
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Donald, Andrew (2013) Embedding 3-manifolds in 4-space and link 
concordance via double branched covers.  
 
PhD thesis 
 
 
 
 
http://theses.gla.ac.uk/4425/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4415/


Embedding 3-manifolds in 4-space

and link concordance via double

branched covers

by

Andrew Donald

A thesis submitted to the

College of Science and Engineering

at the University of Glasgow

for the degree of

Doctor of Philosophy

June 2013

c⃝ A. Donald 2013



Abstract

The double branched cover is a construction which provides a link between problems in

knot theory and other questions in low-dimensional topology. Given a knot in a 3-manifold,

the double branched cover gives a natural way of associating a 3-manifold to the knot.

Similarly, the double branched cover of a properly embedded surface in a 4-manifold is

a 4-manifold whose boundary is the double branched cover of the boundary link of the

surface. Consequently, whenever a link in S3 bounds certain types of surfaces, its double

branched cover will bound a 4-manifold of an appropriate type.

The most familiar situation in which this connection is used is the application to slice

knots as the double branched cover of a smoothly slice knot is the boundary of a smooth

rational ball. Examples of 3-manifolds which bound rational balls can therefore easily be

constructed by taking the double branched covers of slice knots while obstructions to a

3-manifold bounding a rational ball can be interpreted as slicing obstructions. This thesis

is primarily concerned with two different extensions of this idea.

Given a closed, orientable 3-manifold, it is natural to ask whether it admits a smooth

embedding in the four-sphere S4. Examples can be obtained by taking the double branched

covers of doubly slice links. These are links which are cross-sections of an unknotted

embedding of a two-sphere in S4. Certain links can be shown to be doubly slice via

ribbon diagrams with appropriate properties. Other embeddings can be obtained via

Kirby calculus.

On the other hand, many obstructions to a 3-manifold bounding a rational ball can be

adapted to give stronger obstructions to embedding smoothly in S4. Using an obstruction

based on Donaldson’s theorem on the intersection forms of definite 4-manifolds, we deter-

mine precisely which connected sums of lens spaces smoothly embed. This method also

gives strong constraints on the Seifert invariants of Seifert manifolds which embed when

either the base orbifold is non-orientable or the first Betti number is odd. Other applicable
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methods, also based on obstructions to bounding a rational ball, include the d invariant

from Ozsváth and Szabó’s Heegaard-Floer homology and the Neumann-Siebenmann µ in-

variant. These are used, in conjunction with some embedding results derived from doubly

slice links, to examine the question of when the double branched cover of a 3 or 4 strand

pretzel link embeds.

The fact that the double branched cover of a slice knot bounds a rational ball has a sec-

ond interpretation in terms of knot concordance. In this viewpoint, the double branched

cover gives a homomorphism from the concordance group of knots to the rational cobor-

dism group of rational homology 3-spheres. This can be extended to a concordance group

of links using a notion of concordance based on Euler characteristic. This yields link con-

cordance groups which contain the knot concordance group as a direct summand with an

infinitely generated complement. The double branched cover homomorphism extends to

large subgroups containing the knot concordance group.
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Chapter 1

Introduction

Let Y be a 3-dimensional, closed manifold. A knot K in Y is a smooth isotopy class of

a smooth embedding of a circle S1 ↩→ Y . A link, with m components, is an isotopy class

of an embedding of a disjoint union of m circles in Y . Classical knot theory is the study

of knots and links in S3. Important questions in knot theory concern properly embedded

surfaces in 4-manifolds. A knot in S3 is called (smoothly) slice if it is the boundary of a

(smoothly) properly embedded disk D2 in D4.

An important invariant of a knot or link K is the double branched cover, Σ2(Y,K).

This is the 3-manifold which is a double branched cover of Y with branch set K. It can

be constructed by taking a double cover of the knot complement Y \ νK and gluing in a

solid torus along the boundary so that on a meridian of K, we have the double covering

map S1 → S1 given by z 7→ z2. See for example [KT76]. This construction extends in

two obvious ways. Firstly, we can take an n-fold cyclic covering by replacing 2 with n.

Secondly, and for this thesis more importantly, we can take the (double) branched cover of

a properly embedded surface in a 4-manifold. This means that the double branched cover

gives a connection between questions about knots and links in S3 and closed, orientable

3-manifolds. Figure 1.1 illustrates the idea – a relationship between a knot and a surface

it bounds is reflected in the 3 and 4-manifolds obtained by taking branched covers.

Perhaps the most striking example of the usefulness of this procedure is the application

to the issue of which knots are smoothly slice. The key fact is that the double branched

cover of D4 over a properly embedded disk is a rational homology ball – a 4-manifold U

with H∗(U ; Q) = H∗(D4; Q) [CG86]. We can therefore show that a knot is not slice by

showing that the double branched cover cannot bound such a manifold.

An obstruction to a 3-manifold bounding a rational ball can be obtained from Donald-
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.

.

..{Knots in S3} ..{Properly embedded surfaces in D4}

..{3-manifolds} ..{4-manifolds}

.Σ2 .Σ2

.∂

.∂

Figure 1.1: A relationship between knots, surfaces and low-dimensional

manifolds.

.

.

..{Slice knots in S3} ..{Slice disks in D4}

..{QHS3s} ..{QHD4s}

.Σ2 .Σ2

.∂

.∂

Figure 1.2: Diagram for slice knots.
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son’s theorem on the intersection forms of smooth definite 4-manifolds [Don87]. This has

been used to produce obstructions to knot sliceness (for example [CG88, Lis07a, Lis07b,

GJ11,Lec12,Wil08]). Lisca has used this method, in conjunction with explicit examples of

smooth slice disks, to determine precisely when a 2-bridge knot is slice. Work of Greene-

Jabuka and Lecuona gives similar results for certain families of 3-strand Montesinos knots.

1.1 Examples of links and double branched covers

In this section, we describe some families of knots and 3-manifolds which will be of im-

portance in this thesis. We fix notation and specify relationships between these families.

1.1.1 Two-bridge links and lens spaces

A link L is called a two-bridge link if it has a projection in R2 with two maxima and minima.

All two-bridge links are determined by a rational number p
q ≥ 1, where gcd(p, q) = 1. This

is a knot if p is odd and has two components if p is even.

A diagram of the link S(p, q) can be drawn as follows. We find a negative continued

fraction of p
q . This is a set of integers a1, . . . , an such that

p

q
= [a1, . . . , an]− = a1 −

1

a2 −
1

. . . − 1
an

and draw the diagram shown in Figure 1.3, where a box marked ai indicates that the two

strands are twisted so that there are ai crossings. These crossings are positive or negative

according to the sign of ai. If we take a different continued fraction for p
q , the resulting link

is isotopic. (See, for example, [BZ03, Chapter 12] [Sch56].) Figure 1.4 shows S(−23, 7).

The double branched covers of two-bridge links are lens spaces.

Definition 1.1. Let p and q be coprime integers. The lens space L(p, q) is the 3-manifold

resulting from Dehn surgery on the unknot in S3 with slope −p
q .

There is a diffeomorphism L(p, q) ∼= L(p, q + np) for each n ∈ Z. This means that

we can assume that p > q > 0, unless |p| ≤ 1 or q = 0. Changing the orientation gives

−L(p, q) ∼= L(p, p − q). Taking p = ±1 or q = 0 gives S3 and p = 0 gives S1 × S2. It is

often convenient to exclude these from the class of lens spaces.

The double branched cover of the two-bridge link S(p, q) is L(p, q). We can describe

both the links and the 3-manifolds in terms of the plumbing construction, which we briefly
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−an−1

−a1 −a1

−a3

−an

−a2−a2

−a3

−an−1

−an

Figure 1.3: Two-bridge link corresponding to [a1, . . . , an]−; on left for

even n and on right for odd n.
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summarise. Let X1, X2 be 2-disk bundles over closed surfaces. These can be plumbed

together by choosing disks D1 and D2 in the base and identifying the bundles over these

disks – D1 × D2 and D2 × D2 – via a map exchanging the factors. The resulting 4-

manifold is said to be obtained by plumbing X1 and X2. See [GS99, Example 4.6.2] for

details on plumbings. A 4-manifold can be described by a weighted tree by taking a disk-

bundle over S2 for each vertex with Euler number given by the weight and performing

plumbing on a pair of these bundles whenever the corresponding vertices are connected

by an edge. The boundary of the 4-manifold obtained by plumbing on a linear tree with

weights −a1, . . . ,−an is L(p, q) where p
q = [a1, . . . , an]−.

A lower-dimensional analogue replaces D2-bundles over surfaces with isotopy classes

of embedded D1-bundles over S1 in S3. Figure 1.5 shows a plumbing of two untwisted

bands. If these bands are plumbed according to a linear weighted tree, the boundary of

the resulting surface in S3 is the two-bridge link S(p, q), where p
q is given as a negative

continued fraction by the weights.

Let X be a plumbed 4-manifold defined by a weighted tree. This is a 2-handlebody1

and so it is simply connected. The two-handles correspond to vertices in the graph. If

we take these as a basis for H2(X), a matrix for the intersection form of X is given by

the incidence matrix of the graph, where the diagonal entries are given by the weights

and the off-diagonal entries are zero or one depending on whether or not there is an edge

connecting the vertices.

For a lens space Y = L(p, q), with either orientation, there is a negative definite

plumbing X with ∂X = Y . We can always find a continued fraction p
q = [a1, . . . , an]−

with each ai ≥ 2 and the plumbing along a linear graph with weights −ai gives X. We will

refer to this as the standard (negative) definite plumbing corresponding to Y . Figure 1.6

shows such a diagram for a manifold whose boundary is a connected sum of lens spaces.

1.1.2 Montesinos links, pretzel links and Seifert manifolds

A Montesinos link is one obtained by plumbing bands according to a star-shaped weighted

graph, while a Seifert manifold over S2 is the boundary of a 4-manifold produced by

plumbing disk bundles over S2 according to a star-shaped graph.

Let Γ be a star-shaped graph with central vertex v and n legs. If v is weighted by r

and the ith leg has weights ai
1, . . . , a

i
mi

where ai
1 is adjacent to the centre and ai

mi
is a leaf

1We use the term ‘2-handlebody’ to refer to a 4-manifold produced by attaching 2-handles to D4.
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Figure 1.4: Two-bridge knot S(−23, 7).

Figure 1.5: Plumbing of two (untwisted) bands.



CHAPTER 1. INTRODUCTION 14

−a1
n1

−a1
1 −a1

2

−a2
n2

−a2
1 −a2

2

−ah
nh

−ah
1 −ah

2

Figure 1.6: Plumbing graph for a negative definite 4-manifold with

boundary a connected sum of lens spaces.

of Γ, we let ai
bi

= [ai
1, . . . , a

i
mi

]−. The Montesinos link produced from this diagram will be

denoted by

M(r; (a1, b1), . . . , (an, bn)).

The Seifert manifold or Seifert fibred space obtained from this plumbing will be denoted

by

Y (S2; r; (a1, b1), . . . , (an, bn)).

As was the case for 2-bridge links, the double branched cover of a Montesinos link is a

Seifert manifold [OwSt06,Mon73]. Linear trees are a special case of star-shaped ones, so

2-bridge links are also Montesinos links and lens spaces are Seifert manifolds. A surgery

diagram is shown in Figure 1.7. We will call the surgery curve with coefficient r the

‘central’ curve. The set S = {(a1, b1), . . . , (an, bn)} is called the set of Seifert invariants of

the Seifert manifold.

a1

b1

an

bn

r

Figure 1.7: Y (S2; r; (a1, b1), . . . , (an, bn)).

Let F be a closed, connected but possibly non-orientable surface. A Seifert manifold
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with base surface F is one given by the boundary of a plumbing along a star-shaped graph

where the central vertex corresponds to a disk-bundle over F and every other vertex

corresponds to disk-bundle over a sphere. This manifold is denoted

Y (F ; r; (a1, b1), . . . , (an, bn)).

where r is the central framing and the Seifert invariants (ai, bi) again come from the legs

of the graph. The surface F is called the base surface or base orbifold.

