A2r+1,2n—2r+1) .

Proof Again, the proof proceeds by induction, so let P; be the statement that the lemma
holds for n =t.

Then, Remark 5.9 and Lemma 5.10 imply the base case t = 1. Lemma 5.10 proves that
there is an arrow Ba » — C1,1 with weight R5 in P°KY, and the remark shows that there

is a Us weighted arrow C11 — Aa 1. Applying these, and the observation from the remark
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that there is a Ug weighted arrow Co,_11 — Ca,_23 in PP>X Y, one has that

d(By,>) 3 03(S, R5,Us) ® Ags
:R5®N®A2,1 :R5®A2’1
d(Bar,>) 2 03(S, R, Us) ® Car—23

=Rs @ N ®Cor_n3 = R5 ® Cor_23.
Furthermore, d(B3 ) and d(Bg,41,>) for r > 1 are then

d(Bss) 3 03(S, Rs,Us) @ Az1 + 03(S, Rs, Us) @ C1 3
=RsQN®A31 +Rs@N ®Cy3
=Ry ®A31 + Rs®C1 3
d(Bari1.>) 2 65(S, R5,Us) ® Cop—2.4 + 03(SR5,Us) ® Cop_1.3
=R QN RCor24+ RN ®Cor_13

= R5 ® Cor—24 + R5 ® Cop_1 3.

Hence P is true, so the base case of the induction holds.

Assume for inductive purposes that P; holds. For ease of calculation, divide the states
B; ~ into three categories: Ba,~ and Ba,11,~ with r < t; B~ and Bosy1 >; and the states

BQT7> and B27‘+17> with r > ¢.

When r < t, the inductive assumption states that d(Ba,~) = Rs ® Agpot—2,41 and
d(Bar41,>) = Rs ® Aopy1,2t—2r+1. From Remark 5.9, since the second index in each Aj;

term is odd, one has that there is a Ug weighted arrow Ay ot—9,4+1 — Ag2t—2742-
Combining 531,(5, R5,Us) = Rs ® N with this information implies that in (775)2t+1 XY,
one has the terms
d(Bar>) 2 Rs ® Agyo(1+1)—2r
d(Bar41,>) 3 R5 @ Agpi12(141)—2r-
As t > r by assumption, and so 2(¢t + 1) — 2r > 1, using Remark 5.9 once more implies
that

d(S ® Bay>) 3 03(S, R5,Us) ® Agya(ry1)—2rt1

=Rs @ N ® Agra(t11)-2r41
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d(S ® Bar1,>) 3 65(5, Rs,Us) ® Agyi 1 9(t4+1)—20+1

=Rs @ N ® Aogry19(t41)—2r41-

This matches the form given in the statement of the lemma.

When r = t+41, the inductive assumption implies that in the Type D structure (735)2t XY,
one has that d(B2t+2,>) S Ry ® 027%4_1 and d(BQt+37>) 5 Ry ® 02,21&4,_2 + Rs ® 03,2,5_;,_1.

From Remark 5.9, the only Us arrows starting at C;; states in (775)2t XY are those from
Cary — Cor—14. Hence, combining these terms with the term 83(S, Rs, Us) term in P°

yields

d(Batt2,>) > Rs ® C1 2041

d(Bar43>) 2 Rs @ C1 2142.

2t+1 .
In (775) T Y, the only Us weighted arrows from the states Ci 2441 and Cqo42 are:
01,215_;_1 — A2t+271; CLQH_Q — A2t+3,1; and CLQH_Q — 6172134_3. Once more Combining this

with the 63 (S, R5, Us) map yields

d(BQt+2,>) > R5 & A2t+2,1
d(Bar+43,>) 3 Rs @ Agq31 + Rs @ Ch 243

Once more since these are now maps within the Type D structure (735)2(t+1) XY, these

maps match those presented in the lemma.

When r > t + 1, the inductive assumption states that d(Ba,~) 2 Rs ® Cor_2¢2t4+1 and
d(Bar41,>) 2 Rs ® Cop_at 2142 + R5 ® Cop_2¢41,2¢41. From Remark 5.9, the only Us arrows
from Cj; states in this Type D structure are Cy,. o — Ca,—1¢. Hence, in (735)%H XY, one
has that
d(Bar,>) 3 63(5, Rs, Ug) ® Cop—21—1,2041
= R5 ® Cor—2t—12t+1
d(Bay11,5) 3 63(S, Rs, Us) ® Cor_2t—12¢+2

= R5 ® Cor_2t—1,2t42-
. . 5\ 2(t+1)
Using Remark 5.9 once more, in (77 ) XY, one thus has:

d(Bay>) 3 65(S, Ry, Ug) ® Cor_ot—2,2+3
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= R5 ® Cor_a(141),2(t+1)+1
d(Bari1.>) 3 65(S, Rs,Us) ® Cop—2—2.9t+4 + 05(S, R5, Us) @ Cop—2¢-1.2143-

= R5 @ Cor_a(41),20041)+2 T B5 @ Cor_a(141)41,2(t41)41-

Since r > t + 1, all of the indices in the C;; terms exist, and match the statement of the
lemma. Hence, P; being true implies that P,y is true, and so by induction Lemma 5.11

holds for all n € N. [ |

Lemma 5.11 holds for any n € N, and so, using the fact that in P X (7)5)2n XY, the states
By ont1 = W ® B, », one can calculate arrows with 1 as the associated algebraic weight

from 03 (W, Rs) = 1 ® N.

Moreover, a quick inspection of the definition of the bimodule P° shows that the only
other possible maps that yield 1 as a weight are either §3(X,1) = 1 ® X for X a cardinal
direction, or 63(E,Lg) = 1 ® N. Since for three strand pretzel knots in this form the
idempotents are truncated as specified in Definition 4.6, and no state in the Type D
structure has an associated idempotent I, with 6 € x, then the only di-maps in P5 that

contribute an algebraic weight of 1 are the d1(W, R5) and 63(X, 1).

Corollary 5.12 The maps d in the type D structure (P5)2a XY with 1 as the algebraic

weight are as follows.

d(Barant+1) 2 1 ® Cor—opon+1 + 1 ® Aopon—2r41

d(Bar+1.2n+1) 9 1 ® Cor—2pont2 + 1 @ Cop_ont12n+1 + 1 @ Aori1 2n—2r4+1
d(Barant2) 2 1@ Cor_op—12n+1 + 1 ® Agpon—2r42

)

d(Bar+1,2n+2) 2 1 ®@ Cor_on—12n42 + 1 ® A1 2n—2r12-

Proof From the above observation, and the fact that the Type D structure (735)2a XY
is built up by tensoring with P° consecutively, when determining (775)2n+1 XY from

(735)% XY, one has the following maps:

d(Bayont+1) = d(W @ Bay>)
> 63(W, R5) ® (Cor—an2nt1 + Azron_2r41)
5 1® (Cor—2n2nt1 + A2r2n—2r41) -
d(Bar412n+1) = d(W ® Boypy1s)

3 63(W, R5) ® (Cor—an2n+2 + Cor—2nt12n+1 + A2ri1.2n-2r41)
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=1® (Cor—2n2n+2 + Cor—2n+12n+1 + A2r+1.20n—2r+1) -

Since these are maps with algebraic weight 1, and the associated idempotent to By 2541
and Ba, 412,41 in (735)2n+1 XY is I35, under taking more box-tensor products with P,
the only non-zero tensor product is with N € P?. Since 63(N,1) = 1 ® N, these arrows
are preserved under taking further box-tensor products with P°.

2n+1

Likewise, using Remark 5.9, it is simple to see that in (735) XY, one has the Rs-

weighted arrows:

d(Bar,>) 2 Rs ® (Cop—2n—2.2n+1 + A2r2n—2r42)

d(Bar+1,>) 2 Rs ® (Cor—an—1,2n+2 + A2r41,2n—2r42) -

Under taking the next box-tensor product with P° to yield (735)2n+2 XY, the same
application of §3(W, Rs) = 1® N gives arrows of weight 1 to the above states from Boyon+2
and Bg,41,2n42. Again, these arrows are preserved under further box-tensor products with
P> due to the only non-zero tensor products with these coordinates being N ® By ont2

and N ® Bay41,2n+2, with the same weight since 63(N,1) =1® N. [ |

The only remaining behaviour to determine are those maps from B j; not shown in
Lemma 5.7. These arise in a very similar way to the maps presented in Lemma 5.11,

from the map 03(S, R5,Us) = Rs ® N in P°.

Lemma 5.13 In the Type D structure (735)2‘1@Y, the states B j. has the following maps:

d(B> 2n) 3 Lo ® Coct3-2n,2n—1
d(B> 2n+1) 2 L2 ® Coct2—2n2n+1

d(B>>) 3 LaR5 @ Cocy2-24,2a+1-
Proof In P° XY, using Figure 5.10, one has that

d(B>’>) == d(S ® B>>
> 63(S, Ry, LaUs) ® Coey11
= LoRs ® Cocy1,1-
Then, using Remark 5.9, the only Us arrow from the state Coct1,1 is Coct1,1 — Coc—1,142 =

Coc—1,3. This implies that after taking the box-tensor product with P> once more, the

same 63 map will yield d(Bs ) D LoRs ® Cae—13 = Coct1-(2a)41,2a+1, Where a =1 here.



CHAPTER 5. INDUCTIVE ARGUMENTS 188

Using similar logic to the proof of Corollary 5.12, one yields the result, since one pairs this
map with 03(W, LaR5) = Ly ® N for the odd case, and the Ug arrows from Remark 5.9.
|

This completes the determination of the map d acting on the B-states within the Type D
structure (P5)2G®Y, as can be seen through a careful examination of the Type D structure
for Y in Figure 5.13, and noting that all of the possible maps have been considered in the
inductive methods presented in Lemma 5.7 and Corollary 5.12. Hence, combining this
with the results of Sections 5.5.1 and 5.5.2 the entire Type D structure corresponding
to the upper knot diagrams in Figure 5.11 is determined. In order to determine the full
bordered invariant C(D) of Ozsvath-Szabé defined in [49], one then needs to tensor with

the As.-module associated to the three minima, as presented in Definition 4.57.



Chapter 6

Results and the full invariant

Following Section 4.5.2, one can take the product of the Type D structure determined in
Section 5.5 with the Ao-module Y/ KG%X 6?4(3) to yield a chain complex over R'. Within
this chapter, the full structure of C(D) is determined, together with the determination of

associated homology theories and associated numerical invariants.