Surgery diagrams for these Seifert manifolds can obtained by modifying diagrams for

Seifert manifolds with the same Seifert invariants and base surface S2. The base surface

can be modified by adding T 2 or RP2 summands. The surgery diagram changes at the

central curve as shown in Figures 1.8 and 1.9.

r

0

0

r

−→

Figure 1.8: Adding a T 2 summand.

r + 2

0

r

−→

Figure 1.9: One way of adding an RP2 summand.

Another local picture for adding an non-orientable summand can be obtained from

Figure 1.9 by reversing the crossings and changing the central framing to r−2, see [CH98,
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Appendix]. A more symmetrical picture is shown in Figure 1.10.

a1

b1

an

bn

r

−22

0

Figure 1.10: Y (RP2; r; (a1, b1), . . . , (an, bn)).

Definition 1.2. Let Y = Y (F ; r; (a1, b1), (a2, b2), . . . , (an, bn)) be a Seifert manifold with

base F . The generalised Euler invariant is

e(Y ) =
n∑

i=1

bi
ai

− r.

Note that there is a diffeomorphism

Y (F ; r; (a1, b1), (a2, b2), . . . , (an, bn)) ∼= Y (F ; r + 1; (a1, a1 + b1), (a2, b2), . . . , (an, bn)),

given by a Rolfsen twist. This preserves the generalised Euler invariant. We may use this

diffeomorphism to choose a preferred notation for a given Seifert manifold. It is sometimes

adjusted so that r = 0 [NR78], [CH98] but we can also arrange that each ai > 1.

When Y is a Seifert manifold with base orbifold S2 and e(Y ) > 0 a negative definite 4-

manifold with boundary Y can be obtained by a standard plumbing construction [NR78].

The same construction gives a semi-definite 4-manifold when e = 0. Figure 1.11(c) shows

this plumbing for Y (S2; 0; (3, 1), (3,−1), (3, 1)).

With a minor modification, we can find negative definite 4-manifolds whose boundaries

are Seifert manifolds with any base orbifold. We describe these 4-manifolds in Proposition

3.10. In particular, for a non-orientable base surface, we obtain a negative definite 4-

manifold regardless of e(Y ).

We now define some terms to describe some special types of Seifert invariants.

Definition 1.3. Two Seifert invariants are equivalent if they are of the form (a, b) and

(a, b+ na) for some integer n. A complementary pair of Seifert invariants are a pair

equivalent to (a, b) and (a,−b). A weakly complementary pair is a pair which is either
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a complementary pair or equivalent to (a, b), (a,−b′) where bb′ ≡ 1 mod a. A Seifert

invariant (a, b) is called odd if a is odd and even if a is even.

A special case of Montesinos links are pretzel links. These are the Montesinos links

which arise from a plumbing tree where the central vertex has weight zero and every leg

has length one2. The pretzel link P (a1, . . . , an) consists of n strands with ai twists each,

joined in a chain at the bottom and the top. The link in Figure 1.11 is P (3,−3, 3).

The double branched covers of pretzel links are Seifert manifolds with base S2 and

Seifert invariants of the form (ai, bi) with bi = ±1 and r = 0. In this case, the legs in the

standard negative definite plumbings will have a simpler form. Every leg will either consist

of single vertex with a negative weight or a chain of vertices, all with weight −2. We will

denote these manifolds as Y (a1b1, . . . , anbn). We will also assume n ≥ 3 as this gives a

lens space when n ≤ 2. Integer surgery diagrams are shown in Figure 1.14 when n = 3, 4.

The manifold Y (a1, . . . , an) is the double branched cover of the pretzel link P (a1, . . . , an).

−2 −2 −2−2 −2

−3

−3 −3 −3

0

(a)

(b)

(c)

Figure 1.11: (a) The pretzel knot P (3,−3, 3); (b) a surgery diagram

for its double branched cover Y (3,−3, 3); (c) the plumbing graph for a

negative definite 4-manifold with boundary Y (3,−3, 3).

Figure 1.12 summarises the relationships between these families of links and manifolds.

Let S be a set of Seifert invariants. These define a connected sum of lens spaces

L = Y (S2;∞;S). There is a cobordism between L and Y (S2; r;S) for each r given by

adding a central curve.

2The first condition here is somewhat unnecessary as if each leg has length one, we can arrange that

the central weight is zero by adding new legs with weights ±1.
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.

.

..{2-bridge links} ..⊂ ..{Montesinos links} ..⊃ ..{Pretzel links}

..{Lens spaces} ..⊂ ..{Seifert manifolds with F = S2} ..⊂ ..{Seifert manifolds}

.Σ2 .Σ2

Figure 1.12: Relationships between families of links and manifolds.

Definition 1.4. Let S = {(ai, bi)}h
i=1 be a set of Seifert invariants. Define WS,r to be the

2-handle cobordism between L = −#h
i=1L(ai, bi) and Y = Y (S2; r;S).

1.2 Embedding 3-manifolds in S4

One of the main problems considered in this thesis is that of when a closed (and necessarily

orientable) 3-manifold embeds smoothly in S4. By a result of Wall [Wal65] (see also

[Hir61] for the case of orientable 3-manifolds), every closed 3-manifold embeds in S5.

For S4, results are known for special classes of manifolds including some Seifert fibred

cases [GL83], [CH98], some of which also hold for topological locally flat embeddings. In

the case of smooth embeddings, the question was examined systematically in [BB12]. A

key observation in our approach to this problem is that the double branched cover of a

smoothly doubly slice link L – one which is a cross-section of a smooth unknotted 2-sphere

in S4 – embeds smoothly. In Lemma 2.4, we will see that there is a diagram as shown in

Figure 1.13.

.

.

..{Doubly slice links in S3} ..{Unknotted spheres in S4}

..{3-manifolds} ..S4

.Σ2 .Σ2

.ι

.ι

Figure 1.13: Diagram for doubly slice links and embeddings in S4.
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We can use this method to find examples of 3-manifolds which embed. In Chapter 2 we

show certain links are doubly slice via ribbon diagrams and so we can embed manifolds by

taking double branched covers. The setup is similar to that for slice knots in Figure 1.2. We

use methods adapted from slice obstructions, in fact obstructions to a 3-manifold bounding

a rational ball, to get obstructions to embedding in S4. Notably, an obstruction based

on Donaldson’s diagonalisation theorem and used by Lisca and others can be adapted. In

Chapter 3 we apply this and obtain the following results.

Theorem 3.16. Let L = #h
i=1L(pi, qi). Then L embeds smoothly in S4 if and only if each

pi is odd and there exists Y such that L ∼= Y# − Y .

This generalises a result of Gilmer-Livingston [GL83] and Fintushel-Stern [FS87] in

the case h = 2.

Theorem 3.17. Let Y be a Seifert manifold with non-orientable base surface F . If Y

embeds smoothly in S4 then the Seifert invariants of Y occur in weak complementary

pairs. In addition, whenever there are Seifert invariants (ai, bi), (aj , bj) with ai, aj both

even, then ai = aj and bi ∈ {±bj ,±b′j}.

While this result does not put any restriction on the Euler invariant of Y , it is shown

in [CH98] that for a given set of Seifert invariants there are only finitely many possible

values of e(Y ) for which an embedding is possible and, in the case of complementary pairs

with every ai odd, these are completely described.

We also consider orientable base surfaces. An interesting special case, considered by

Hillman [Hil09], occurs when e(Y ) = 0. These are the only examples where b1(Y ) is odd.

Theorem 3.32. Let Y be a Seifert manifold with orientable base surface F and e(Y ) = 0.

If Y embeds smoothly in S4 then the Seifert invariants of Y occur in complementary pairs.

Remark 1.5. This holds even for topological embeddings when F = S2 [Hil09].

When Y has complementary pairs of Seifert invariants with every ai odd and e(Y ) = 0

it embeds smoothly in S4 [CH98].

Other methods also apply. The obstruction from Donaldson’s result does not appear

to give as strong constraints for other families of Seifert manifolds. In Chapter 3 we

also employ obstructions using the correction term from Heegaard-Floer theory and the

Neumann-Siebenmann µ invariant of a spin structure, a lift of the Rochlin invariant.



CHAPTER 1. INTRODUCTION 20

The former, as shown in [GJ11], gives a useful strengthening of the obstruction from

Donaldson’s theorem.

These are used to establish a result on the double branched covers of pretzel links with

three or four strands.

Theorem 3.42. Let Y be of the form Y (a, b, c) or Y (a, b, c, d) where a, b, c ∈ Z\{−1, 0, 1}

and d ∈ Z\{0}. If Y embeds smoothly in S4 then it is (possibly orientation-reversing)

diffeomorphic to one of the following

• Y (a,−a, a);

• Y (a,−a, a,−a);

• Y (a,−a, b,−b) with b odd;

• Y (a± 1,−a, a,−a);

• Y (2λ− 1,−2λ− 1,−2λ2).

In addition, all but the last of these do embed smoothly in S4.

a c

0

b

a c

0

b d

Figure 1.14: Y (a, b, c) and Y (a, b, c, d).

Note that Y (a, b,±1) and Y (a, b,±1,±1) are lens spaces so the constraints imposed

in the above statement are merely for convenience. Some of the manifolds considered by

Theorem 3.42 have e(Y ) = 0. In particular, we see that the converse of Theorem 3.32 is

not true in general.
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1.3 Concordance of links

A natural extension of the notion of slice knots is the concordance group of knots C [FM66].

Given a pair of oriented knots K1,K2 in S3, we can form the connected sum K1#K2 in

S3#S3 = S3. In a diagram, this amounts to drawing the knots disjointly; deleting a small

arc from each of the knots, which by isotopy can be assumed to be adjacent, and then

connecting the start of each arc to the endpoint of the other by a pair of parallel arcs

which do not introduce any new crossings to the diagram. Figure 1.15 shows a connected

sum of two-bridge knots. This operation turns the set of knots in S3 into a monoid. The

unknot gives the identity.

Figure 1.15: Connected sum of S(−23, 7) and S(3, 1).

An equivalence relation on the set of knots is given by K1 ∼ K2 if and only if −K1#K2

is a (smoothly) slice knot, where −K1 denotes the mirror image of K1 with the opposite

orientation. This is preserved by connected sum so the quotient of the monoid of knots

by this relation gives a group, C. Allowing locally flat slice disks as well as smooth ones

gives a related group CTOP , but we will mainly consider the smooth version. This group

is a widely-studied object in knot theory. See, for example, the survey article [Liv05] for

more background.

The double branched cover gives a homomorphism Σ2 from C to the smooth rational

cobordism group of rational homology 3-spheres. This is the set of classes of oriented

rational homology spheres under the relation Y1 ∼ Y2 if −Y1#Y2 smoothly bounds a

rational ball and the group operation is connected sum.

A sensible way to expect that C can be generalised is by allowing links in S3 rather

than just knots. The aim should be to define a concordance group of links which retains
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many of the properties of C. In particular, since knots are just 1-component links, it should

contain a subgroup given by C and the double branched cover homomorphism should, if

possible, extend to the link group.

Chapter 4, which is based on joint work with B. Owens [DO12], defines link concordance

groups L and L̃ and examines their properties.

The essential ideas of these groups can be sketched as follows. In order to get a

sensible notion of connected sum, we require links to have a specific oriented component

along which to take the sum. However, we have a choice about whether or not to orient

the entire link. Both are reasonable so we consider partly oriented links with just one

oriented component and marked oriented links where every component is oriented but one

is selected to define connected sums. A link L ⊂ S3 is called χ-slice if it is the boundary

of a properly embedded surface F (with no closed components) in D4 with χ(F ) = 1.

Proposition 4.1 establishes that this is compatible with Σ2.

.

.

..{χ-slice links with det ̸= 0} ..{χ-slice surfaces in D4}

..{QHS3s} ..{QHD4s}

.Σ2 .Σ2

.∂

.∂

Figure 1.16: Diagram for χ-slice links.

By considering a slightly more restricted class of surfaces, we get equivalence relations,

called χ-concordance, on the monoids of partly oriented or marked oriented links with

connected sums. The main results are as follows.

Theorem 4.13. The set of χ-concordance classes of partly oriented links forms an abelian

group

L ∼= C ⊕ L0

under connected sum which contains the smooth knot concordance group C as a direct

summand. The inclusion C ↩→ L is induced by the inclusion of oriented knots into partly

oriented links.