6.1 The determination of C(D)

As described in Section 5.5, define the Type D structure associated to the upper knot
diagram of P(2¢+ 1,—2b—1,2a) to be

AT — (PR (WH"M RO'R (PH* T RO?R O

The maps 0 : T — A(3) ® T for this Type D structure were calculated in Section 5.5.1,
Section 5.5.2 and Section 5.5.3, and no application of this map upon any of the generators
(in correspondence with upper Kauffman states) can yield the sequence of algebra elements
L3, Us, R3. However, starting at some states, one can yield the the algebra elements Ls,
Uy and R from applying the map @ thrice. Namely, such a sequence of algebra elements

originates from Ba,412, for 0 <r <ec.

As a consequence, excepting at these states Ba,11 24, only integer weight algebra elements
in A(3) contribute to the tensor product, since the remaining maps m;4; in Y’ X D202

take integer weight inputs.

What is more, since all of the generators in the A,,-module Y’ X 0% X 52 have incoming

189
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idempotent I35, the chain complex Y/ K 02 K 02 K T arises from the tensor product of

generators in 7 with I135 as the outgoing idempotent.

This is as expected, since the familiar Kauffman states for P(2a, —2b—1,2¢+1) & P(2c+
1,—2b — 1,2a) depicted in Figure 2.8 arise from the partial Kauffman states with this
idempotent. The use of the DA-bimodule 0? in preference to U? gives a correspondence

between the Kauffman states of the standard knot diagram for this family of three strand

pretzel knots, as used in [5], and the generators of Y’/ X O’RO?RT = C(D).

Informally, maps with weights U7 and Us in the Type D structure 7 contribute to increase
the power of U in the chain complex, from ma(X, Uf) = U‘®@X and my4 140 (X, UR, C") =
Un® X in YK 02K 02 Similarly, maps with weights Us and Ug contribute to in-
crease the power of V in the chain complex, from the maps mo(X, Ugf) = VF® X and
mi114-(X, U5, CSY) = V" ® X. By inspection, these are all maps taking only integer

weight elements in Definition 4.57.

Although Ozsvéth-Szabé equip the complex C(D) with two integer-valued gradings (A, A),

one can use the relation A = M — A to recover the Maslov grading for every Kauffman

state for the knot P(2c + 1,—2b — 1,2a). However, although an integer valued grading

A on T has been described, through compatibility with the associated one-manifold with

boundary, the Type D structure is currently only equipped with an Alexander multi-
1

grading in (52)6. However, from the local contributions to A and A in Figure 4.1, every

upper Kauffman state can be equipped with an integer-valued grading.

Moreover, this can be recovered from the multi-grading, as highlighted by [46, Sec. 1.1].
Within the computer implementation of the calculation of C(D) in [47] the determination
of the Alexander grading associated to each upper Kauffman state is made through the

formula

AX) =D wy(X) =) wy(X).

s¢S seS

Here, S are the upwards oriented strands at the boundary of the one-manifold associated to
a Type D structure. In order to agree with the gradings in Figure 4.1, the global minimum
is assumed to be oriented right to left. As described in Section 4.6.1, if the global minimum

has the reverse orientation, the roles of U and V in the R’ are switched.

Using these gradings, the correspondence between generators and Kauffman states, and

the well-defined tensor product between Type D structures and As.-modules outlined in
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Section 4.5.2, one yields the following theorem.

Theorem 6.1 Let D be the special knot diagram associated to the three strand pretzel
knot P(2c+1,—2b—1,2a) depicted in Figure 6.1, with a,b,c > 1. The bordered invariant
C(D) is the chain complex over R' generated by elements corresponding to the Kauffman
states pictured in Figure 2.8, with associated Maslov and Alexander gradings as presented

in Table 2.2.

For the states Aj, with 1 < j <2b+1, 1 < k < 2a, the differential d : C(D) — C(D) tis

given by the following.

d(A11) = U(Ag1 + C12) + VAo
d(Ag1) = U(Arq11 + Crory1) + V(A1 + Agr2) reN
d(Agry11) = U(Agpq21 + Cror42) + V Azt reN
d(Agpr1,1) = VA2
d(A12p) = UAi2p11 peN
d(Aszr2p) = U(A2ry1,2p + A2r2pi1) + VA2 19 r,pEN
d(A2ry1,2p) = UAory1,2p11 r,p€eN
d(Aaropt1) = UAori19p+1 + V(A2r—19p11 + Aopop + Aoropia) m,pEN
d(Azri1,2p41) = V(Aors1,2p + Azrg1,2p42) r€Zso,pEN
d(A2r41,24) = T € Z>0
d(Aszr2a) = UAgri1,20 + V A2r—124 reN

Similarly, the differential map has the following action on the Cjj; states, for 1 <1i < 2¢+1,

1<j<2b+1.
d(C11) = U(Cr2 + A1)

d(Ci2r) =U(Crr41 + A2rg11) reN
d(Cr2r41) = U(Clor42 + Aory1) + Vi r € Z>o
d(Ciop+1) = VCiam

d(Cas,1) = U(Cas2 + Cost1,1) + VCas—1,1 seN

d(Cas2r) = U(Cos2r+1 + Cost1,2r) + VCos_1,2r s,r €N
d(Cas2r+1) = U(Cas2r42 + Cost1,.2r+1) + V(Cos 27 + Cos—12r41) s,reN
d(Casopr1) = UCosq1,2041 + V(Cos o + Cos—1,2041) seN
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d(Cos41,1) = U(Cosy1,2 + Cos3) seN
d(Cast1,2r) = U(Cost1,2r+1 + Cos,2r42) s,r €N
d(Cos41,2r+1) = U(Casy1,2r 42 + Cos2r43) + VCosy1 2, s,r €N

d(Cos41,26) = UCo% 11,2541 seN

d(Cosy1,20+1) = VCasti1,26 s eN.

For the states By, with 1 < i < 2c+1 and 1 < k < 2a, the differential map d acts as

follows.
d(B11) = (A1 + C11) + VB2
d(B1,2p) = A1,2p + UB1,2p+1
d(B12p+1) = A12p+1 + VBi2p42
d(Bi2a) = A1 24
d(B2s1) = Cas,1 + UBasy11 + VBas 2
d(Bas 2p) = (Cos—2p+1,2p—1 + Azs 2p—25) + U(Basy1,2p + Basopr1) + VBas—1.2p—2
d(Bas2p+1) = (Cos—2p2p+1 + A2s2p—2s41) + UBogy1,2p+1

+ V(Bas,2p + Basopt2 + Bas—1,2p—1)

d(Bas 24 Cos—2a+1,2a—1 + A2s 2a—2s) + UB2s+124 + V Bas_1,2q—2

d(Bas+1,1 Cos2 + Cosy1,1) + VBosyi2

Cos—2p2p+2 + Cos—2pt1,2p+1 + A2st1,2p—2s+1) + V (Bast1,2p+2 + Bast1,2p)

)= (
) =(
d(Bas+1,2p) = (Cos—2pt1,2p + A2s4+1,2p—25) + UBogy1,2p+1
d(Bas+1,2p+1) = (
) =(

d(Bas+1,24 Cos—2a+1,2a + A2s+1,2a—25) + (Cos—20,2a+1 + A2s2a—25+1)

Proof The above are simple applications of the definition of tensor product between a
Type D structure and As.-module as presented in Section 4.5.2. The fact that this box-
tensor product is indeed a chain complex is a consequence of [25, Lem. 2.30] for general
Type D structures and A..-modules, and more specifically for C(D) from [49, Sec. 8.2].
Recall, the maps in the Type D structure used within this calculation are determined in

Section 5.5.

The differential map drops the A (and Maslov) integer gradings by the fact that the Type

D structure and A,.-modules are adapted to their respective one-manifolds. As a graded

peN

pEeN

seN

s,peN

s,peN
seN
seN
s,pEeN
s,p €N

seN
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module, the map 9 in the Type D structure drops the Maslov and Alexander gradings

appropriately, as defined in Section 4.3.1.

As a special case, the states By,112, have a differential that is separable into two sets.
The first set arises from pairing the map 9(Bay4124) 2 1® (Cor—20+1,2a + A2r4+1,2a—2r) With
the map mo(Q, Uf) = U%® Q for Q any generator of Y’ X U2R02. The second arises from

the only sequence of algebra elements with non-integer weights. Specifically, the maps

8(Bgr+1,2a) 3 Ls® BQT+1,>
9(Bar+1,>) 2 Us @ Bay,>

0(B2r,>) 2 R5s ® (Cor—24,2a+1 + Cor20—25+1)

as determined in Lemma 5.7, Lemma 5.11 and Corollary 5.12 are paired with the map
m4(Q, Ls, Uy, R5) = 1 ® @ to yield the result. Note, that not all four terms can exist at
the same time, due to the fact that the map only exists if the indices on Aj;, and Cj; are

in the required ranges.

The differential in the chain complex for the generators corresponding to other Kauffman
states arise from maps in the Type D structure with integer weight algebra elements,

pairing with the respective maps in Definition 4.57. |

The fact that filtered chain homotopy type C(D) is an oriented knot invariant is a con-
sequence of the construction by Ozsvath-Szabd. In [49, Thm. 1.1], they prove that for
any special knot diagram D, the Type D structure associated to the upper knot diagram
arising from excluding only the global minimum is invariant under bridge moves and Reide-
meister moves. Although [49, Thm. 1.1] is stated only in terms of homology H,(C(D)), the
equivalence of graded modules is proved for the Type D structures, and then there is only

a single way to tensor with the A.,.,-module corresponding to the global minimum.

The construction of the C(P(2¢ 4+ 1,—2b — 1,2a)) within this thesis follows exactly the
construction of [47,49], and so the filtered chain-homotopy type of this bigraded chain

complex is an invariant of the three strand pretzel knot.

As in classical knot Floer homology, one can construct subcomplexes and quotient com-
plexes from C(D), and extract information from these. Motivated by OFK (K) and
HFK~(K), one has the following.

~

Definition 6.2 Define C(D) to be the bigraded module over Fy resulting from setting
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2a

Figure 6.1: The special knot diagram for the knot P(2c + 1,—2b — 1,2a). The complex
C(D) corresponding to this knot diagram is Y'X O2R U2 K T, where the Type D structure
T is as defined on page 189.