The complement L0 of C in L contains a Z/2 direct summand and a Z∞ ⊕ (Z/2)∞
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subgroup.

Theorem 4.16. The set of χ-concordance classes of marked oriented links forms an

abelian group

L̃ ∼= C ⊕ L̃0

under connected sum which contains the smooth knot concordance group C as a direct

summand (with C ↩→ L̃ induced by the inclusion of oriented knots into marked oriented

links). Forgetting orientations on nonmarked components induces an epimorphism L̃ → L.

We obtain group homomorphisms, which are induced from maps on the monoids of knots,

partly oriented and marked oriented links.

.

.

..C ..̃L

. ..L

.
.

.

The complement L̃0 of C in L̃ contains a Z⊕Z/2 direct summand and a Z∞ subgroup.

In Chapter 4 we define χ-concordance and the groups L and L̃. Maps from these

groups using the double branched cover are considered and so are topological versions.



Chapter 2

Constructing embeddings of

3-manifolds in S4

The main purpose of this chapter is to establish the following:

Theorem 2.1. The following manifolds embed smoothly in S4:

1. #h
i=1 (L(ai, bi)#L(ai, ai − bi))#n(S1 × S2) with each ai odd;

2. Y (F ; 0; (a, 1), (a,−1), (a, 1), . . . , (a,±1)) with F orientable;

3. Y (F, r, S) with F orientable, S a set of complementary pairs of odd Seifert invariants

and r such that e(Y ) = 0;

4. Y (F, r, S) with F non-orientable of genus k, S a set of complementary pairs of odd

Seifert invariants and r such that e(Y ) ∈ {2k, 2k − 4, . . . ,−2k};

5. WS,0 as defined in Definition 1.4 when S is a set of complementary pairs of odd

Seifert invariants;

6. Y (S2; 0; (a, 1), (a,−1), (a, 1), (an+ 1,−n));

7. Y (S2; 0; (a, 1), (a,−1), (b, 1), (b,−1)) with b odd;

8. Y (S2; 0; (4, 1), (4, 1), (12,−7)).

Remark 2.2. Some of these families contain special cases which are interesting in their

own right, such as simple 3-manifolds like T 3 and S1 × S2. Double branched covers of

pretzel links appear in cases 2, 3, 6 and 7. We also note that there is some overlap between

some of these families.

24
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Remark 2.3. Some of these embeddings are known already, by different methods to the

ones used here. Crisp-Hillman [CH98] construct embeddings in cases 2, 3 and 4. The

embeddings in case 1 follow from Zeeman [Zee65]. Embeddings of some manifolds in

family 6 are described in [BB12] as ‘deform-spun’ embeddings.

The proof of Theorem 2.1 occupies the rest of the section. We will construct embed-

dings for these cases separately.

2.1 Constructing embeddings via doubly slice links

This section will describe how to use doubly slice links to produce smooth embeddings of

3-manifolds in S4.

An embedding of Sn in Sn+2 is unknotted if it is the boundary of an embedded Dn+1.

We will call a link L in S3 (smoothly) doubly slice if it is a cross-section of an unknotted

(smooth) embedding of S2 in S4.

Lemma 2.4. Let L be a link in S3 and Y be the n-fold cyclic branched cover of S3 with

branch set L. If L is smoothly doubly slice then Y smoothly embeds in S4.

Proof. The n-fold cyclic branched cover of S4 with branch set an unknotted S2 is S4. This

comes from repeated suspension of the unbranched n-fold cover of S1 over itself, where

the branched covering map is extended in the obvious way (see [Rol76, Example 10.B.4]).

If L is doubly slice then the pair (S3, L) sits inside (S4, S2). The preimage of this

subset gives Y embedded in S4.

A source of doubly slice knots is Zeeman’s twist-spinning construction [Zee65]:

Theorem 2.5. Let K be any knot. Then K# −K is doubly slice.

The special case when K is a 2-bridge knot is of particular interest. The double

branched cover of a 2-bridge knot is a lens space L(p, q) with p odd. All such lens spaces

arise in this way so applying Zeeman’s result to connected sums of 2-bridge knots gives

the embeddings in Theorem 2.1 (1).

To produce more examples of doubly slice links we look at embeddings of spheres into

S4.

Let f : S2 → S4 be a smooth embedding of a sphere S. We may delete a point in S4

away from S. Then let r : R4 → R be a projection such that r ◦ f is a Morse function for
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S. The preimage of each t ∈ R describes a link in R3, which will be denoted St, except

at the isolated critical values of r ◦ f . The isotopy type of these links only change when

we pass through one of these critical values. At a minimum or maximum of the Morse

function the link changes by the addition or removal of an unknotted component while at

a saddle point the cross-section changes by a band move.

We will use the following theorem of Scharlemann:

Theorem 2.6 (Main theorem of [Sch85]). Let γ1 and γ2 be knots such that some band

move on the split link L = γ1 ∪ γ2 gives the unknot. Then γ1 and γ2 are unknots and the

band move is the connected sum.

From this, the following result can be obtained.1

Proposition 2.7. Let S be a sphere in S4. Suppose there is a projection r so that the

level sets of S are such that S0 is an unknot; all of the maxima occur at some level t > 0;

all of the minima occur at levels t < 0 and every cross-section is a completely split link.

Then S is an unknotted sphere.

Note that, by Scharlemann’s result, all of the level sets are unlinks and at every saddle

point the number of components increases as |t| increases.

Proof. The proof is by induction on the number of saddle points, n. The case n = 1

follows easily from Scharlemann’s result – we may assume the sphere has two minima and

one maximum and so the band move is just the connected sum of a pair of unknots. This

describes an unknotted sphere.

Suppose S has n saddle points. It can be arranged that they occur at distinct levels.

Let tn be the level of the top one. In order to increase the number of components, the band

move at tn will just affect one of the components, K. By an isotopy, it can be arranged

that the maxima capping off all the other components of the unlink here occur at level

t′ < tn.

Choose some t such that t′ < t < tn. The cross-section St gives an unknot so there is

a 2-disk D at this level. Surgery along D gives spheres S′ and S′′. The Morse function of

S induces Morse functions on these spheres with 2 and n − 1 saddle points respectively.

By induction, both are unknotted so bound 3-cells D′ and D′′ respectively. These give

D = D′ ∪D D′′, a 3-cell bounded by S.
1A similar statement appears in [Hos68]. The proof contains a gap which is repaired by [Sch85].
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Corollary 2.8. Suppose L is a link in S3 and there are two sets of band moves {Ai}1≤i≤k

and {Bj}1≤j≤l such that performing the moves

• {Ai}1≤i≤k ∪ {Bj}1≤j≤l gives an unknot;

• {Ai}1≤i≤k ∪ {Bj}j≤n gives an l − n+ 1-component unlink (0 ≤ n ≤ l) and

• {Ai}i≤n ∪ {Bj}1≤j<l gives an k − n+ 1-component unlink (0 ≤ n ≤ k).

Then L is doubly slice. In addition, a link obtained by performing any subset of this

entire collection of band moves is doubly slice.

Proof. The above proposition can be applied to show that these band moves describe an

unknotted sphere. Take the unknot obtained by using all of the bands as the central level

set and undo the A bands in order above it to get unlinks in the level sets above. Doing the

same with the B bands below gives an unknotted sphere. Changing the order of the band

moves simply takes a different cross-section of the same sphere so the result follows.

A schematic diagram is shown in Figure 2.1. This shows a sphere with two saddle

points. The horizontal cross-sections are unlinks and show that the sphere is unknotted

but other cross-sections give doubly slice links L.

L

Figure 2.1: A schematic diagram – the link L is a cross-section of an

unknotted sphere.

We will use this result to produce families of doubly slice links. First, we illustrate the

method with a simple example involving only two band moves.

Example 2.9. The pretzel knot P (3,−3, 3) is doubly slice.
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A1

B1

Figure 2.2: Band moves on P (3,−3, 3).

Figure 2.2 shows that necessary band moves and Figure 2.3 shows the level sets of

the unknotted sphere. After performing either band move, we get the pictures on the

left or right of Figure 2.3 and we can ‘unwind’ the crossings to see that the result is an

unlink. Similarly, the knot obtained after both band moves is an unknot. This shows that

P (3,−3, 3) is doubly slice.

Figure 2.3: Sequence of unlinks describing the level sets of a trivial sphere.

This diagram resembles one in [Hos68] where this was done in the absence of a complete

proof of Scharlemann’s result, Note that it extends in the obvious way to P (a,−a, a). A

picture showing P (2,−2, 2) as a cross-section of an unknotted sphere appears in [Fox61].

This example is a special case of the following. A box marked with a denotes a pair of

strands with a half-twists.

Proposition 2.10. Let La,n be the link in Figure 2.4. It is doubly slice for any a, n ∈ Z.

Proof. We ignore band C for the moment.
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1−a 1 1−a11a1

B

1a1

1n1A

C

Figure 2.4: Band moves on La,n.

After performing band move A, the crossings in −a and a twists in the second and

third strands can be cancelled in pairs. The first and fourth strands may then also be

removed so this gives a 2-component unlink.

Band move B has a similar effect and also gives a 2-component unlink. Applying both

band moves gives an unknot so we may apply Corollary 2.8.

Corollary 2.11. The pretzel links P (a,−a, a), P (a,−a, a,−a±1) and P (a,−a, a,−a) are

all doubly slice for any a ∈ Z.

Proof. The first two of these families are of the form La,n when n = 0 or ±1. The

unknotted sphere in Proposition 2.10 can be extended using band C. If we do band moves

B and C we get a 3-component unlink so the three bands describe an unknotted sphere

with three saddle points. The link given by band move C, P (a,−a, a,−a), is therefore

also doubly slice.

To construct more doubly slice links, we need to reprove Zeeman’s theorem for 2-bridge

knots. We begin with the following intermediate result.

Lemma 2.12. Let K be a (2, 2k + 1)-torus knot T2,2k+1 for k ≥ 1. Then K# −K is a

cross-section of the unknotted sphere shown in Figure 2.5, where the 2k bands are labelled

as in Corollary 2.8.
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Ak

A1 B1

Bk

Figure 2.5: Band moves on T2,2k+1# − T2,2k+1.

A similar picture (with two bands) shows the same fact in the trivial case of T2,1#−T2,1.

Proof. We must verify that the bands in this picture satisfy the conditions of Corollary 2.8.

First, we claim that performing band moves A1 and B1 changes the sign of the crossing

immediately above the pair of bands. The effect of band A1 is shown in Figure 2.6 and

there is an isotopy giving Figure 2.7. Band move B1 gives two pairs of canceling crossings

and so transforms the knot to T2,2k−1#− T2,2k−1. The rest of the bands are unaffected so

we may continue this process with k such pairs of band moves to produce the unknot.

Now suppose we do all of the A band moves and B1, . . . Bn for some n < k. We begin

by noting that when i ≤ n each pair (Ai, Bi) cuts down the number of crossings, as before.

It is therefore enough to show that applying the k band moves A1, . . . Ak to the diagram

for T2,2k+1# − T2,2k+1 gives a k + 1 component unlink.

The band move A1 gives a 2-component unlink as can be seen in Figure 2.6 – all of the

crossings can be cancelled in pairs. Immediately after performing each subsequent band

move, a further unlinked component can be removed.

There is an isotopy of Figure 2.5 which moves each band Bi into the position that Ai

is drawn in. This can be seen by rotating the second factor in the connected sum anti-

clockwise by 2π through an axis passing through the band of the connected sum. This
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Ak

B1

Bk

Figure 2.6: The result of band move A1.

Ak

B1

Bk

Figure 2.7: Isotopy simplifying band B1 .
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symmetry establishes that the above argument also works with each Ai replaced by Bi,

and so verifies the remaining condition in Corollary 2.8.

We now show that P (a,−a, b,−b) is doubly slice when b is odd. There are two cases,

which we consider separately.

Proposition 2.13. The link P (a,−a, b,−b) is doubly slice when a is even and b is odd.

Proof. Figure 2.8 shows that there is a band move using a band C on P (a,−a, b,−b) which

gives T2,|b−a|# − T2,|b−a|. Since b − a is odd, Lemma 2.12 gives band moves on this knot

satisfying Corollary 2.8. We can extend this picture by adding the band move C and

interpreting it as B0.

1−a 1 1−b11b1

C

1a1

Figure 2.8: A band move on P (a,−a, b,−b) .

We claim that this picture also satisfies the conditions of Corollary 2.8. All but one

of the cross-sections which need to be considered are obtained by applying a set of band

moves including C and so are described by Lemma 2.12. Therefore the only thing that

remains to be checked is that applying all of the band moves Ai without C gives an unlink

with one more component than the one obtained by including C.

This is exhibited by Figure 2.9, with 2k + 1 = |b− a|.

Proposition 2.14. The link P (a,−a, b,−b) is doubly slice when a and b are both odd.

Proof. We proceed in the same manner in Proposition 2.13. The band D in Figure 2.10

turns the link into the sum T2,a# − T2,a#T2,b# − T2,b. We find band moves for this

knot using Lemma 2.12, and the fact that a connected sum of unknotted spheres is also

unknotted. Let a = 2l + 1 and b = 2k + 1. We obtain the diagram shown in Figure 2.11.
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Ak

A1

1∓a11±a11−a11a1

C

Figure 2.9: Bands Ai and C.

1−a 1 1−b11b11a1

D

Figure 2.10: A band move on P (a,−a, b,−b).
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Ak

B1

Bk

A1

Ak+l

Bk+1

Bk+l

Ak+1

D

Figure 2.11: Band moves on P (a,−a, b,−b).

Setting D = B0 gives the result, arguing as in Proposition 2.13 above. Figure 2.12

just shows the bands Ai and D. Note that after the band moves given by A1 and Ak+1

all of the crossings can be removed and it is easy to see that band D simply connects two

components together.

The proofs of these results can be generalised in two ways. For instance, we may

consider pretzel links with more strands and draw similar pictures with more bands. Figure

2.2 can be extended to show that P (a,−a, a, . . . ,±a) is doubly slice whilst Proposition

2.14 generalises to show that P (a,−a, b,−b, c,−c) is doubly slice when a, b and c are all

odd. Alternatively, we can consider Montesinos links by replacing the pairs of twisted

strands by rational tangles.

To do these, we use the following generalisation of Lemma 2.12, which also gives a

(larger) special case of Zeeman’s theorem.

Lemma 2.15. Let K be a 2-bridge knot. Then we can find band moves describing an

unknotted sphere with a cross-section given by K# −K.
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Ak

A1

Ak+l

Ak+1

D

Figure 2.12: Band moves D and Ai.

A2

B1

B2

A1

Figure 2.13: Band moves showing that S(23, 7)# − S(23, 7) is doubly slice.
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A concrete example is given in Figure 2.13 for K = S(−23, 7).

Proof. Suppose K = S(p, q) with p > q > 0. We can find a continued fraction expansion

p

q
= [a1, . . . , an]− = a1 −

1

a2 −
1

. . . − 1
an

where n is odd and a2i−1 is even and positive for 1 ≤ 2i − 1 < n. This may be obtained

algorithmically: take a1 to be the smallest even integer larger than p
q and choose a2 ≥ 0

so that
p

q
= a1 −

1
a2 − s

r

= a1 −
1

a2 −
1
r
s

with r ≥ s > 0. Repeating this process gives a suitable expansion.

Ak

B1

Bk

A1

B2
A2

Figure 2.14: Band moves on a connected sum of 2-bridge knots.
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We obtain a diagram for K#−K as in Figure 2.14. In this diagram, we have assumed

that a1 = 4 but it should be clear how to modify it in the general case. Since a2i−1 is even

for 2i− 1 < n, the twists in the centre of the diagram appear in pairs, apart from those at

the top. We now check that the bands satisfy the conditions of Corollary 2.8. As in the

proof of Lemma 2.12, the effect of the band moves A1 and B1 is to change the crossings

immediately above the pair of bands. If a1 = 2l, then after l pairs of band moves, there will

be an isotopy removing all of these 2l crossings in each summand. After band moves have

removed all of these crossings, the a2 and −a2 crossings can be untwisted immediately.

Continuing, we see that the effect of all of the band moves together is an unknot.

The remaining conditions in Corollary 2.8 can be verified in a similar way, where we

use a symmetry between the Ai and Bi bands as in the proof of Lemma 2.12.

We can use this to obtain a generalisation of Proposition 2.14.

Proposition 2.16. Let {(pi, qi)}n
i=1 be a finite collection of pairs of coprime integers with

pi > qi > 0 and pi odd for each i. The Montesinos link

M(0; (p1, q1), (−p1, q1), . . . , (pn, qn), (−pn, qn))

is doubly slice.

Proof. This link is obtained from a band move E on #n
i=1(S(pi, qi)#−S(pi, qi)) shown in

Figure 2.15. Contrary to previous figures, this diagram should be interpreted as the top

part of a diagram for a connected sum of 2-bridge knots drawn so that ai
1 is at the top of

the picture.

E

a1
1

−an
1

Figure 2.15: Band E on a sum of 2-bridge knots.
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By taking a connected sum of diagrams and associated band moves of the type de-

scribed in Lemma 2.15 above we get a similar diagram for this connected sum. To prove

this result, we just need to see that band E fits into this picture. As in Proposition 2.14,

we need to verify that after we do all the Ai band moves, we can add in band E and

get another unlink with an extra component. Between the attaching regions of E, the

component to which it is attached runs along Ai bands at the top of the diagram. This

strand can be extracted easily, giving the diagram in Figure 2.16, from which the result

follows.

E

Figure 2.16: Band E increase the number of components in an unlink.

Taking the double branched cover, Lemma 2.4 shows that when each pi is odd, we get

a smooth embedding of Y (0; (p1, q1), (−p1, q1), . . . , (pn, qn), (−pn, qn)) in S4, recovering a

result of [CH98]. In fact, the proof of Proposition 2.16 establishes the following.

Corollary 2.17. Let S = {(pi, qi), (−pi, qi)}n
i=1 be a finite collection of pairs of coprime

integers with pi > qi > 0 and pi odd for each i. The 2-handle cobordism

WS,0 : #n
i=1(L(pi, qi)# − L(pi, qi)) → Y (S2; 0; (p1, q1), (−p1, q1), . . . , (pn, qn), (−pn, qn))

embeds smoothly in S4.

Proof. The band move E in the above proof gives a link cobordism WL between a Mon-

tesinos link and a connected sum of 2-bridge links and it is embedded in a trivial sphere.

The double branched cover of a slice S3 × I intersecting the trivial sphere in WL, with

branch set WL, is WS,0 and it embeds in S4 as the preimage of this slice.
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2.1.1 Aside about doubly slice pretzel links

The focus here is on embedding 3-manifolds in S4 but we could consider the closely related

question of which (pretzel) links are doubly slice. This involves a couple of additional com-

plications, namely mutation and the orientation of the links. When we look at branched

covers both of these become irrelevant but we can illustrate how they affect the question

on the link level with a few examples.

A link L in S3 is said to be (smoothly) sphere-slice if it a cross-section of a (smoothly)

embedded sphere in S4. Every doubly slice link is sphere-slice.

Example 2.18. The pretzel link P (2, 3,−2,−3) is not doubly slice but, since it is a

mutant of the doubly slice link P (2,−2, 3,−3), the double branched cover embeds in S4.

These are two-component links, so if they are sphere-slice they must bound a pair of

disks (and an annulus). In particular, both components must be slice. The components

of P (2, 3,−2,−3) are both trefoil knots and so this link is not sphere-slice.

However, in some cases mutation does not have an effect.

Example 2.19. The pretzel links P (3,−3, 3,−3) and P (3, 3,−3,−3) are both doubly

slice.

The first of these was seen already in Corollary 2.11, while the latter is shown by

Figure 2.17. This figure generalises in the obvious way to P (a, a,−a,−a) for a ∈ Z.

Similar pictures also exists for many mutants of P (a,−a, a, . . . ,±a).

The linking numbers between the components give an obstruction to a link being

sphere-slice (see [Sat98] for example) which is sensitive to the orientation of the link.

The link orientation is not crucial to the double branched cover but it does affect higher

branched covers. Every doubly slice link has a quasi-orientation (an orientation defined

up to an overall reversal) induced by an orientation of the unknotted sphere. For the

diagrams above, this quasi-orientation can be determined by choosing an orientation on

the central unknot and requiring that every band respects it.

Example 2.20. A link is unlikely to be doubly slice for every orientation. Orienting

P (2,−2, 2) so that each of the components is oriented in a clockwise direction is not

orientedly doubly slice. The linking number between any pair of components is 2. If the

link was sphere-slice with this orientation, it would bound an annulus and a disk and the

boundary of the disk component would have total linking number zero with the rest of the

link.
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A1

B1

B2

Figure 2.17: Band moves on P (3, 3,−3,−3).

2.2 Constructing embeddings using Kirby diagrams

A Kirby diagram for S4 gives a handle decomposition. Taking only some of these handles

gives a 4-dimensional submanifold of S4. We can find an embedding of a 3-manifold

in S4 from a sufficiently complicated Kirby diagram by taking the boundary of such a

submanifold. Indeed, in principle, every 3-manifold which can be smoothly embedded in

S4 can be found in this way.

Figure 2.18 shows a Kirby diagram for S4 with a cancelling pair. The boundary of the

1-handle drawn in black – S1 × S2 – embeds smoothly. Figure 2.19 shows an embedding

of the 3-torus T 3. The boundary of the 1-handles and the 2-handle drawn in black is T 3.

The blue 2-handles cancel the 1-handles – any other curve linking the 1-handles can be

unlinked from it by sliding over the blue meridian – and leave a cancelling 2 and 3-handle.

Remark 2.21. Fox [Fox72] showed that T 3 does not arise as the double branched cover

of a link. The method of producing embeddings from doubly slice links does not find an

embedding of T 3.

The embeddings given by doubly slice links can be reproduced. The band moves in a

diagram for a doubly slice link describe the handle decomposition of an unknotted sphere

and we may draw the double branched cover of S4 with this sphere as the branch set. An

algorithm for drawing (double) branched covers over surfaces is described in [AK80].

Example 2.22. Figure 2.20 gives a picture of S4 with the double branched cover of La,n
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0 ∪ 4-handle

Figure 2.18: Kirby diagram for S4 with embedded S1 × S2.

0

0

0

∪ 3-handle ∪

4-handle

Figure 2.19: Kirby diagram for S4 with embedded T 3.
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as a submanifold. The ±a twists in this figure are full twists. The double branched cover of

La,n has a surgery diagram as shown in Figure 2.21. Sliding the 2-handles over each other,

exchanging some of the curves for 1-handles and cancelling gives the diagram consisting of

the 1-handles and black 2-handles in Figure 2.20. The full diagram gives S4 which can be

seen by sliding the 1-handle on the right over the 1-handle on the left. The left 1-handle

then cancels with the blue 2-handle; the right 1-handle cancels with the n-framed 2-handle

and the remaining 2-handle with the 3-handle.

n

0

∪ 3-handle ∪

4-handle

a−a

0

Figure 2.20: Kirby diagram for S4 with embedded Σ2(La,n).

a −a a

n

−a

0

Figure 2.21: A surgery diagram for Σ2(La,n).

Next we describe a couple of ‘indirect’ embeddings. We use Kirby calculus to obtain

explicit embeddings in some cobordisms and then argue that these cobordisms embed in

S4.

Lemma 2.23. Let Y = Y (Σg; r; (a1, b1), . . . , (an, bn)). There is a smooth embedding of
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Y (Σg+1; r; (a1, b1), . . . , (an, bn)) in Y × I.

Proof. Figure 2.22 shows a modification of a Kirby diagram with boundary Y , where all of

the handles are attached near to the central curve. This describes the product cobordism

since we add a cancelling 1-2-handle pair, then cancelling 2 and 3-handles. Attaching the

2-handles in the other order, we see the specified 3-manifold – compare to Figure 1.8,

which illustrates how to increase the base genus.

r

0

0

r

−→

∪ 3-handle

Figure 2.22: Adding to the base genus.

Corollary 2.24. If Y (S2; r; (a1, b1), . . . , (an, bn)) embeds smoothly in S4 then so does

Y (Σg+1; r; (a1, b1), . . . , (an, bn)) for any g > 0.