U=0=VinC(D). It is thus a chain complex over Fy generated by Kauffman states
associated to a special knot diagram, with differential : (?(D)dys — CA(D)d,l,s defined by:

where d is the differential map in C(D).

Likewise, define C~ (D) to be the bigraded module over F[U| resulting from setting V =0 in
C(D). Hence, as a chain complez, it is generated over F[U] by Kauffman states associated

to a special knot diagram, with differential 0~ defined by 0~ (x) = d(z)/(V = 0).

From both of these chain complexes, one can define the associated homology theories

~

fI(D) = H.(C(D)) and H= (D) := H.(C™ (D)), which are respectively bigraded F and
F[U]-modules recently identified with ﬁ((D) and HF K~ (D) in [48, Thm. 1.1].

Using Theorem 6.1, setting U = V = 0, one arrives at the following.

Theorem 6.3 For the three-strand pretzel knot P(2c+ 1,—2b — 1,2a) with oriented knot

diagram as depicted in Figure 6.1, the bigraded group ﬁ(D) decomposes as ﬁ(D) =
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@dsﬁ(D)d,s' Here, let d be the Maslov grading A — A, and s the Alexander grading

)

A.

If a < b < ¢, one has that:

Firyle  b-e+l<s<e—b-1
T

]F?lb:_sﬁic s=c—b+n, 1<n<2b

]F?lb:;’rgic s=b—c—n, 1<n<2b

Similarly, when b < ¢ and a > b, one has that:

(inﬁbbfc“ b—c+l<s<c-b-1

Fo_, se{c—bb—c}
H(D)gs = { Fa—b-1 s€{c—bb—c}

Fr it s=c—b+n, 1<n<2b

IFZI’:;I&C s=b—c—n, 1<n<2b

Hence, when a < b, the complex f-\I(D) is homologically thin (contained in one diagonal

M —A), and not if a > b.

Proof Using the map d as given in Theorem 6.1, it is simple to see that A;; and C;; are

-~

in ker(0) for all possible values of 7, j and k.

Furthermore, as proven in [49, Prop. 1.2], as a bigraded module C(D) is symmetric, i.e.
ﬁ(D)d’S = _ﬁ(D)d_Q&_S. This matches the symmetry for fTFT((D) in classical knot Floer

homology, see [39].

As a consequence, one need only determine the groups in non-negative Alexander grading

s, and use the symmetry to determine the remaining groups.

Casel: a<b<ec

Using Table 2.2, the states with non-negative Alexander grading are states B with 0 <
A(Bj) < c¢—b, and C;; with 0 < A(Cij) <b+ec.

Consequently, since the differential ) preserves the Alexander grading, every state Cj;

with A(Cj;) > ¢ — b must be in ker(g)/im(é\). There are no states By in these Alexander

-~

gradings, so in this range no state Cj; can appear in im(0).
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The Alexander grading of a state Cj; is given by A(Cj;) =i+ j — b — c — 2. Hence, if
A(Cij) = c—b+n, then i + j = 2c + 2 + n. By assumption, one has that 1 <i < 2c+1
and 1 < j <2b+1. The maximal Alexander grading of any state Cj; is thus 2c¢ 42042 =

A(Caet1,20+1). This is the unique maximal state, and corresponds to n = 20b.

For any n such that 1 < n < 2b, one has that the states

{Coct1.n+1, Cocnt2, -+ Coce2btnt1,26+1}

have Alexander grading equal to ¢ — b 4+ n. The cardinality of this set is 2b — n + 1, and
this set provides a basis for ﬁ(D)d,C_Hn. From Table 2.2, d = s + b — c for all states Cj;,

and so this is the corresponding Maslov grading for these generators.

The only states in Alexander grading ¢ — b are the states C;; with ¢ + j = 2c + 2 and the
states B;; with ¢ = 2¢ 4+ 1 and k odd. The set of all states in this Alexander grading are

thus:

{Co41.1,C2.2, -+, Coc—ap+1,26+1} U{B2ct1,1, Bact1,3 - - - Bact1,2a—1}-

From Theorem 6.1, one can deduce that 5(3204_172])4_1) = Coc—2p2p+2 + Cos—2p11,2p+1-

Enumerating over the possible states Ba. 12,41, one has that:

5(B20+1,1) = Coc2 + Coct11

5(Bzc+1,3) =Coc24+Co—13

O0(B2c+1,2a—3) = Cac—2q+4,2a—2 + Coc—2a+524—3

0(Bact+1,2a—1) = Coc—2a+2,2a + Coc—20+3,2a—1

By assumption, a < b, and so all of the indices for the Cj; terms in the image are well

~

defined. Hence, no state B;; with i + j = 2c + 2 lies in ker(9). A basis for the homology

in Alexander grading ¢ — b is then given by

{Coe41,1,C2c-1,3, -+, C2e—2a+43,2a—1} U {C2e—2a+1,2a+1, Coc—2a,2a42; - - s Coc—2b+1,2+1}5
which has cardinality 3(2a) 4+ (2b —2a+1) =2b—a + 1.

In Alexander grading s for 0 < s < ¢—b—1, one has the states C;; with i+j = s+b+c+2,
and states B;p with ¢ = s+ b+ c+ 2 with k even, or ¢ = s+ b+ ¢+ 1 with k£ odd.
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With s = ¢ — b — 1, these states are:

{Co1,Coe—12,+ ,Coc—apopt1} U {Bacy1,2, Boct1,4--  Boct1,24}

U {Bac1, Bz, -, Bac2a—1}-
Applying Theorem 6.1 once more, the maps 9 in this Alexander grading are as follows.

5(Bzc+1,2) =Co1p2

§(B2c+1,4) =Coc—34

O0(B2c+1,2a—2) = Coc—2q+3,2a—2

-~

0(B2c+1,2a) = Coc—2a+1,2a + Coc—20,2a-+1

-~

O(B2c1) = Cac

~

0(B2c3) = Coc—23

0(Bac,20-3) = Coc—2a+4,2a—3

5(B20,2a—1) = Coc—2a42,2a—1-
Consequently, in Alexander grading ¢ — b — 1, a basis for the homology is given by

{Coc—2a,2a+1, Coc—2a—2,2a+2, "+ Coc—2p2b+1},
which has cardinality 2b — 2a + 1, as specified in the statement of the theorem.

The calculation of homology is very similar in Alexander grading ¢ —b— 3, where the states
in this Alexander grading are now those Cj; with i + j = 2c — 1, those By, with i = 2c —1
and k even, and those B;; with ¢ = 2¢ — 2, with k¥ odd. The maps 9 in this Alexander

grading are given by:

5(32&1,2) = (U232

5(32&1,4) = Cac—54

0(B2c—1,2a—2) = Coc—24+1,2a—2

~

0(B2c—1,24) = C2c—2a—1,2a + C2c—20—2,2a+1
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5(320—2,1) = Coe—2.1

d(Bae_23) = Coc—a3

0(Bac—224-3) = Coc—2a+2,2a—3

0(Bac—2,2a—1) = Coc—24,2a—1-

Once more, a basis for the homology in this Alexander grading is then

{Coc—2a-22a+1, C2c—24-32a+2: " - s Coc—2b—2,2b+1 }-

This set has cardinality 2b — 2a + 1, as required. It is then simple to see that the situation
is the same in Alexander grading ¢ — b — (2r + 1), where this is greater than 0. To adapt

the calculation, simply decrease the ¢ index on all terms Cj; and B, by 2.

Now, consider the states with Alexander grading ¢ — b — 2, namely Cj; with i + j = 2c,
and B;, with i = 2¢, k even, or i = 2¢ — 1 and k odd. Once more, all C;;-states are in the

kernel of 9. The maps 9 in this Alexander grading are as follows.

5(B2c—1,1) = Coc—22+Co11

O(Bae—13) = Coc_sa+ Coe_33

0(Bac,2a—2) = Coc—24+3,2a—3

-~

0(B2c,2a) = Coc—2a+1,2a—1-

Using a simple linear combination of the above states, one sees that the states C;; with

-~

i+ j =2cand j < 2a all lie in ¢m(0). The remaining C;; states provide a basis for the

homology, namely

{Coc—2a—1,2a+1, C2c—24—2,2a+2: - s Coc—2b—1,2b+1}-

This is a set that has cardinality 2b — 2a + 1, as required.
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Likewise, to yield the states in Alexander grading ¢ — b — (2r) when this quantity is non-
negative, decrease all of the 7 indices by 2 in the terms Cj; and B;; above. This gives a

set of the same cardinality, namely

{Coc—2a—2r+12a+1, Coc—2a—2r2a+2,  * * » C2c—2b—2r+1,2b+1} -

Hence, in case 1, one has the required ranks in each Alexander grading, and since all of

the generators are states Cj;, one has that d —s =0 —c.

Case2: b<ec,b<a

In this case, the calculation is similar to that of Case 1. Since the maximal Alexander
grading for any of the states B;;, is c—b, for all states C;; with Alexander grading c—b+1 <
A(Cij) < b+ c the calculation remains exactly the same as presented above. Each state
C;; satisfying these bounds represents a generator in homology, and so the rank of the

homology in Alexander grading s =c—b+nis2b—n+1for 1 <n < 2b.

The possible states with Alexander grading equal to ¢ — b are B; with ¢ = 2¢+ 1 and k&
odd, and Cj; with 7 4+ j = 2¢ + 2:
{Coct1,1,Coc2, - s Coc—apt1,2641} U {Bact1,1, Bact1,3 - - - Boct1,20-1}-
Enumerating over the possible states Ba.y1,2,+1 one has the following calculation for d.
5<B2c+1,1) = Coc2 + Coct1,1

5(320—‘,-1,3) =Coc24+C2_13

Q)

(Bact1,20—1) = Coc—2p42,26 + Coc—2p43.26—1

Q)

(Bact1,20+1) = Coc—2b41,26+1
O0(Bact1,2043) =0
5(32%1,2%1) =0

A basis for homology in this Alexander grading is then given by the set

{Coc2,Coc—24,+ ,Coc—pr22} U {Bact1,2643, Bact1,264+5: s Bact1,2a—1}-

The subset of the above with only Cj; states has cardinality b, and Maslov grading equal
to 0, while the subset with only B;j; states has cardinality a — b — 1, and Maslov grading

1. This is precisely as required.
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The calculation for states with Alexander grading ¢ —b—1 is similar to Case 1. The states

in this Alexander grading are as enumerated on page 197, with the differential d as follows.