Remark 2.25. This is a result of Crisp and Hillman [CH98, Lemma 3.2].

Lemma 2.26. Let S = {(ai, bi)} be a set of Seifert invariants. We get a sum of lens

spaces and a 2-handle cobordism WS,r to the Seifert manifold Y (S2; r;S). There is a

smooth embedding of Y (Ng; t;S) in WS,r for t = r + 2g − 4n when 0 ≤ n ≤ g.

Proof. Figure 2.23 shows a relative Kirby diagram for WS,r. Starting with the handles

drawn in red, we can add the black 1-handles and the green and blue 2-handles. The blue

and black handles cancel so this is the same cobordism as the one obtained by just adding

the green handle.

The boundary of the manifold given by the red, black and green handles is Y (Ng; t;S)

for some t. There are g 1-handles which can have either positive or negative linking with

the green 2-handle – the two drawn in Figure 2.23 have opposite linking. Thus t lies
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r

0 0

a1
1

a1
2 ah

2

ah
1

Figure 2.23: Seifert manifolds with non-orientable base embed in a

cobordism between a connected sum of lens spaces and a Seifert man-

ifold with base S2.
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between r−2g and r+2g and takes values r+2g−4n where n is the number of 1-handles

with negative linking.

We can use this to reprove part of [CH98, Proposition 1.2].

Corollary 2.27. If S = {(ai, bi), (ai,−bi)} is a set of complementary pairs of odd Seifert

invariants then Y = Y (Ng; t;S) embeds smoothly in S4 for t = 2g − 4n for 0 ≤ n ≤ g.

Proof. In this case the 2-handle cobordism WS,0 embeds smoothly in S4 by Corollary 2.17.

By the previous lemma, Y embeds in this cobordism.

Crisp-Hillman prove the stronger statement that, for sets of Seifert invariants of this

form, these are the only values of t for which Y (Ng; t;S) embeds smoothly.

We will now use Kirby calculus to construct an embedding for another Seifert manifold.

Lemma 2.28. Suppose Y is the boundary of a Kirby diagram consisting of 4 2-handles.

Suppose these are attached along framed knots γi (1 ≤ i ≤ 4) with the following properties:

• The sublink given by γ1 and γ2 is a 0-framed unlink;

• the sublink given by γ1 and γ3 is a 0-framed unlink;

• the linking number of γ1 and γ4 is ±1.

Then Y embeds smoothly in S4.

Proof. We can draw a Kirby diagram as follows. Exchange γ1 and γ2 for 1-handles and

add 0-framed meridians to γ2 and γ4.

Then γ2 and its 0-framed meridian give a cancelling pair – whenever a 2-handle crosses

over γ2 in the diagram we may change this to an undercrossing by sliding the other

component over the meridian. This pair can therefore be removed.

Similarly, we can remove every crossing of γ3 over γ4. Since it is 0-framed and can be

drawn such that it has no crossings with γ1, we may add a cancelling 3-handle.

Our diagram now consists of a 1-handle attached along γ1, γ4 and a 0-framed meridian

of γ4. By sliding γ4 over this meridian, we may change any crossing of γ4 with itself.

Since the linking number of γ1 with γ4 is ±1 we see that they give a canceling pair. After

removing them, we may add a 3-handle and a 4-handle to get the standard Kirby diagram

of S4.

It then follows that Y is the boundary of a smooth submanifold of S4.
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Remark 2.29. Statements similar to Lemma 2.28, for example about diagrams with more

2-handles, can be established by much the same argument.

We use Lemma 2.28 to describe another embedding.

Example 2.30. The Seifert manifold Y (S2; 0; (4, 1), (4, 1), (12,−7)) embeds smoothly in

S4.

We rewrite this Seifert manifold as Y (S2; 1; (4, 1), (4, 1), (12, 5)). Using the continued

fraction 12/5 = [2,−3,−2]− this is the boundary of the plumbing shown in Figure 2.24.

We blow down the +1-framed curve to get the first picture in Figure 2.25 and then perform

the indicated Kirby moves.

−2 −3 +2 +1

+4

+4

Figure 2.24: Plumbing graph for Y (S2; 1; (4, 1), (4, 1), (12, 5)).

The second diagram has a 0-framed unknot which we think of as γ2 to fit in with the

notation of Lemma 2.28. The final picture is a Kirby diagram for a 4-manifold X to which

the lemma applies but another three handle slides are needed to draw it in the required

form. The bands determining these slides are drawn. Note that there is another 0-framed

unknot which we call β and should think of as γ1 + γ2. It forms a 0-framed unlink with

γ2.

The next handle slide uses band A to slide the curve with framing 2 over the one with

framing −4, to get a 0-framed curve γ3. We then slide the −4 framed curve over β using

band B to get γ4 and finally use band C to slide β over γ2. This gives a 0-framed curve

γ1.

It is easy to check that the sublink given by γ1 and γ2 is a 0-framed unlink. The

linking number of γ1 and γ4 is a homological property of X and can be computed using

the intersection form of X. A matrix for the form can be found using the linking numbers

in the final diagram in Figure 2.25 and a simple calculation verifies that γ1 and γ4 have

linking number ±1.



CHAPTER 2. CONSTRUCTING EMBEDDINGS OF 3-MANIFOLDS IN S4 47

−2

3

−3

+1

3

↓ Slide a handle with framing +3 over the handle with framing −3.

−2

+1
3

−3

0

↓ Blow down, handle slide.

0

2

0

−4

B

C

A

Figure 2.25: Kirby moves.
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Both γ1 and γ3 are 0-framed and we can see the sublink consisting of these two curves

by band summing the components in the last picture of Figure 2.25 along bands A and

C. This gives an unlink, shown in Figure 2.26, and so Lemma 2.28 gives an embedding.

−→

Isotopy.

Figure 2.26: γ1 and γ3 give a 2-component unlink.

2.2.1 Fundamental groups of submanifolds of S4

We can also use Kirby calculus to give a quick proof that every finitely presented group is

the fundamental group of a smooth submanifold of S4. This was shown by Dranĩsnikov-

Repovs̃ [DsRs93] as a corollary to a result of Stallings [Sta65].

Theorem 2.31. Let G be a finitely presented group. Then G is the fundamental group of

a 4-manifold with boundary which is a smooth submanifold of S4.

Proof. We may draw a Kirby diagram as follows. Take a finite presentation of G and a

1-handle for each generator. Then add a 0-framed 2-handle tracing out each relation to

get a manifold whose fundamental group is G. We may arrange that the 2-handles alone

form a 0-framed unlink by changing crossings in their attaching link if necessary. This

does not affect the fundamental group but it gives a manifold which embeds in S4 – adding

a 0-framed meridian to each 1-handle, a 3-handle for each relation and a 4-handle gives a

diagram for S4.

Remark 2.32. This is a variant of a standard argument that G is the fundamental group

of a smooth 4-manifold (see [GS99, Exercise 4.6.4(b)] for example).

Remark 2.33. From a Kirby diagram of this form for a manifold U – with the 2-handles

forming a 0-framed unlink and no 3 or 4-handles – we can easily find a diagram for S4\U
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by exchanging all of the 1-handles for 0-framed 2-handles and the 2-handles for 1-handles.

Consequently, we can easily find a presentation for π1(S4\U).



Chapter 3

Obstructions to a 3-manifold

embedding in S4

Our approach can be summarised as follows. A 3-manifold Y which embeds smoothly

in S4 results in a pair of submanifolds of S4 with boundary Y . These necessarily have

‘simple’ rational homology primarily determined by that of Y . By gluing these pieces to

a known 4-manifold X with boundary Y we obtain smooth, closed 4-manifolds. Many of

the properties of this 4-manifold are largely determined by those of X. Obstructions are

obtained by arrangingX so that the hypothesised 4-manifold has impermissible properties.

The obstruction techniques we use are largely based on this idea.

In Section 3.2 we use Donaldson’s Theorem A on the intersection forms of smooth

4-manifolds while in Section 3.4 we describe obstructions based on Furuta’s 10/8 theorem

and on Heegaard-Floer homology.

3.1 Generalities

First we collect some useful generalities which are needed in both cases.

Lemma 3.1. Suppose a 3-manifold Y embeds smoothly in S4. Then there is a splitting

S4 = U1 ∪Y −U2 for smooth 4-manifolds Ui with boundary Y such that

1. H2(Y ; Z) ∼= H2(U1; Z) ⊕H2(U2; Z);

2. H2(Ui; Z) ∼= H1(Uj ; Z) for i ̸= j;

3. b3(Ui) = 0;

50
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4. σ(Ui) = 0.

Note in particular that the torsion subgroup τH2(Y ) ∼= G⊕G where G is the (common)

torsion subgroup of H2(U1) and H2(U2).

Proof. The first three statements follow by applying the Mayer-Vietoris sequence to this

decomposition of S4 and Alexander duality. Since b3(Ui) = 0, it follows from the exact

cohomology sequence of the pair (Ui, Y ) that b1(Ui)+b02(Ui) = b1(Y ), where b02(Ui) denotes

the rank of the kernel of the restriction map H2(Ui, Y ) → H2(Ui). This implies that

b2(Ui) = b02(Ui) and, in particular, that the signature is zero.

In particular, when Y is a rational homology sphere, U1 and U2 are both rational balls

and when b1(Y ) = 1, U1 and U2 have the rational homology of S1 ×D3 and S2 ×D2.

We briefly mention that H2(Y ; Z) classifies the spinc structures on Y . We will return to

this in Section 3.4. In a similar way, the spin structures on Y are a torsor for H1(Y ; Z/2)

so it is useful to record the following consequences of the Mayer-Vietoris sequence and

Alexander duality.

Corollary 3.2. If Y embeds in S4 giving a splitting as S4 = U1 ∪Y −U2, there are

isomorphisms

H1(Y ; Z/2) ∼= H1(U1; Z/2) ⊕H1(U2; Z/2)

and

H1(Ui; Z/2) ∼= H2(Uj ; Z/2) for i ̸= j.

We now describe the homological properties of X ∪Y Ui for ‘suitable’ 4-manifolds X.

Proposition 3.3. Let Y be a 3-manifold which bounds 4-manifolds U,X where U is a

submanifold of S4 and H3(X) = 0. Let W = X ∪Y −U and let K be the kernel of the

inclusion map

H1(Y ; Z) → H1(X; Z)

and denote its rank by k.

If the image of K in H1(U ; Z) also has rank k then b2(W ) = b2(X) − k and σ(W ) =

σ(X).
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Proof. We may calculate b1(W ) using the Mayer-Vietoris sequence. The condition on K

implies that the three first homology terms give a short exact sequence and so b1(W ) =

b1(X) + b1(U) − b1(Y ).

Computing the Euler characteristic of W gives an expression for b2(W ) which may be

reduced to the claimed form using the equations b1(U)+b2(U) = b1(Y ) and b1(X)−b1(Y ) =

−k. These follow from Lemma 3.1 and the condition on X.

The signatures of W and X are equal as σ(U) = 0 by Lemma 3.1.

Remark 3.4. When k = 0, the condition on the rank of K in H1(U ; Z) holds trivially,

while for k = 1, it will hold for at least one of U and S4\U .

3.2 Diagonalisation

We will use Donaldson’s theorem about 4-manifolds with definite intersection forms to

obtain an obstruction.

Theorem 3.5 (Donaldson [Don87]). If W is a closed, oriented, smooth 4-manifold and

the intersection form QW : H2(W ; Z) ⊗ H2(W ; Z) → Z is negative definite then QW is

diagonalisable.

The first objective is to develop a general obstruction in the case where X is such that

Proposition 3.3 gives a closed definite 4-manifold.

The obstruction will be used to prove Theorems 3.16, 3.17 and 3.32. To that end, we

will find appropriate 4-manifolds with the boundaries required. This produces a combi-

natorial condition as an embedding obstruction. In Section 3.3 this is analysed to obtain

the results.

Recall that W = X ∪Y −U where U is a submanifold of S4. If X is chosen so that

b2(X)− k = −σ(X) then W is negative definite and Donaldson’s theorem applies to show

that the intersection form of W is diagonal. Let {ei} be a basis for H2(W )/Torsion such

that ei · ej = −δij . Next we consider the induced map ι∗ : H2(X) → H2(W ).