8(Baci12) = Coc—1,2

O(Baey14) = Coc—34

-~

O(Bact+1,20) = Cac—2p+1,2

-~

O(B2ct+1,2b+2) = 0

5(B2c+1,2a) =0

~

0(B2c,1) = Cac

-~

O0(B2c3) = Cac—23

Q)

(Bae2b—1) = Coc—2p42,20-1

Q)

(Bac,2b+1) = Coc—ap2p+1

5(B20,2b+3) =0

~

0(B2c,2a—1) = 0.
A basis for the homology in this Alexander grading is then given by

{Bac+1,20+2, Boc2v+3, Boct1,204+45 *+  Bac2a—1, Bact1,2a }
which has cardinality 2a — 2b — 1, as required.

Likewise, similarly to Case 1, the calculation of d for those states in Alexander grading
c¢—b— (2r +1) proceeds in exactly the same fashion, with all of the 7 indices in C;; and
B decreased by 2. In particular, a basis for the homology is given by the following set,

with cardinality 2a — 2b — 1:

{Bac—2r+1,26+2, Boc—2r2b+3, Boc—2r+1,2644> "+ s Bac—2r2a—1, Bac—2r+1,2a}-

Similarly, consider those states with Alexander grading ¢ — b — 2. These are once more as

stated in Case 1. The calculation of the map 0 is as follows:

~

O(B2c-1,1) = Coc—22 + Caoc—11
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5(320—1,3) = Coe—44 +Coc—33

)

(Bac—1,20-1) = Cac—2p26 + Coc—2p+1,26—1

)

(Bac—1,2641) = Coc—2b—1,2b+1

(Bac—1,20+3) =0

Q)

5(B2c—1,2a—1) =0
5(32c,2) =Coe—11

5(32c,4) = C2e-33

(Bzc 2—2) = Coc_2p132p—3

Coe—2b—1,2b+1

)=
8(Baeab) = Coc_apt195-1
O(Baeopyo) =

) =

BQC 2b+4

9(Bac2a) = 0.
A basis for the homology is then given by the set

{(Bac—1,2641 + Bac2v+2), Boc—1,26+3, Bocov4, -+ Bac2a}-

Note, this set includes a term that is the sum of two B;; states, but as a generating set
this has cardinality 2a — 2b — 1. Similarly, one can adapt the calculation to states with
Alexander grading ¢ — b — (2r) by the same method as before. The generating set for the

homology in this Alexander grading has cardinality 2a — 2b — 1, namely:

{(Bac—2r41,2641 + Boc—2r+42,20+2), Boc—2r41,2643, Bac—2r+2,26+45 "+ B2c—2r42,2a}-

Hence, in Cases 1 and 2, generating sets for the homology have been given, and they match

the statement in the theorem. M

For specific values of a, b, ¢, it is easy to verify the above using the computer implementation
of the construction [47], and the wrapper for this written by the author [58]. The output
of the program are the ranks of the homology groups in each Maslov and Alexander

grading.
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Remark 6.4 As noted in Section 1.1, in [5] Eftekhary calculated the hat version of the
knot Floer homology ﬁﬁ(([() for the above family of pretzel knots. In [5, Thm. 2], it
is stated that the hat version of the knot Floer homology is contained in precisely two
diagonals: d —s=b—candd—s=0b—c+ 1, and for each value of s is non-zero in at

most one of these diagonals.

Since the conjectural equivalence between the theory of the bordered invariant C(D) and
classical knot Floer homology holds, as recently proven in [48, Thm. 1.1], then there is a
contradiction with this result. In particular, Theorem 6.3 states that in Alexander grading
2, the homology group ﬁ(P(?, —3,6))q2 is Fg=1 ® Fgq=q. For this three strand pretzel knot
P(2¢+1,—2b—1,2a), the coefficients describing the knot are c =3 =a and b= 1.

Soa—b—1=1=0b, and in Alexander grading c—b = 2, one has a direct summand F with
Maslov grading equal to 0, and a direct summand F with Maslov grading equal to 1. Using
the bimodule B2 as defined by Ozsvdth and Szabd in [49], the computer implementation
[47] wverifies this calculation, with the homology having the same ranks as described in

Theorem 6.3.

Using Theorem 6.1, one can also determine the ranks of the homology groups H (D) for D
a special knot diagram of the three strand pretzel knot P(2c+ 1, —2b — 1,2a) with b > c.
However, this is a less interesting case, since it has already been demonstrated that this
knot has 7(D) = v(D) = b—c = g4(D) from Lemma 3.19. However, for completeness, the

~

ranks of the homology groups H (D) s are presented in Corollary 6.5.

Corollary 6.5 Let D be a special knot diagram of the three strand pretzel knot P(2¢ +
1,—2b—1,2a) with b > ¢, as presented in Figure 6.1. Then, the bigraded homology groups
I?I(D) = @d,sezfl(D)dﬁ are given as follows. When b > ¢, one has that:

Pl i l<e<hoc1
Fat2etl se{c—bb—c}

- d=0 )

H(D)gs =
F?li;igic s=b—c+n, 1<n<2
F(Qic:;’rgic s=c—b—n, 1<n<2ec.
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When b = c, one has that the homology groups are given by:

2b+1 _
F5 s=0
H(D)g,s = Fii;’fgic s=n, 1<n<2c
F2e—ntl s=-n, 1<n<2ec

d=s+b—c
Proof As in the proof of Theorem 6.3, one can exploit the symmetry of C(D) proven

in [49, Prop. 1.2], and examine only non-negative Alexander gradings.

~

Furthermore, all of the states Cj; and Ajj are in ker(d). From Table 2.2, any state Cj; or

Aji, with Alexander grading greater than the maximum Alexander grading of some state

-~

B cannot appear in im(09), and hence provide generators of homology.

Consequently, it is simple to see that for any n in the range 1 < n < 2¢, the states

{Crnt1,2641, Crg2,26, -+ Coct1,26—2¢4n+1}
have Alexander grading equal to b — ¢ + n, and provide a basis for H(D)gp—ctn =
2c—n—+1
IF‘d:2b—2c—s—n'

Case 1: b>c

When b > ¢, there are no states B;; with non-negative Alexander grading. Hence, all of

the states Cj; and A;j, with non-negative Alexander are generators of homology.

In Alexander grading b — ¢, the generators of the homology group H (Dg,s) are then
{Cr2641,C226, -+ Cocy1,20—2c41 1 U {A2p41,1, A2pr1,3, -+ 5 Azbr1,2a—1 1

which is a set of cardinality 2c + a + 1.

For Alexander grading 0 < k < b — ¢ — 1, the homology group has rank 2a + 2¢ + 1, as it
is generated by the set
{C1ptctbt1: Coptretls =+ Coett p—ctht1} U {Ab+c+k+1,2r+1}?«;1 U {Ab+c+k+2,2r}72ﬂil-

Since these are all of the states in the non-negative Alexander gradings, this completes the

calculation of the homology groups when b > c.
Case2: b=c

In this case, one has that b — ¢ = 0 = ¢ — b. The only states with positive Alexander
grading are the states Cj; with i +j > b+ ¢+ 2. All of these states are generators of

homology, and the calculation of the ranks is the same as in Case 1.
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In Alexander grading 0, the generating sets for the homology depend on whether a < b,

a =bor a > b, however the rank doesn’t change.

Using the fact that 0(Bact1,2p+1) = Coc—2p,2p+2 + Coc—2pt+1,2p+1 + A2et1,2p—2s41, ONE can

easily check that a generating set is given by

—1 —1
{Asbt1,2r41 g U{Coc—2r11,2r+1 oo U {C2—2a+1,2a+15 Coc—2a,2a42: - s Cr2p4+1} a<c=1b
{Coct11,Coe-13, -+, Coe—2a+1,2a+1} U {A2+1.1, A2pt1,3, - s Adpt12a—1} a=c=b
b
{Coc2rt12r11 =0 U{A2m41,20- 2641, A2br1,20- 2643, s Aopr12a-1} @ >c =0,

all of which are sets of cardinality 2b+ 1 = 2c+ 1. Note, the only states B;, in Alexander

~

grading 0 are Bact1,2p+1 for 0 < p < a — 1, none of which lie in ker(9). [ |

For the family of three strand pretzel knots given by P(2¢ + 1,—2b — 1,2a), the hat
version of the homology f'\I(P(2C +1,—2b—1,2a)) is thin (contained in a single diagonal
M — A) when b > ¢, and when ¢ > b > a. Using the equivalence between ]?FT{(D)
and H (D) from [48,49], in these cases the classical knot Floer complex CFK®(D) is
completely determined by the concordance invariant 7 and the Alexander polynomial, as
proven by [52]. Applying Proposition 3.18 and Lemma 3.19 allows for the determination of
7, which is equal to —%, where o is signature of these knots. This signature is calculable
using the techniques of [7]. These knots are called o-thin, following the terminology
of [52].

~

However, in remaining case when ¢ > b and a > b, the homology groups H(D) are not
thin, and so HF K~ (D) and CFK®(D) are not directly calculable simply from 7 and the

Alexander polynomial.

6.2 Calculation of H™ (D)

The determination of H~ (D), when D is a special knot diagram of P(2c+ 1, —2b— 1, 2a)
with min(a,c) > b follows as a corollary from the determination of C(D) in Theorem 6.1.

For comparison, in [49], the bigraded homology group H~ (D) for a special knot diagram
D is denoted JY(D) = H(C(D)/V =0).

Theorem 6.6 Let D be a special knot diagram of P(2c+1,—2b—1,2a) with min(a,c) >
b, with a diagram of the form described in Figure 6.1. Denote by H~(D,s) the group
®qH ™ (D)q,s, where s is the Alexander grading and d the Maslov grading. The homology
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groups H™ (D) as described in Definition 6.2 are then as follows:

H( 2£ b—C—l Fd 20—92¢—1 1§£§b

H (D,2t—-b—c¢
H (D,b—c

) =
) = Fi_or s Isf<b-1
) =
H (D,b—c+1)=F[U]g=2—2c12 ® FZ;S;_12C+2
) =
) =
) =
) =

b+1
IF‘d 2b—2c

Fe—b-1 b+1</t<c

H™(D,2l-b—c d=26—2c+1

H (D,20—-b—c—1 Fd 20— b+1<t<c

ot 0</<b-1

H (D,c—b+20+1 =241

Fo—th1 1</0<hb.