We may choose a basis {h1, . . . hn} of H2(X) ∼= Zn. Let QX denote the matrix of the

intersection pairing with respect to this basis.

Following [Lis07a] we can use these to define a ‘subset’.

Definition 3.6. Let vi = ι∗(hi) ∈ H2(W )/Torsion for each 1 ≤ i ≤ n. We call S =

{v1, . . . vn} the subset associated to the pair (X,U).
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The matrix A(S) = [ei · vj ] is called the matrix of S.

Clearly, S and A(S) just give different ways of recording the same information. We

will switch between the two freely whenever it is convenient. Note that for the bases {hi}

and {ej} the map ι∗ is represented by the matrix A(S)t.

An important feature of the subset S is that it encodes information about the manifold

X and the image of the torsion subgroup τH2(U) of H2(U) in H2(Y ).

Lemma 3.7. Let W = X ∪Y −U where U is a smooth 4-dimensional submanifold of S4

and suppose W is negative definite. Choose a basis for H2(X) and let S be the associated

subset.

The matrix A(S) is such that QX = −A(S)A(S)t.

Proof. The homology classes in H2(X) are represented by embedded surfaces and the

intersection form counts the signed intersection points of these surfaces. If surfaces {αi}

represent classes in H2(X) then the same surfaces sit inside W to represent the images

of these homology classes under the inclusion induced map. Since the intersection points

are the same, QX(hi, hj) = −vi · vj . The matrix A(S)t represents the inclusion map so

vi = A(S)thi and so for every pair hi, hj , QX(hi, hj) = −A(S)A(S)t(hi, hj).

Theorem 3.8. Let U be a submanifold of S4 and X be such that H3(X; Z) = 0, H1(X; Z)

is torsion-free and the matrix QX is non-singular. Suppose ∂X = −∂U = Y and that

W = X ∪Y U is negative definite. Let S be the associated subset.

There is an isomorphism between the torsion subgroup of the image of the restriction

map H2(U) → H2(Y ) and
(

im A(S)
im QX

)
and this is facilitated by the inclusion induced map

δ : H2(X) → H2(Y ).

Proof. We follow the approach of [GJ11, Proposition 2.5]. Consider the following diagram

with the maps of cohomology induced by the inclusion (X,Y ) ↩→ (W,U):

−−−−→ H2(W,U) α−−−−→ H2(W )
β−−−−→ H2(U) −−−−→ H3(W,U)

ι1∼=
y ι2

y ι3

y ι4∼=
y

−−−−→ H2(X,Y )
γ−−−−→ H2(X) δ−−−−→ H2(Y ) −−−−→ H3(X,Y ).

The rows of this diagram are exact and it is commutative since all of the maps are

given by restriction.

Given the basis {hi} for H2(X) we may choose the dual and Poincaré dual bases for

H2(X) and H2(X,Y ). With these choices the map γ is represented by QX . This sets up



CHAPTER 3. OBSTRUCTIONS TO A 3-MANIFOLD EMBEDDING IN S4 54

an identification of a subgroup of H2(Y ) with cokerQX via δ. Since detQX ̸= 0, this lies

in the torsion subgroup of H2(Y ) and the fact that H1(X) is torsion-free shows that this

gives the whole torsion subgroup.

We are interested in the image of ι3. This has a subgroup given by the image of ι3 ◦β.

Since this is the same as the image of δ ◦ ι2 it is a finite group.

We may choose the dual basis to {ei} for H2(W )/Torsion so that the map ι2 is repre-

sented by the matrix A(S). Note that since H2(X) is free abelian any torsion in H2(W )

must map trivially.

The image of δ ◦ ι2 is therefore isomorphic to
(

im A(S)
im QX

)
.

To see that this gives the entire torsion subgroup of the image of ι3, we compare the

orders. By Lemma 3.7, QX = −A(S)A(S)t and so the order of this subgroup is |detA(S)|.

By Lemma 3.1 the torsion of the image of ι3 also has order given by the square root of

| cokerQX |.

Remark 3.9. The assumption in Theorem 3.8 that U is a submanifold of S4 can sometimes

be weakened. When Y is a rational homology sphere and U any rational ball this result

is Theorem 3.5 of [GJ11].

3.2.1 Definite 4-manifolds bounded by Seifert manifolds

We will apply Theorem 3.8 to obtain obstructions to embedding Seifert manifolds. To do

this, we describe the relevant negative definite 4-manifolds.

Recall that a negative definite plumbing bounded by the lens space L(p, q) can be

constructed by plumbing on a linear graph with weights given by the negative continued

fraction. A similar construction works when Y is a Seifert manifold with base S2 and

e(Y ) > 0. It may be arranged that the Seifert invariants are of the form (ai, bi) with

ai > −bi > 0. A weighted graph, which yields a plumbing with boundary Y , can be

obtained by taking a central vertex weighted by the central framing and attaching legs

with weights according to the negative continued fractions of ai/bi. It is shown in [NR78]

that this is negative definite whenever e(Y ) > 0 and negative semi-definite when e(Y ) = 0.

Recall that to get a surgery picture for a Seifert manifold with a different base surface,

we modify the diagram at the central curve. Figure 1.8 shows how to add an orientable

handle and Figure 1.9 how to add an RP2 summand to the base.

The construction of negative definite manifolds with Seifert boundaries can be ex-

tended. The intersection forms depend primarily on the Seifert invariants, not the base
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surface.

Proposition 3.10. Let YF = Y (F ; r; (a1, b1), . . . (an, bn)) where F is a closed surface and

L = −#n
i=1L(ai, bi).

There are 4-manifolds XL and XF with boundaries L and YF respectively. The 4-

manifolds XL and XS2 are obtained by plumbing and the intersection form QXF
is equiv-

alent to QXS2 if F is orientable and to QXL
otherwise.

In addition, XL can always be chosen to be negative definite and XS2 can be chosen to

be negative definite if e(YS2) > 0 and semi-definite if e(YS2) = 0.

Proof. The manifolds XL and XS2 are described above.

We get a Kirby diagram for XF by modifying the diagram for XS2 . We add 1-handles

in place of the new 0-framed 2-handles in Figures 1.8 and 1.9.

The intersection forms of these manifolds are easy to describe. There are two cases,

depending on whether the base surface is orientable or not, but the intersection form does

not depend on the genus. When the base surface F is orientable, there is a basis for

H2(X; Z) given by the cores of the 2-handles. We may orient these so that the intersection

form is given by the incidence matrix of the plumbing graph, obtained by ignoring any

1-handles. This gives a manifold XF with the same intersection form as XS2 .

When the base surface is non-orientable, the central curve does not contribute to the

second homology. The intersection form is given by the other 2-handles. This is the same

as the intersection form of XL.

We can now apply Theorem 3.8.

Corollary 3.11. Let Y be a connected sum of lens spaces or a Seifert manifold with ori-

entable base orbifold and e(Y ) > 0, which embeds smoothly in S4 and let X be the negative

definite 4-manifold with boundary Y from Proposition 3.10. Then there are b2(X)× b2(X)

integer matrices A1, A2 such that AiA
t
i = −QX for i = 1, 2. Viewing A1, A2 and QX as

maps Zb2(X) → Zb2(X) let Hi = im Ai
im QX

be subgroups of cokerQX .

Then cokerQX = H1 ⊕H2 and H1
∼= H2.

Proof. The embedding produces a splitting S4 = U1 ∪Y −U2. Applying Theorem 3.8 to

Wi = X ∪Y −Ui gives the matrices Ai and identifies the images of the restriction maps

τH2(Ui) → H2(Y ) with im Ai
im QX

using the map δ.

The result can now easily be deduced from Lemma 3.1 since the isomorphism H2(U1)⊕

H2(U2) → H2(Y ) is induced by the inclusions of Y into each Ui.
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Remark 3.12. When Y is an integral homology sphere then H1 = H2 = {0} and it is

possible to just take A1 = A2.

Otherwise, the condition that H1 and H2 have trivial intersection implies that A1 and

A2 must be different. In particular, since Hi is the subgroup of cokerQX generated by the

columns of Ai, the column spaces of the matrices must be different.

Remark 3.13. Corollary 3.11 holds for any negative definite 4-manifold X ′ provided the

inclusion map H1(Y ; Q) → H1(X ′,Q) is an isomorphism.

Corollary 3.14. Let Y be a Seifert manifold with orientable base orbifold and e(Y ) = 0.

If X is the semi-definite 4-manifold with boundary Y from Proposition 3.10 then there is

a b2(X) × b2(X) − 1 integer matrix A such that AAt = −QX .

Proof. The embedding splits S4 as U1 ∪Y −U2. The kernel K of the map H1(Y ; Z) →

H1(X; Z) has rank one. By Lemma 3.1 the inclusion maps give an isomorphismH1(Y ; Z) ∼=

H1(U1; Z) ⊕ H1(U2; Z) and hence K must map to a rank one subgroup of H1(Ui; Z) for

some i = 1, 2. For this i, Proposition 3.3 shows that X ∪Y −Ui is negative definite so the

result then follows by applying Lemma 3.7.

While a Seifert manifold with a non-orientable base surface is also the boundary of

a canonical negative definite manifold X, the first homology of X is not torsion-free.

However, we may modify the proof of Theorem 3.8 to recover a result slightly weaker than

Corollary 3.11.

Corollary 3.15. Let Y be a Seifert manifold with non-orientable base orbifold Pk, which

embeds smoothly in S4 and let X be the negative definite 4-manifold from Proposition

3.10. Then there are b2(X) × b2(X) integer matrices A1, A2 such that AiA
t
i = −QX for

i = 1, 2. Viewing A1, A2 and QX as maps Zb2(X) → Zb2(X) let Hi = im Ai
im QX

be subgroups of

cokerQX .

Then cokerQX
∼= Hi ⊕Hi for i = 1, 2 and |H1 ∩H2| ≤ 2.

Proof. As before S4 = U1 ∪Y −U2 and this gives subsets with associated matrices A1 and

A2. Let t be the unique element of order two in H2(X) ∼= Zb2(X) ⊕Z/2. The commutative

diagram from the proof of Theorem 3.8 can be extended, with i = 1, 2.
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−−−−→ H2(Wi, Ui)
αi

−−−−→ H2(Wi)
βi

−−−−→ H2(Ui) −−−−→ H3(Wi, Ui)

ιi1
∼=
y ιi2

y ιi3

y ιi4
∼=
y

−−−−→ H2(X,Y )
γ−−−−→ H2(X) δ−−−−→ H2(Y ) −−−−→ H3(X,Y )

q1

y q2

y
H2(X)
Torsion

δ′−−−−→ H2(Y )
⟨δ(t)⟩

With respect to the appropriate bases, q1 ◦ γ is represented by QX . Note that the

image of this composition is the kernel of δ′ so there is an isomorphism between cokerQX

and im δ′. The torsion of H2(Wi) maps trivially under q1 ◦ ιi2 so we can identify this map

with the matrix Ai. The group Hi can now be seen as the image of δ′ ◦ q1 ◦ ιi2.

By Proposition 3.10,

cokerQX =
n⊕

i=1

Z/an,

where the ai come from the Seifert invariants of Y . We may order the ai by writing each

as ai = 2tisi with si odd and arranging that t1 ≥ t2 ≥ . . . ≥ tn. With this ordering, [CH98,

Lemma 3.4] tells us that

τH2(Y ) =

(
n⊕

i=3

Z/ai

)
⊕ Z/2a1 ⊕ Z/2a2 or

(
n⊕

i=2

Z/ai

)
⊕ Z/4a1.

By Lemma 3.1, this torsion subgroup is of the form H ⊕ H so we may assume the

former holds. Decomposing τH2(Y ) as a direct sum of cyclic groups of prime power order

we see that it is

Z/2t1+1 ⊕ Z/2t1+1 ⊕K ⊕K,

for some K while cokerQX is

Z/2t1 ⊕ Z/2t1 ⊕K ⊕K.

Also Hi = im q2 ◦ ιi3 ◦ βi is a subgroup of q2(Z/2t1+1 ⊕K). Since this is a square root

order subgroup of cokerQX , it follows that this cokernel is isomorphic to Hi ⊕Hi.