H™(D,c—b+20) =F4

Proof From Table 2.2, the minimal Alexander grading of any state Aji, By, or Cjj is

—b — ¢ — 1, which is achieved for states

{A12 1o U{Brar}72).

Using Theorem 6.1, one has that

0 (A12r) =UA; 2011

0™ (Bi2r) = A12r + UBj 2741.

Hence, since no cancellation can occur, one has that none of the elements above live in
ker(97), and so the homology in Alexander grading —b — ¢ — 1 is trivial. It is also simple
to check that (97)% = 0 when applied to either of these states, as can be expected from a

chain complex.

Likewise, the states in Alexander grading —b — ¢ are

{A1 9041, Bror1 1925 U { A9, Baor }oo, U{C11}.

Applying Theorem 6.1 once more, the action of 0~ on these states is as follows:

90~ (An) = U(An + C12)
0 (Ar2r41) =
0™ (A22;) = U(Az 2, + A22r41)
0~ (Bn) = An +Cn
0~ (B12r+1) = A12r41
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0 (B22r) = (Co—ort1,2r—1 + A22r—2) + U(B3,2r + B2.2r41)
0™ (Cn1) = U(A2 + C12).
Using this, it is clear that ker(0~) in this Alexander grading is spanned by

{A11 + C} U {A12,41}25,

which are also terms that feature in im(9~). Hence, the homology group is also trivial in

Alexander grading —b — c.

Alexander grading 20 —b—c—1

The states with Alexander grading 20 —b—c— 1 for 1 < £ < b are:

{A202r41, Boror+1}220 U {A2e11.2r, Boor1,2r}2%0 U{Cyj Vit j=2011-

Fixing ¢ in the range 1 < £ < b, applying Theorem 6.1 the differential 0~ acts as follows

upon these states:

0™ (A 2r+1) = UAgpi1,2r41
0™ (Agps12r) = UAgpy1 2r+1
0™ (Copy1,20-2p) = U(Copy1,20—2p+1 + Copar—2p12) 0<p<i—1
0™ (Cop2t—2p+1) = U(Copy1,20—2p+1 + Copar—2p+2) 0<p<t
0™ (Bar,2r+1) = Cor—2r 2741 + UBopi1 2041 0<r<t¢-1
0™ (Bagar+1) = Agr2r—2041 + UB2py1 2711 (<r<a-1
0™ (Baet1,2r) = Cop—ory1,2r + UBopi1 9741 1<r <Yt
0™ (Baet1,2r) = Agpy1,2r—20 + UB2ps1 2741 (+1<r<a-1
0™ (Bar41,2a) = A2e+1,2a—2¢ + A2,20—20+1-

Using the above, one has that in this Alexander grading, ker(0~) contains the terms

{Agps1.2r + Azpori1 1221 U {Agpy120} U{Copi120—2p + C2p,2€*2p+1}f;;%)'

Note that the sums of the C;; terms appear in the image of 07, since for 1 <r < /¢ —1,

one has that:

0™ (Bapy1,2 + Bayg) = Cop—12 + Cop—23

0™ (Baps1,4+ Bays) = Cop—za + Coy_y 5
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0™ (Bagt1,20-2 + Bogoe—1) = C300—2 + Co 1.

Similarly, for [ +1 < r < a — 1, the sums of Aj; terms also appear in im(0~), since

0™ (Bary1,2042 + Bororys) = Aspr12 + A3

0™ (Bagt1,2044 + Baporys) = Aspp1a + Aops

0™ (Bart1,20—2 + Boppa—1) = Aset1,20—20—2 + Az 2a—20-1

0™ (B2r+1,20) = A2r41,2a—2¢ + A22a—20+41-

Furthermore, since 07 (Agr2,) = U(A2e41,2r + A2p2r41), for every 1 < r < a — 1, the

homology in Alexander grading 2¢ — b — ¢ — 1 is given by

({Age41,2¢ + A213,2t+1}?:_al_g+1 U{Aot124}) / ({U(Aze1,2t + A2£,2t+1>}?:_;_g+1 U{UA20+1,24})
which gives a group isomorphic to F.

Alexander grading 2¢ —b — ¢

The states with Alexander grading 20 —b—cfor 1 </ <b—1 are

{A2041204+1, Bovs1.2r41 1225 U { A2er0.2r, Barraor iy U {Cij }igjmaera-

Applying the calculation in Theorem 6.1 and setting V' = 0 for the map d : C(D) — C(D),

one has that:

0™ (Aze41,1) = U(Age21 + Ch2042)
0 (Aget1,2r41) = 1<r<a-1
0~ (Ager22r) = UAzy 324
0" (Cr2041) = U(Agpq21 + Ch2042)
0™ (Copy1,20—2p+1) = U(Copt1,20—2p42 + Copor—2p43) 1<p<t
0™ (Capar—2p+2) = U(Cop20—2p13 + Copi1,20—2p+2) 1<p<t
0™ (Bart1,2r+1) = Cou—2r2r+2 + Cor—2r11,2r+1 0<r<¢-1
0~ (Bary1,2041) = Croer1 + Azeq1n
0™ (Bops1,2r+1) = A2eq1,2r—2041 (+1<r<a-1



CHAPTER 6. RESULTS AND THE FULL INVARIANT 208

0" (Bary22r) = Cop—ory32r—1 + U(Bagyzor + Bagyoory1) 157 <4

0™ (Bars2,2r) = Aspro2r—20—2 + U(Bary3or + Barroor41) L+1< 7 <a.

As a consequence, it is easy to see that the terms Agpi11 + C1 2041, {A25+1,27«+1}?;(1) and
{Copt120—2p11+ Cgp,gg,gpﬂ}f;:l are all of the generators in ker(97) in Alexander grading

20—b—cfor1<¥¢<b-—1.

The term Agpi11 + Ci o041 lies in im(07), as it is equal to 07 (Basy1,2041). Also, each
term in the set {Copy120—2p+1 + 02p724_2p+2}£:1 lies in ¢m (0~ ) using the calculation of
07 (Ba¢+1,2r+1) above. Furthermore, {AQHLQTH}?;f_l also lie in ¢m(07) from the same

term with / +1 <r <a-—1.

What is more, since 0~ (Aary1,2r) = UAgpt19741 when 1 <0 <b—1, H (D,20—-b—c) is
isomorphic to

{Ase12r+1}°2) AU Agpi1 041302, = FE

Alexander grading b — ¢

In Alexander grading 2b — b — ¢ = b — ¢, the terms in ker(9™) are:
{Crap1} U {Aspi10011 1220 U{Copi1.2p—2p11 + C2p,2b72p+2}g:1-
Likewise, as in the calculation above, one has that

im(07) 3 {Agpr11 + Croper } U {Agps1 2001 120 U{Copr10p-2pe1 + C2p,2b—2p+2}g:1~

Once more, employing the fact that 07 (Aapt1,2r) = UAsgps1,2r4+1, the group H= (D, b —¢)

is isomorphic to

{Aser1001 1020 oAU Aseir or1 Y ey ® {Aopi1,1 }/{U Agpya 1 } = FOHL

Alexander grading b —c+ 1

The possible Kauffman states in Alexander grading b — c+ 1 are

{Bop+,20411020 U {Bap32r oy U {Cij }isjmoprs-

Recall, from Table 2.2, there are no A;;, states in this Alexander grading or in any greater

Alexander grading.



CHAPTER 6. RESULTS AND THE FULL INVARIANT 209

Note here, that the only assumption in this corollary is that min(a,c) > b, hence one
might have that ¢ = b+ 1. Thus, 26 +3 =2(b+ 1) + 1 = 2¢ + 1, so each By, term is a

generator corresponding to an appropriate Kauffman state.

Applying once more the calculation of 9~ from adapting Theorem 6.1, the action of the

differential on these states is as follows.

0 (Cogpy1) = UC39p11
0~ (Copavt3—2p) = U(Copapra—ap + Copt1,26+3—2p) 2<p<b
0™ (Copy2,1) = U(Copg22 + Copys1)
0™ (C3,2p) = UC32p41
0™ (Copt1,2+2—2p) = U(Copapta—2p + Copi126+3-2p) 2<p<b
0" (Bavy2,2r+1) = Copr2-2r2r+1 + UBapy3 2011 0<r<b
0™ (Bapy2,2r+1) = UBopi 3241 b+1<r<a-1
0~ (Bapy3,2r) = Copr3—2r2r + UBopi 32041 1<r<b
0™ (Bap+3,2r) = UBapy32r11 b+1<r<a-1
0~ (Bav+3,24) =

Hence, in this Alexander grading, one has that ker(07) is spanned by

b 1
{Capabr3—2p + Copy126+2-2p tpe1 U {Bavr2.2r+1 + Bapysor frpq U {Bap+3.2a}-

Each of the terms Cop op+3—2p+Copt1,26+2—2p appear in im (0~ ), from the terms 0~ (Bapy2 2741+

ng+3727~) with 1 <r< b.

Since 07 (Bap+2,2r) = U(Bapt3,2r + Bapt2.2r41) when b+2 <7 < a—1, and 0~ (Bapy2,2q4) =

U Bap+3,24, the group H™(D,b— ¢+ 1) contains a subgroup Fo—b-2 g F = Fo—b-1,

However, the term Bapio 2543 + Bapi3op+2 and any U*-multiple of this does not ap-
pear in im(07). This is because the term 0~ (Bapr226+2) = Crov+1 + U(Bapys2v+2 +
Bopi+2,2v+3). An examination of Theorem 6.1 demonstrates that there is no way to cancel
the C 2p41 term in this sum. As a consequence, Bopioop+3 + Baptsapt2 € ker(97), but
since U* (Bab+2,2b+3 + Bapy3,20+2) for any k € N, this generates a subgroup F[U] in homol-
ogy. Hence, the group H™(D,b — ¢+ 1) is only non-zero in Maslov grading 2b — 2¢ + 2,
and is isomorphic to

H™(D,b—c+1) = F[U] @ Feb-L,
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As a remark, there is a special case when a = b+1, since then there is no term Bop 2 9543 =

Bopt22q4+1. However, similar logic holds, since Bayt3 2, € ker(07), yet because

0™ (Bapt2,26+2) = 0~ (Bapt2,24) = Cr2041 + UBap 324 # 0,

no U-multiples of By 32, ever appear in im(0~). Hence, this generates F[U], and this is

the only homology in this Alexander grading when a = b+ 1.

Alexander grading 20 —b—c, £ > b

The states in Alexander grading 2¢ — b — ¢ with ¢ > b are

{Bors2,2p)p—1 U {Boes1,2p 11 oo U{Cig i jmaesa,

noting once more that there are no states A;; with Alexander grading greater than b—c < 0.

The action of 9~ on these states is then given by the following:

0™ (Copat+2—2p) = U(Cop2e+3—2p + Copi1,2042—2p) L—b+1<p<Yt
0™ (Copt1,20e41-2p) = U(Cop20t3—2p + Copt1,204+2-2p) C—b+1<p<H4
0™ (Car—2p41,2b+1

0™ (Barg2,2p) = Cory3—2p2p—1 + U(Baryzop + Borroopr1) 1<p<b+1

)
)
)
)
0~ (Baey2,2p)
)
)
)
)

=0

U(B2€+3,2p + B2é+2,2p+1) b+2<p<a-1
0™ (Bapy2,24) = UB2¢43,24
(Ba+1,2p+1) = Cor—2p2p+2 + Cor—opi1,2p+1 0<p<b-1

.
0™ (Bar+1,26+1) = Cor—2b41,2b+1
5

(Baeg1,2p+1) =0 b+1<p<a-1

As a consequence, the generators in ker(07) in this Alexander grading are
1 L
{Bart1,2p+1}ppi1 U{C2p2012-2p + Copi1,2041-2p pmp—py1 U {Coe—2041,2011 }-

Note that Cor—2p41,2041 = 0~ (Bary1,26+1), and Cop apy2-0p+Copi10041-2p = 07 (Baet1,20-2p+1)-

Furthermore, since 07 (Ba¢41,2p) = UBay1,2p+1 when p > b+ 1, one deduces that

H (D,20—b—c)=Fib !, | forl>b.

Alexander grading 26 —b—c—1, 4> b+ 1
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The only states in this Alexander grading are

{Bae+1,2ptp=1 U {Barap+1ty “0U{Cij}titj=e+1-

The differential 0~ acts on these states as follows:

0 (Copr—ap2p41) = UCo_2p11.2641
0™ (Cop2e+1-2p) = U(Cop2e+2—-2p + Copy1,2041-2p) {—b+1<p<4
0™ (Cop—apy1,2) = UCop_2p11,2b11
0™ (Copy1,20—2p) = U(Cop2e+2—2p + Copi1,2041-2p) l—b+1<p</l—1.
0™ (Bart1,2p) = Cor—apt1,2p + UBopy1 2p11 1<p<b
0™ (Baes1,2p) = UBggy1,2p41 b+1<p<a-1
0™ (Bary1,24) =
0™ (Bar2p+1) = Cor—2p2p+1 + UBapy1 2p41 0<p<bh
0™ (Bar2p+1) = UBoi1,2p41 b+1<p<a-1

From above, 07 (Ba2p+1 + Bary1,2p) = Cor—apops1 + Cor—opt1,2p for 1 < p < b. Hence,
despite the fact that Cop_op2p+1 + Cor—2pt1,2p € ker(07), these terms do not contribute

to the homology.

Furthermore, 07 (Bas2p) = U(Bagopt+1 + Bary1,2p) for p > b+ 2. What is more, using
Theorem 6.1, one can check that 07 (B apt2 + Bar—1,20+1) = U(Bary1,26+2 + Bar2p+3)-
Hence, one has that {UBQ(72p+1+UB2[+272p}Z;;+1 € im(0~). Similarly, since 0~ (Bas,24) =

UBgy41,2q4, one has that im(9~) 3 UBayt1,24

Then, since one has that {UBQ&QP_A,_l+UBQ€+272p}g;;+lU{BQZ.}_LQG} € ker(07) in Alexander
grading 2¢ — b — ¢ — 1, the group H~ (D,2¢ — b — ¢ — 1) is thus

H(D,20-b—c—1)=F4b, .

Alexander grading c —b+20+1,0</(<b—1

As described before in the calculation of H (D), the only states with Alexander grading

greater than ¢ — b are the states Cj; with ¢ 4 j > 2c¢ + 2.

Specifically, in Alexander grading ¢ — b+ 2¢+ 1, with £ in the range 0 < ¢ < b—1, one has
that states

C C
{C2p,2c+2€+3—2p}p:c+£+1—b U {C2p+1,2c+2£+2—2p}p:c+g+1_b.
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The differential 0~ acts as follows on these states:

0" (Copeqeq1-b)20+1) = UCo(cp41-b) 41,2641

0™ (Copactae+3—2p) = U(Copocraera—2p + Copt12c42043—2p) c+HL+2—-b<p<c

07 (Coteqra1-t)+1,20) = UCo (e p41-b)+1,2641

)=
)=
)=
)=

0™ (Cop1 2e+2042—2p) = U(Copactorra—op + Copii2e+2043-2p) ¢+L+2—-b<p<ec

Consequently, one has that {Capoctor43-2p + C’gp+17gc+23+2_2p}220+[+17b} € ker(07).
Since one also has that 07 (Capactae+2—-2p) = U(Copactart3—2p + Copi1 2e42042—2p) from
Theorem 6.1, it is clear that each of these terms generates a subgroup F in H~(D,c—b+
2¢ 4+ 1). Hence,

H™(D,c—b+20+1)=F~~

Alexander grading c —b+2¢,1 </ <)

Like in the previous case, one has that the states in this Alexander grading are C;; such

that i + 7 = 2c + 20 + 2. These states are

{Copactaera—2ptpcror1—b Y {C2p+1,2042041-2p Fpecto—b
The differential acts on these states by:
0™ (Copactae+2—2p) = U(Copactae+3—2p + Copitpeta2e42-2p) ¢+HL+1-b<p<c
0™ (Coteqr—ty+1,20+41) =0

0™ (Copt1.2e+2041-2p) = U(Copaci20+3—2p + Copt12e42042—2p) c¢+L+1—-b<p<e.

Clearly, fixing ¢, the generators of the ker(0~) in this Alexander grading are
{Copacraera—ap + Copy12ct2041-2p fp et 1—b Y {Co(ct—b) 41,2641}
Then, since 97 (Co(eyr—p),204+1) = UCo(cye—b) 41,2041, and
0™ (Copactae+1-2p) = U(Copacrarta—2p + Copi1 2c+20+1—2p)
forc+ 44+ 1—b<p<c, all of these terms generate the subgroup F in homology. Hence
H™(D,c—b+20) =F~1  H
Using Theorem 6.6, one can extract numerical invariants that have recently been proven

to be equivalent to the classical concordance invariants v,7 and e as defined in Chap-

ter 3.
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6.2.1 Numerical invariants

As introduced by Ozsvath-Szabé in [49, Sec. 1.1], the module H(C(D)) — denoted by
them J(D) — is a (A, A)-graded module over R’ with multiplication actions by both U
and V. These actions are inherited from the actions of U and V on the complex C(D), as

defined in Definition 4.2.

Using [49, Prop. 1.4], which states that H (C(D))®pF[U, U] = F[U, U] as R’-modules
with multiplication by V acting as multiplication by 0 on F[U,U~!], for a special knot

diagram D one can define the numerical invariants 7 and v. See [49, Def. 1.5,1.6].

Definition 6.7 With the decomposition

H(C(D)) =P H(C(D), ),

SEZL

H™ (D) = @H—(D,s),

SEZ
where s is the Alezander grading, define the knot invariant (D) € Z as

z(D):—Tg%{HeH’(D,s) ’ Ul.6+40 VdeN}.

Similarly, define the invariant v(D) € Z as

v(D) = —maZX{H e H(D,s) ‘ U040 Vde N}.
sE

With the recently proven equivalence equivalence between C(D) and CF K/ (K), as demon-

strated in [48], these invariants 7 and v are equal to their counterparts 7 and v from

classical knot Floer homology.

Independent of this equivalence, in [49] it was demonstrated that these numerical invari-
ants extracted from C(D) satisfy the same crossing change inequalities as their classical

counterparts, as described on page 45.

Proposition 6.8 [/9, Prop. 1.7] For Dy a special knot diagram with specified (oriented)
positive crossing, define D_ as the special knot diagram with this crossing switched to a

negative crossing. Then
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Furthermore, for any special knot diagram D,

These inequalities are proven in [49, Sec. 11.2]. In particular, the fact that (D) < v(D)
follows from the fact that any U-nontorsion element in H(C(D)) is also U-nontorsion in
H~ (D). In the language of [4], the U-nontorsion element in H(C(D)) is the U-tower for
the complex C(D). The fact that C(D) is a knot-like complex comes from the recently

proven equivalence of C(D) with classical knot Floer homology, and the work of [4].

Theorem 6.6 then gives the determination of 7(P(2¢ + 1, —2b — 1,2a)) with min{a,c} >
b.

Corollary 6.9 For D a special knot diagram of the three strand pretzel knot P(2c +
1,—2b —1,2a) with min{a,c} > b, the quantity T is given by

(D) =c—b—1.

Proof From the proof of Theorem 6.6, in Alexander grading b—c+1, the term Bop 19 243+
Bop43.9p+2 generates a subgroup F[U] in H~ (D) when a > b+ 1, else the term Bap 32,
generates F[U] when a = b + 1.

Hence, from Definition 6.7, as this is the only Alexander grading with a non-torsion ele-
ment,

7(D)=—-(b—c+1)=c—b—1.
|

Note, it was determined in Proposition 3.18 that the classical 7 invariant defined by

Ozsvath-Szabd lies in the range
c—b—1<7(P2c+1,-2b—1,2a)) < g4(P(2c+1,-2b—1,2a)) < c—b.

Gratifyingly, using the equivalence between the classical and bordered invariants, Corol-
lary 6.9 does not contradict this restriction. Furthermore, since v(K) € {7(K),7(K)+ 1}

for every oriented knot K, for these special knot diagrams one has v(D) € {c—b—1,¢ —
b}.

If v(P(2c+1,-2b—1,2a)) = ¢ — b — 1, one would require that the maximal Alexander

grading s with a U-nontorsion element in H(C(D,s)) is s =b—c+ 1.
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Lemma 6.10 For D a special knot diagram of P(2c+1,—2b— 1, 2a) with min{a,c} > b,
one has that

v(iD)=c—b—1

Proof Consider the element Bayy324. From Theorem 6.1, one has that d(Bapy324) = 0.