To see H1 and H2 have the required intersection, note that they are images of maps

which factor through ι13 and ι23. The images of these maps have trivial intersection by

Lemma 3.1. Since q2 takes the quotient by a subgroup of order two, H1 and H2 have at

most two points of intersection in
H2(Y )
⟨δ(t)⟩

.
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3.3 Linear subsets

In this section, we will prove the following theorems.

Theorem 3.16. Let L = #h
i=1L(pi, qi). Then L embeds smoothly in S4 if and only if each

pi is odd and there exists Y such that L ∼= Y# − Y .

Theorem 3.17. Let Y be a Seifert manifold with non-orientable base surface F . If Y

embeds smoothly in S4 then the Seifert invariants of Y occur in weak complementary

pairs. In addition, whenever there are Seifert invariants (ai, bi), (aj , bj) with ai, aj both

even, then ai = aj and bi ∈ {±bj ,±b′j}.

To do this, we describe the necessary combinatorics. Let Dn be the lattice Zn =

⟨e1, . . . en⟩ with respect to the product given by −Id.

Definition 3.18. A subset S = {vi} of Dn is called linear if

vi · vj =


−ai ≤ −2 if i = j

0 or 1 if |i− j| = 1

0 if |i− j| > 1.

(3.1)

A weighted graph Γ(S) can be associated to every linear subset S as follows. For each

element vi there is a vertex with weight vi · vi and there is an edge connecting the vertices

corresponding to vi and vj if and only if vi ·vj = 1. We will use the same notation for both

the vector vi and the corresponding vertex. Define c(S) to be the number of connected

components of the graph Γ(S).

Let QΓ = −A(S)A(S)t be the incidence matrix of Γ.

Define

G(S) =
Zn

imQΓ
and H(S) =

Zn

spanS
∼=

imA(S)
imQΓ

.

Definition 3.19. A linear subset S is called a linear double subset if G(S) ∼= H(S)⊕H(S).

Linear subsets were studied extensively by Lisca [Lis07a], [Lis07b]. It will be useful to

review some of these ideas.

A pair of vectors v, v′ are called linked if there is some unit basis vector ei in (Zn,−Id)

such that v · ei and v′ · ei are both nonzero. A subset S is called irreducible if for any pair

of vectors v, v′ ∈ S there is a sequence v = w1, . . . , wk = v′ such that each wi is linked to

wi+1. In [Lis07b] irreducible linear subsets were called good.
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Lemma 3.20. Let S be a linear subset. If S is not irreducible then S = ∪iTi where each

Ti is irreducible and consists of ni vectors which are supported on ni of the basis vectors

{ej}.

Proof. This is proved on page 2162 of [Lis07b].

We now look at how to describe the groups H(S) and G(S) in terms of the decompo-

sition into irreducible subsets.

For a linear subset S, the connected components of the graph Γ(S) are all linear

weighted trees. If Qi denotes the incidence matrix of the ith tree we can arrange that QΓ

is the diagonal block matrix diag(Q1, . . . Qh). If the subset S gives matrix A then this has

the form diag(A1, . . . Ak) where each Aj comes from an irreducible subset Tj . The group

H(S) also splits up as a direct sum with summands of the form

H(Ti) =
imAi

imQi1 ⊕ . . .⊕Qic(Ti)

.

Proposition 3.21. Let S be a linear double subset and suppose S decomposes as S =

∪k
i=1Ti where each Ti is irreducible. Then H(Ti) is a square root order direct summand of

G(Ti) for each i.

In addition, if c(Ti) = 2 then Ti is also a linear double subset.

Proof. For each 1 ≤ j ≤ k, let G′ =
⊕

i̸=j G(Ti) and H ′ =
⊕

i̸=j H(Ti). Consider the

following diagram

0 0y y
0 −−−−→ H(Tj)

ι−−−−→ G(Tj) −−−−→ G(Tj)
H(Tj)

−−−−→ 0

↑
y ↑

y
0 −−−−→ H(Tj) ⊕H ′

←−−−−→ G(Tj) ⊕G′
←−−−−→ H(Tj) ⊕H ′ −−−−→ 0

↑
y ↑

y
0 −−−−→ H ′ −−−−→ G′ −−−−→ G′

H ′
−−−−→ 0y y

0 0

.

It follows from the description above that this diagram commutes. The rows and

columns are exact, with the obvious inclusion and quotient maps, and the first two columns

and second row split.
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There is then a map ρ from G(Tj) → H(Tj). It is not hard to check that this splits

the first row as well.

Thus G(Tj) ∼= H(Tj) ⊕ Kj for some Kj with the same order as H(Tj). If c(Tj) = 2

then Gj can be written as a sum of two cyclic groups. Both H(Tj) and Kj must be cyclic

groups.

The following special case can be observed immediately.

Corollary 3.22. If S is a linear double subset then every irreducible Ti has c(Ti) ≥ 2.

We review a few more important notions from [Lis07a], namely the quantity I(S),

contractions of subsets and bad components.

Definition 3.23. Let S = {vi}m
i=1 be a subset of Dm. Define

I(S) =
m∑

i=1

−vi · vi − 3.

Note that I(S) can be computed from weights of the graph Γ(S). We will also use I(C)

when C is a connected component of the graph by just summing over vectors corresponding

to vertices in this component.

Definition 3.24. Let S ⊂ Dm be a subset {vi} for which |vi · ej | ≤ 1 for each i, j. If there

are j, s, t such that |vi · ej | = 1 if and only if i ∈ {s, t} and vt · vt < −2 then the subset

S′ = S\{vs, vt} ∪ v′t of Dn−1 considered as the span of {ek}k ̸=j and where v′t is obtained

from vt by removing the ej component is said to be obtained via a contraction of S.

Conversely, S is called an expansion of S′.

In the particular case where vs is a leaf of the graph and vs · vs = −2 we will say that

S is an expansion of S′ by a final (−2) vector.

Definition 3.25. Let S′ be a linear subset of Dm. Suppose that the subset {vs−1, vs, vs+1}

is a connected component C ′ of Γ(S′) and that there are i, j such that vs−1 and vs+1 are

both of the form ±(ei ± ej) and vs · vs < −2.

Let S be any subset which is obtained from S′ by a sequence of expansions by final (−2)

vectors which belong to the connected component C of Γ(S) corresponding to C ′.

The component C is called a bad component of S.

We then define b(S) to be the number of bad components of S.
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Note that the conditions on S′ mean that, up to reordering or a change of sign, vs−1 =

ei − ej , vs = ej + . . . and vs+1 = −ei − ej . Since every other element of S′ has product

zero with vs−1 and vs+1, none contains a nonzero multiple of ei or ej .

We may form a new subset S′′ of Dm−2 from S′ by deleting the elements vs−1 and vs+1

from the subset and deleting the basis vectors ei and ej .

Note that the bad component C ′ of S′ is necessarily given by a chain of length three

with weights −2,−n − 1,−2 for some n ≥ 2. The corresponding component C ′′ of S′′ is

simply an isolated vertex with weight −n. We will call C ′′ in S′′ the reduced component

corresponding to C in S.

We summarise the relevant features of bad components below.

Proposition 3.26. Let S be a linear subset with a bad component C. Suppose C =

{v1, . . . vs} and S\C = {w1, . . . wr}. Then, possibly after reordering {ei}, wi ·ej = 0 for all

j < s. Also, there is some 1 < t < s such that whenever j ≥ s and vi · ej ̸= 0 then i = t.

Furthermore, the 4-manifold defined by plumbing on according to the component C has

boundary L(m2n,mnk+1), where −n is the weight on the reduced component corresponding

to C and m, k are coprime integers with m > k > 0. In addition, I(C) = n− 4.

Proof. In the case where s = 3, this description follows from the discussion above. For

s > 3, it follows from the definition of expansion by a final (−2) vector. The claim that

C represents L(m2n,mnk + 1) is the content of [Lis07b, Lemma 3.3]. It is apparent that

I(C) does not change under expansion by a final (−2)-vector. A simple calculation verifies

the dependence on n.

The key results concerning bad components are the following:

Proposition 3.27. Let S be a linear double subset with c(S) = 2. Then S does not have

a bad component.

Proof. Suppose S has a bad component so G(S) ∼= Z/m2n ⊕ Z/k for some k. This has

square order so there is some q so that nk = q2. Every element of H(S)⊕H(S) has order

dividing mq and this implies that k = mq = m2n.

Then we may assume that G(S) =
(
Z/m2n

)2 for some n,m ≥ 2.

We will show that if S has a bad component then every element of H(S) has order

dividing mn and so H(S) ⊕H(S) is not
(
Z/m2n

)2.
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Letting r, s be as in Proposition 3.26, H(S) is the subgroup of Zs+r

im QΓ
generated by

the columns of A(S). Our aim is to show that multiplying each column by mn gives an

element of imQΓ.

The matrix QΓ can be split up as Q1 ⊕Q2 where Q1 is the s× s matrix corresponding

to the bad component C and Q2 is the r × r matrix coming from the other component.

We compare S to other subsets with similar columns and incidence matrices.

Consider the first s rows of A(S). Proposition 3.26 tells us that, after suitable reorder-

ing, all but row t has all its non-zero entries in the first s− 1 columns. Therefore the last

r + 1 columns contain at most one non-zero entry which is in position t. As far as the

order condition we are checking is concerned, it may be assumed that n have entry +1 here

and all others have entry zero. Now consider the subset S of s+ n− 1 vectors in Zs+n−1

where the first s are the same as in S, except perhaps for the deletion of zero columns,

and the last n − 1 are given by w1 = es − es+1, . . . wn−1 = es+n−1 − es+n. Note that the

matrix of this subset has the same first s rows as A(S). The graph of S consists of the

bad component C and a chain of n − 1 vertices of weight −2. The incidence matrix for

this graph is given by Q = Q1⊕Q3 where Q3 is the incidence matrix for the chain of −2’s.

This presents Z/m2n⊕Z/n. The group H(S) is of square root order so every element has

order dividing mn. This shows that, for each of the columns with s rows appearing in the

upper part of A(S), the vector given by multiplying by mn is in the image of Q1.

Now consider the last r rows of A(S). By Proposition 3.26, each of these has all the

first s entries zero. Let S′ be the subset obtained from S by replacing the bad component

C with the corresponding reduced component. This has a matrix with r + 1 rows and

columns and the last r rows differ from those of S only by the removal of the columns

containing only zeros. The graph of S′ consists of the component of S corresponding to

S\C and an isolated vertex with weight −n, so G(S′) = Z/m2n⊕Z/n. Arguing as above,

we see that the columns given by the last r rows of each column of A(S) gives an element

of the image of Q2 when multiplied by mn.

Thus, every column of A(S) represents an element of order dividing mn in G(S), as

claimed.

The following technical result about subsets where every component is bad is also

necessary. It will be convenient to introduce the following terminology. We call a subset

S of m vectors in Dn square if m = n and rectangular if m = n+ 1. Note that when S is

rectangular the matrix QΓ(S) = −A(S)A(S)t is singular.
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Proposition 3.28. If S is a linear subset with b(S) = c(S) = −I(S), G(S) is not iso-

morphic to H(S) ⊕H(S).

Proof. Since every component of S is bad the group G(S) is a direct sum of cyclic groups

of the form Z/m2
ini (1 ≤ i ≤ c(S)). The condition that c(S) + I(S) = 0 implies that

c(S) +
c(S)∑
i=1

(ni − 4) = −3c(S) +
c(S)∑
i=1

ni = 0. (3.2)

By definition, each ni ≥ 2. By Proposition 3.26, there is a square linear subset S′

whose graph is given by c(S) isolated vertices with weights −ni. Suppose some nk = 2.

The vector vk in S′ with vk · vk = −2 can be linked to other vectors vj . Suppose that

for each of these vectors nj ≥ 3. Then, by deleting vk and the columns on which it is

supported, we get a rectangular subset with graph given by isolated vertices with weight

−ni or −nj + 2 with nj ≥ 3. This is not possible as the incidence matrix has non-zero

determinant. A similar argument shows that vk must be linked to some vj .

We now consider the possibility that some nj = 2. In this case vk can only be linked

to the corresponding vector vj in S′ so it follows that there is a decomposition of S as

T ∪ T ′ where T consists of the bad components built from vk and vj . It now follows from

Propositions 3.21 and 3.27 that S is not a linear double subset.