In the study of 0~ within Theorem 6.6, this appears in im(0~) as

0™ (Bap42,20) = UBap43 24-

However, when V' # 0, one has that

d(Bap+2,24) = UBaop1324 + V Bapt1,24—2-

One can check that no other term can cancel this V By, 94—2 term in the sum - i.e.
V Bopi1,2a—2 ¢ im(d). Hence, UBagpy32, ¢ im(d), and so Bayy3 2, is a U-nontorsion state

because U? - Bopi32q # 0 in H(C(D)) for every d € N.

The state Bop13 94 has Alexander grading b — ¢+ 1. If there were some terms with strictly

larger Alexander grading that are also U-nontorsion, one would thus have that
v(D) < —(b—c+1)=1(D).

However, this cannot be true, as Proposition 6.8 states that 7(D) < v(D). Hence, this
must be the maximal Alexander grading with such a U-nontorsion element, and so v(D) =

c—b—1. [ |

6.2.2 Other invariants of R’-modules

The information within H(C(D)) and H~ (D) can be used to place bounds upon other
numerical invariants, such as the concordance invariants {¢;} en introduced by Dai et al

in [4].

As proven in [4, Thm. 1.1], for each value j € N, one can use the methods outlined by
Dai-et-al in [4] to construct a surjective homomorphism from C (the concordance group of
knots) to Z. These homomorphisms ¢; are in fact defined as invariants of local equivalence
classes of bigraded chain complexes over R'. By [4, Thm. 2.5] and [62], two concordant
knots K; and K3 have locally equivalent complexes CFK,(K;) and CFK,(K3), where

x € {R/,R}. These complexes are as defined in Section 1.3.
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Hence, even without using the recently proven equivalence between CF K/ (D) and C(D),
for a special knot diagram D one can determine numerical invariants ¢; associated to local

equivalence classes of complexes C(D).

For the sake of brevity, a full definition of these invariants ¢; will be omitted, however

what follows is a rough outline of their construction from [4].

As outlined in Section 1.4.1, every knot-like complex over R’ is locally equivalent to a
reduced knot-like complex. Recall, this is a complex such that the differential acting upon
any element of the complex is strictly increasing in either the power of U, power of V,
or both. The invariants {¢;} are defined from standard complezxes, a subset of reduced,

knot-like complexes.

Definition 6.11 [/, Def. 4.3] For n an even natural number, let (b1, ba,--- ,by) be a se-
quence of non-zero integers. A standard complex of type (b1, - -+ ,by), denoted C(by,--- ,by),

is the knot-like complex freely generated over R' by {xo, 1, -+ ,xn}, such that:

e Fvery pair of generators xok,xTok11 are connected by a Ulb2et1l _grrow. If bojpy1 s

positive, then the arrow goes from xor41 to xap, and the reverse otherwise.
o Fuvery pair of generators Togy1,Tokt+o are connected by a VI2k42l_grrow.

A Ul-arrow (respectively Vt-arrow) is a map that when applied to some generator  yields
generator Uy (respectively V'y). In the diagrammatic representation of the complez,

following Figure 1.5, these would be horizontal (respectively vertical) arrows of length €.

The above should be sufficient to define the complex C(by, b, - - - , boy) and the associated
differential, however full detail is presented in [4]. The state x¢ is the V-tower, and the state
xy, is the U-tower, as defined by Definition 1.15. Hence, gry(zo) = 0, and gry(z,) = 0,
since this is a knot-like complex. From the following result of [4], every knot-like complex

is locally equivalent to some standard complex.

Theorem 6.12 [4, Thm 6.1] Every knot-like complez C is locally equivalent to a standard

complez.

Idea of proof Using the fact that one can place a total order upon the set of standard
complexes, for any knot-like complex C one can define integers {a;(C)};en such that there
is a standard complex with standard sequence {a;};cn that is locally equivalent to C.

Furthermore, it is proven in [4, Prop. 6.3] that for every knot-like complex there is some
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N € N such that a;(C) = 0 for i > N. These invariants a; are defined in [4, Sec. 5].

Consequently, for each knot-like complex C' there is some standard complex C'(aq, - - - , agg)
to which it is locally equivalent to it. The invariants ¢; of any knot-like complex are defined

as follows.

Definition 6.13 [4, Def. 7.1] For C a knot-like complez, let the standard complex that

is locally equivalent to this be denoted C'(ay,asz,---asg). Then, for each j € N, define
©;(C) = #{aila; = j,i odd} — #{ai|la; = —j,i odd}.

The invariants ¢; are thus a signed count of the number of horizontal arrows of length j

in the standard complex that is locally equivalent to then knot-like complex.

These invariants {¢;} are recoverable from any knot-like complex, and only use the purely
vertical and purely horizontal information in CF K (K). Properties of these invariants are
presented in [4]; by construction they provide homomorphisms from the concordance group
to Z for each j € N. Furthermore, they are linearly independent, and can be used to bound

the concordance genus and concordance unknotting number of knots, see [4, Sec. 1.3].

But, for three-strand pretzel knots, the local equivalence class of the bigraded invariant
C(D) can be used to show that the invariants ¢;(C(D)) are only possibly non-zero for one

value of j.

Lemma 6.14 For D a special knot diagram of a three-strand pretzel knot P(2c+1, —2b—
1,2a), and C(D) the bigraded chain complex defined by [49], then

o (CD)=0  j>1.

Proof Excepting the case where min{a,c} > b, the homology theory H (D) of a special
knot diagram D isotopic to P(2c + 1, —2b — 1,2a) is contained in a single diagonal A =
M — A, where M and A are the Alexander gradings. Hence, the knots are homologically
thin. Following [4, Prop. 1.4], the invariants ¢;(K) for homologically thin knots K are
determined by their 7-invariants (equivalently their 7-invariants). Namely:

r(K) ifj=1

pi(K) =

0 otherwise.

The fact that CFKg/(D) is a knot-like complex is demonstrated in [4, Sec. 2]. The

complex CFKg/(D) has a single V-tower with Maslov grading (equivalent to the gry-



CHAPTER 6. RESULTS AND THE FULL INVARIANT 218

grading) equal to 0. This is the generator of H(C{i = 0}) as introduced in Definition 3.2.
From the symmetry of knot Floer homology, the V-tower in CF Kx:(D) corresponds under
the symmetry of the complex CFKg/ (D) and CFKx/(D) that interchanges the values of

gry and gry to the U-tower of CFKg/(D).

Consequently, using the recent equivalence between C(D) and CF Kg/(D), C(D) is a knot-
like complex. Hence, one can determine the invariants ¢; for the complexes defined using

the method of [49].

Denote by Torsy(H ™ (D)) the U-torsion submodule of the F[U]-module H~ (D). From
Theorem 6.6, this torsion submodule is generated by all elements that are not the U-tower

(the generator of the F[U]-term).

Hence, since all other terms in the H~ (D) are IF, one has that U7 - Torsy(H (D)) = 0 for
all j > 1. Employing [4, Prop. 1.15], ¢;(D) =0 for all j > 1. |

From [4, Prop. 1.2], the classical concordance invariant 7 can be determined from the

family of invariants {¢;(K)}. Namely, one has that
T(K) = j-¢;(K).
jeN
This provides the following easy corollary, determining ¢1(K) in all cases.

Corollary 6.15 For any three-strand pretzel knot K = P(2c + 1,—2b — 1,2a), one has
that @1 (K) = 7(K).

Proof Combining the calculation from Lemma 6.14, and [4, Prop. 1.2], one has that

YK =pi(K)=7(K). B
JEN

6.2.3 Numerical invariants as concordance invariants

The classical invariants v and 7 extracted from C'FK°°(K) or appropriate sub- or quotient
complexes of this are concordance invariants, as discussed in Chapter 3. However, without
using the equivalence between the theories, the invariants v and 7 are only numerical

invariants of the complex C(D).

More strictly, as described in [49, Sec. 11.2], if C! and C? are quasi-isomorphic as bigraded
chain complexes over R’, then v(C') = v(C?) and 7(C') = 7(C?). This would make v and

7 invariants of the quasi-isomorphism class of H,(C(D)). But, since the quasi-isomorphism
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N>

Figure 6.2: Above the horizontal line, one has the special knot diagram associated to the
disjoint winion of D1 Dy. The idempotent of all upper Kauffman states for this upper
knot diagram is I3, displayed in blue. Below the horizontal line, one has the two minima

that form the connect sum D1#Ds.

class of H,(C(D)) is a knot invariant [49, Thm. 1.1], so are v and 7. Yet without using
the recently proven equivalence between the theories, 7 and v are invariants associated to

knots, not concordance classes.

In [49, Sec. 9.1], Ozsvath-Szabé examined C(D1#Ds), where D; is an oriented special knot
diagram of knot K1, and D, an oriented special knot diagram of K». Let D; and D be the
upper knot diagrams for D; and Dy that result from excising their global minima. Then,
because one can place all maxima, minima and crossings of Dy at y-values below those of
D1, the generators of the Type D structure associated to Dq LI Dy are tensor products of

upper Kauffman states of Dy and Ds. This is demonstrated in Figure 6.2.

Due to the fact that the upper Kauffman states of the upper knot diagrams D; and Dy
have associated idempotents I; and I3, as only the global minimum has been excised, the
upper Kauffman states corresponding to generators of D LI Dy have associated idempotent

I 3. More specifically, the upper Kauffman states of Dq LI Dy are

Z L - X1® 13- Xo.
X; K.S. for D;

Proposition 6.16 For D; and Dy special knot diagrams, with global minima oriented
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right to left, the chain complex C(D14#D3) satisfies the Kiinneth relation, that is

Proof To yield D;# D5 from D;LID,, as pictured in Figure 6.2, one attaches the lower knot
diagram corresponding to tU!' X 02, The D A-bimodule 02 is as defined in Definition 4.45,

with a single generator I - @ - I3.

Since by construction the Kauffman states for the D; and Dy components do not include

2 in their idempotents, the non-zero maps in 0? are:

5(Q,Uf) =Uf ®Q

55(Q,Uf) = U5 ®Q

S114(Q, U3, C5) = Uy © Q

Sa14(Q, US, CH) = UF © Q
33(Q, C12,C34) = C12® Q.

Pairing this with the A.,-module YA(I) as defined in Definition 4.43, the A,.-module

corresponding to the minima in Figure 6.2 is Y/ X 6?4(2), with a single generator H - I3,

and maps
miy (YRT?) @ A2)% - Y RE?,
defined by
mo(H,UF) =U* @ H
mo(H,UP) =VF o H
my 1k (H, Uy, C5F) = Vo H
miy1k(H, U, Cf) = UM @ H.

Roughly, this means that elements U; and Us correspond with U in R/, and the elements

Uy and Uy with V in R'.

Abusing notation slightly, and letting D; denote the Type D structure associated with the
upper knot diagram D;, in D; one would have that U; would pair with mo(H - I,Uy) =
U®H inY’', and Uy with mo(H - I1,Us) = V ® H. Similarly for U; and Us in Ds. In the
disjoint union D; LI Dy, the term U; in Dy would correspond to Us in Dy U Dy, and Us
with Uy.
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If in Dy and D, there are elements x! and z? respectively, such that
d(z") =) a; @y d(z*) =) bi®y
for a;,b; € {UF, U}, then in Dy U D; one thus has that
ALz - (2! @ 27)) = a; ® (y; ® 2%) + o(bi) ® (¢' ® y7),

where the map ¢ is such that ¢(U;) = Ujyo. This is perhaps easiest to visualise using
the interpretation of these maps as corresponding to partial domains between intersec-
tion points in upper Heegaard diagrams. Because the Maslov and Alexander gradings are
determined by local contributions, and the two components are disconnected, partial do-
mains between two upper Kauffman states with Maslov grading differing by one are either
contained solely in the upper Heegaard diagram for D; or the upper Heegaard diagram

for Ds.

Hence, pairing this with the A..-module defined above, and using the familiar box-tensor

product between Type D structures and A,.-modules (see Section 4.5.2) one has that
8D1#D2(H 13 ® (331 ® :L‘2)) = 8D1 (H - ® l’l) & z? + z! & 6D2(H I ® 172).

This is because a; and ¢(b;) (together with appropriate matching terms) yield U and V
terms in the chain complex as in the disjoint union. This shows the differential acts as it

would under the tensor product of two chain complexes, as required. |

Corollary 6.17 The knot invariants v and T are additive under the connect sum opera-

tion.

Proof Since the Alexander grading is determined by the local contributions at Kauffman
states at each crossing, and that any element in the kernel of Op,4p, (or quotient with
V = 0) needs to have tensor-coordinate components that are in the kernel of dp, and
Op,, then the non-torsion element in H(C(D1#D3)) has to be the tensor product of the
non-torsion elements in Dy and Djy. The local contributions of the grading then imply
that the Alexander gradings of each tensor coordinate are summed together, so making

the invariants additive. [ |

6.3 Further directions for study

As remarked within this thesis, the divide-and-conquer construction of C(D) is a useful

tool for providing a combinatorial method for the construction of a bigraded complex
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equivalent to CFKg/(D). From C(D), one can then extract homology theories equivalent
to HFK (D) and HF K~ (D), and concordance invariants equivalent to 7 and v. As evinced
by the speed of the C++ program [47] published by Ozsvath-Szabd, this combinatorial
method of determining a complex equivalent to knot Floer homology HFK (K) has the
advantage of using fewer generators than the grid homology of [30,35], allowing the swift

determination of some concordance invariants for specific examples of knots.

Although this thesis determines the invariant C(D) for one family of pretzel knots, one
could extend this construction to pretzel knots with four, five, or more strands. As well
as having well-structured Kauffman states — which are in bijection with the generators
of C(D) — all pretzel knots admit special knot diagrams with width three: that is they
admit isotopic special knot diagrams with at most six intersection points between some

generic line y = £ and the special knot diagram.

For a knot with width n, the differential graded algebra A(n) as defined in Definition 4.12
is associated to the horizontal level intersecting the knot at 2n points. Hence, at the
widest point of the special knot diagram, the algebra used is simpler: i.e. has fewer
permitted idempotents than knots with greater width. For this reason, three-strand pretzel
knots (and by extension, all pretzel knots) are particularly amenable to study using this
combinatorial construction, since the algebras and number of possible idempotents does
not grow too computationally complicated. One can verify that specific examples of pretzel
knots D have homology theories H (D) that can be determined quickly by the program [47],

even for those pretzel knots with high numbers of strands and crossings.

It is however slightly beyond the scope of this thesis to study families of pretzel knots
with more than three-strands. This is because the proofs within this chapter and within
Chapter 5 rely upon good knowledge of the Kauffman states in order to use induction.
This is aided by the simplicity of diagrams representing Type D structures, yet because
pretzel knots with more strands have more complicated Kauffman states, determining
the structure and using induction becomes more difficult. However, with patience, the
author does believe that one could determine C(D) for D a representative of a family of
pretzel knots with more than three strands. It would be particularly advantageous for
such constructions to determine explicitly the D A-bimodules associated to any number of

half twists, so for any k£ and n the bimodules

(P ana (3)
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6.3.1 Concordance invariants and slice-genus of pretzel knots

This thesis determines the algebraic invariant of Ozsvath-Szabd for an infinite family of
knots — the three-strand pretzel knots P(2a,—2b — 1,2¢ + 1). Since C(D) is equivalent
to the bigraded complex CFKpg/ (D) defined in [4], and within [4] the authors extract
an infinite family of concordance invariants from the complex, one could then hope that
the determination of these concordance invariants may answer open questions as to the

slice-genus of representatives of this family.

In [20], Lecuona studies obstructions to sliceness for many examples of three-strand pret-
zel knots. The techniques used include examining the Alexander polynomial and Casson-
Gordon invariants of families of pretzel knots whose slice genus is not known, and exam-
ining double-branched covers of the knots. The Fox-Milnor theorem [6, Thm. 2], states

that if a knot K is slice, then its Alexander polynomial is of the form

Ag(t) = f(t)- f(t),

where f is a polynomial with integer coefficients. In [20, Thm. 4.5], Lecuona uses the
Fox-Milnor theorem to obstruct the sliceness of many infinite families of pretzel knot, by

demonstrating that their Alexander polynomial does not have the required form.

Three strand pretzel knots of the form

with ¢ = 1,11,37,47,49,59 mod (60), are the only family of three-strand pretzel knots
whose slice genus is not yet determined using the methods of [20] or otherwise. However,
in [20, Conj. 1.3] Lecuona conjectures that this family is not slice. Although this family
of pretzel knots is of the form considered in this thesis — i.e. P(2¢+1,—2b—1,2d’) for
a',b,c € Nand ¢ = b+ 1, for a > 3 — this is a knot where a > b and ¢ > b. Hence,
applying Corollary 6.9 and Lemma 6.10, one has that

¢ (Plaa -2 7Y (a2, =) o

So, these two invariants do not obstruct sliceness in the cases where the slice-genus is not

known.

The infinite family of concordance invariants {¢; } jen also do not obstruct being slice in this

case. From [4, Thm. 1.1], for each j € N, ¢; : C = Z is a surjective homomorphism. How-
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ever, from Lemma 6.14 and Corollary 6.15, one has that ¢; (P (a, —a — 2, 7(%ﬂ)2>> =0
for all j € N.

But, Theorem 6.1 determines C(P(2c + 1,—2b — 1,2a)) for any a,b,c € N, not simply the
homology theory HF K~ (P(2c+1,—2b—1,2a)) or PTF?((P(QC—F 1,—2b—1,2a)). Although
it is beyond the scope of this thesis, it is hoped that the information within this bigraded
complex could be used to try to obstruct sliceness for the remaining family of knots given

by Lecuona, as they are conjectured to have slice genus equal to one.

6.3.2 Information about domains in Heegaard diagrams

Using the recently proven equivalence between algebraic invariant C(D) and classical knot
Floer homology, it would be interesting to consider whether one could recover information
about domains within a Heegaard diagram from the knowledge of counts provided by the

differential within C(D).

One of the difficulties in computing the knot Floer homology of pretzel knots directly from
the Heeagaard diagrams produced from thickened up knot projections is that domains can
arise whose counts are not known. In Eftekhary’s examination of the hat version of knot
Floer homology for pretzel knots, [5], Eftekhary examines domains that have a known
count — see [5, Fig. 7]. These domains are known as arborescent punctured polygons,

introduced by Greene in [9] following the work of Ozsvath-Szabé in [34].

Arborescent punctured polygons, as defined in [9, Def. 6.5], are an extension of the ‘disky
differentials’ as considered in [53]. That is, all disky differentials are arborescent punctured
polygons, but not all arborescent punctured polygons are disky differentials. In particular,
punctured polygons admit boundary components that are solely « or 8 curves, in addition
to the polygonal boundary composed of alternating a and § curves with only internal

corners.

Without loss of generality, let the internal boundary components in a punctured polygon
be B-curves. These -curves can be connected to each other, or the boundary, by a-curves
that have degenerate corners on the S-curve boundary components. A punctured polygon
domain D is then arborescent if the complement of these curves in D is connected. Greene
then proved in [9, Lem. 6.6] that if D is an arborescent punctured polygon that is a domain

representing a Whitney disk ¢ € ma(z,y), then u(¢) = 1 and #ﬂ(qﬁ) = +1.
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Figure 6.3: A domain between intersection points on a subsection of a Heegaard diagram
associated to a three-strand pretzel knot. Using the black states on the topmost two cross-
ings on the right hand strand, the domain pictured is an arborescent punctured polygon.
However, uing the green states at these two crossings yields a non-arborescent punctured

polygon, but with the same interior.

Examining the domains between generators in said Heegaard diagrams for three-strand
pretzel knots, one can find examples of domains that are non-arborescent punctured poly-
gons, but with other domains that have the same interior (but different corners) and are
arborescent punctured polygons. An example is provided in Figure 6.3. Although one
cannot apply [9, Lem. 6.6] to determine the count of pseudo-holomorphic representatives
in the case of non-arborescent punctured polygons, one might be able to use the known
differentials within C(D) to determine information about the counts of the correspond-
ing Whitney disks. This utilises the equivalence between C(D) and CFKg/(D) recently
proven in [48], and the correspondence between differentials in C(D) and domains within
Heegaard diagrams. The author hypothesises that the pseudo-holomorphic counts for
Whitney disks admitting non-arborescent punctured polygons as featured in Figure 6.3
would match the counts on the differentials within C(D), and this would be an interesting

direction for future work.
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