We now turn to the case where each ni is at least 3. Condition (3.2) then implies that

ni = 3 for each i.

Now, again, we can modify the subset S. For each bad component Ci, let Qi be the

incidence matrix. Each Qi presents Z/3m2
i . The collection of rows of A(S) corresponding

to Qi is described by Proposition 3.26. In particular, we can obtain a subset S′ for the

graph given by Ci and a chain of 2 vertices of weight −2 as in the proof of Proposition

3.27 by extracting the rows corresponding to Ci from A(S), modifying the central row

with square −3 so that every entry is zero or one, deleting any zero columns and adding

a pair of new rows given by w1 = et − et+1, w2 = et+1 − et+2.

Then H(S′) has order 3mi. Let M be the least common multiple of {3mi}c(S)
i=1 . It

follows that MH(S) = 0.

Find a prime power pk and i ∈ [1, c(S)] such that pk divides mi and pk+1 does not

divide any mj . There is an element in G(S) of order 3p2k. However, it is clear 3p2k does

not divide M and this shows that there is no element of this order in H(S) ⊕H(S).

We say that a pair of components C1, C2 of a weighted graph are complementary if the
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manifolds Yi bounding the 4-manifolds produced by plumbing according to Ci are such

that Y1
∼= −Y2.

Proposition 3.29. Let S be a linear subset such that

c(S) + I(S) ≤ 0 and b(S) + I(S) < 0. (3.3)

If S = ∪iTi where each Ti is irreducible with c(Ti) ≥ 2 and b(Ti) = 0 then the graph of S

consists of pairs of complementary components.

In addition, for each Ti, there are generators t, s for G(Ti) such that H(Ti) is generated

by t+ s or t− s.

Proof. By [Lis07b, Proof of Lemma 5.5] there is at least one Ti which satisfies (3.3).

By [Lis07b, Proposition 4.10] this must have c(Ti) = 2.

It is shown in the proof of [Lis07b, Lemma 5.4] that since Ti has no bad compoments, it

is as described in [Lis07b, Lemma 4.7]. Thus plumbing on the graph of Ti gives a manifold

with boundary L(pi, qi)#L(pi, pi − qi) for some pi, qi. This means that c(Ti) + I(Ti) = 0

by [Lis07a, Lemma 2.6]. We can apply the same argument to each irreducible subset Ti

since it follows that (3.3) must hold for each.

When c(T ) = 1, a simple induction argument on the length l of the chain shows that

G(T ) = Zl/ imQΓ(T ) is generated by r = (1, 0, . . . , 0)t. Similarly, when c(T ) = 2 we easily

find a pair of generators t, s for G(T ) = cokerQ1 ⊕Q2.

For every irreducible subset T described by [Lis07b, Lemma 4.7] either t + s or t − s

is the first column of A(T ) and thus represents an element of H(T ). It follows from

comparing the orders that this generates the group.

We may now prove Theorem 3.16 by combining the above results with some results

of [Lis07b]. Theorem 3.17 is proved in precisely the same way.

Proof of Theorems 3.16 and 3.17. Suppose Y embeds in S4, and so, consequently, does

−Y .

There is a negative definite 4-manifold with boundary Y , for either orientation. Ap-

plying Corollary 3.11 or 3.15 gives a linear double subset.

We may then choose an orientation. By [Lis07b, Lemma 5.3], we can assume that there

is a linear double subset S for which (3.3) holds.

Consider a decomposition of S into irreducible components S = ∪Ti. By Corollary

3.22 each has c(Ti) ≥ 2. Let T be the union of all the Ti which satisfy (3.3). Each of
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these must then have c(Ti) = 2 by [Lis07b, Proposition 4.10]. Since S is a double subset it

follows from Propositions 3.21 and 3.27 that T has no bad components and we may apply

Proposition 3.29.

Now consider R = S\T . This is possibly not irreducible and has c(R)+ I(R) ≤ 0 since

the corresponding quantity is at most zero for S and is equal to zero for each Ti. In order

to have no irreducible component satisfy (3.3), we must have b(R) + I(R) ≥ 0. The fact

that b(R) ≤ c(R) implies that b(R) = c(R) = −I(R).

We require that G(S) ∼= H(S) ⊕ H(S). Writing S as the union of R and T gives

G(S) = G(T ) ⊕G(R) and H(S) = H(T ) ⊕H(R).

It is clear that G(T ) ∼= H(T ) ⊕H(T ). It follows that we must have G(R) ∼= H(R) ⊕

H(R).

However, this contradicts the result of Proposition 3.28. We conclude that R is empty.

This proves that the Seifert invariants occur in weak complementary pairs as they are

determined by Γ. Note that this graph does not distinguish between Seifert invariants of

the form
a

b
= [a1, . . . , an]− and

a

b′
= [an, . . . , a1]−.

We now use the second linear double subset given by Corollary 3.11 or 3.15. Each

subset Sk (k = 1, 2) is given by a union of irreducible subsets Tk,i, all of which satisfy

(3.3). Since the graphs of S1 and S2 are identical, we will just write G(S) instead of

G(Si). For each ratio a/b let T a/b
k be the set of irreducible Tk,i whose graph represents

L(a, b)#L(a, a − b). The union of these subsets gives a summand (Z/a)2l of G(S). By

Proposition 3.29, this has generators t1, s1, . . . , tl, sl and we can arrange that H(T a/b
1 ) is

generated by t1 + s1, . . . , tl + sl. There is a similar set of generators for H(T a/b
2 ) given by

σ(t1) ± σ(s1), . . . , σ(tl) ± σ(sl) where σ is some permutation of {t1, s1, . . . , tn, sn}.

When a is even, a
2 (t1 + s1 + . . .+ tl + sl) is an element of H(T a/b

1 ) and H(T a/b
2 ). The-

orem 3.16 now follows from Corollary 3.11. In the case of a non-orientable base orbifold,

Corollary 3.15 implies that there can be at most one non-empty T
a/b
i with a even, com-

pleting the proof of Theorem 3.17.

Remark 3.30. The fact that any factor L(p, q) in a connected sum of lens spaces embed-

ding in S4 has p odd also follows from the linking form [KK80].

It is sometimes convenient to classify S1 × S2 as a lens space since it also has a genus
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one Heegaard splitting.

Corollary 3.31. Let L = #L(pi, qi) with pi > qi > 0 and suppose L#nS1 × S2 embeds

smoothly in S4. Then L also embeds smoothly.

Proof. Replace the negative definite 4-manifold XL with boundary L by XL♮
nS1×D3 and

follow the proof of Theorem 3.16.

A similar approach works for Seifert manifolds with e = 0.

Theorem 3.32. Let Y be a Seifert manifold with orientable base surface F and e(Y ) = 0.

If Y embeds smoothly in S4 then the Seifert invariants of Y occur in complementary pairs.

Proof. Suppose Y embeds smoothly in S4.

By Corollary 3.14 we have a rectangular subset S. The graph Γ(S) is star-shaped and

has a semi-definite incidence matrix.

Deleting the vector in S corresponding to the central vertex of Γ gives a new subset

S′. This subset is linear and has the additional property that there is a vector v which

links once to a leaf of each component of the graph of S′ and not to any other vector.

Note that we may choose either orientation for Y and so can assume that S′ satisfies

condition (3.3). We consider the irreducible components of S′. To apply Proposition 3.29

we need to show that every irreducible component T has c(T ) ≥ 2 and b(T ) = 0.

Suppose that c(T ) = 1. Plumbing on the graph of T gives the lens space L(p, q) for

some p > q > 0. There is an extra vector v such that T ∪ {v} is a rectangular subset and

has a linear graph obtained from that of T by adding a vertex onto one end, with weight

t. Since the subset is rectangular, it follows that the determinant of the incidence matrix

of this graph must be zero. However we can easily see that the graph is negative definite,

so we conclude c(T ) ≥ 2.

Now suppose that T has a bad component C. By definition, this bad component can be

built up from a linear chain of length three, with weights −2,−n− 1 and −2 respectively.

Let C ′ be the component obtained from C by deleting the vertex with weight −n − 1.

Suppose there is a new vertex v which is only linked to one leaf of C and consider the

subset T ∪ {v}. By Proposition 3.26 each of the r components of C ′ is supported on

r columns of the matrix for this subset. We may then get a rectangular subset T ′ by

deleting the other columns and every row corresponding to T\C ′. The resulting graph has

two components and is obtained from C by adding a new vertex of weight t to one end
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and deleting the vertex of weight −n − 1. Similar to above, the incidence matrix of this

graph is negative definite and so we conclude that b(T ) = 0.

It now follows from Proposition 3.29 that Y has Seifert invariants occurring in (possibly

weak) complementary pairs and, by [Lis07b, Proposition 4.10], that each irreducible Ti has

c(Ti) = 2. Adding a new row vi to each Ti gives a linear graph, which is negative definite

graph whenever vi · vi < −1. This shows that each vi · vi = −1 and the result now follows

from the description of the irreducible subsets in Proposition 3.29 and [Lis07b, Lemma

4.7].

3.4 Obstructions from spin and spinc structures

The methods described in the previous sections are more difficult to implement and give

weaker obstructions in the case of Seifert manifolds with orientable base surfaces and e ̸= 0.

We therefore look for additional obstructions. Since we have chosen to primarily consider

the case of double branched covers of pretzel links, we will focus on applications to that

case when convenient.

If Y is a closed, oriented 3-manifold it admits spin and spinc structures. Suppose Y

embeds smoothly in S4 and splits it as S4 = U ∪Y −V . The 4-manifolds U and V must

have both spinc and spin structures. There are obstructions to Y embedding in S4 which

can be found by looking at the spin and spinc structures on Y which can be extended over

either U or V .

3.4.1 Spinc structures on rational homology spheres and the d invariant

If a manifold Y admits spinc structures then the set of spinc structures is a H2(Y ; Z)-

torsor. Suppose that Y is a rational homology sphere which embeds smoothly in S4.

This gives a pair of rational homology balls U, V such that S4 = U ∪Y −V . The spinc

structures on Y which arise as the restrictions of spinc structures on U correspond to the

image of the inclusion map H2(U) → H2(Y ). By Lemma 3.1, the inclusion maps induce

an isomorphism

H2(Y ; Z) ∼= H2(U ; Z) ⊕H2(V ; Z).

Since these two summands are isomorphic, there are k2 spinc structures on Y . At least

2k− 1 of these spinc structures extend over a rational ball since k extend over each of the
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rational balls U and V and only one – the restriction of the unique spinc structure on S4

– extends over both pieces.

The correction term, or d invariant, from Heegaard-Floer theory is a Q-valued invariant

of a rational homology 3-sphere with a spinc structure, first introduced in [OzSz03a]. For

our purposes, the relevant feature of this invariant is that whenever (Y, s) is a spinc 3-

manifold and there is a rational ball B bounding Y with a spinc structure which restricts

to s on the boundary, then d(Y, s) = 0.

The d invariant for a Seifert rational homology sphere can be determined using the

associated star-shaped negative definite graph [OzSz03b] since it has at most one bad

point.

It is described in [GJ11] how to relate this to the obstruction derived from Donaldson’s

theorem. This is used to obtain a stronger version of Theorem 3.8 in the case where Y

has the Z/2-homology of S3. We may restate [GJ11, Theorem 3.6] as follows.

Theorem 3.33. Let Y be a 3-manifold with H∗(Y ; Z/2) ∼= H∗(S3; Z/2) which smoothly

bounds a rational ball. Suppose that Y bounds a negative definite plumbing X with at most

two bad points. The vertices of this plumbing give a basis for H2(X) and we may then

identify H2(Y ; Z) with cokerQX .

Then there is a matrix A such that QX = −AAt and every class of im A
im QX

contains a

characteristic representative of the form Ax for some x ∈ {±1}n.

3.4.2 Spin structures, Furuta’s theorem and the µ invariant

In this section, we derive an embedding obstruction from Furuta’s 10/8 theorem.

Theorem 3.34 (Furuta [Fur01]). Let W be a closed, spin, smooth 4-manifold with an

indefinite intersection form. Then

4b2(W ) ≥ 5|σ(W )| + 8.

Note that, by Donaldson’s diagonalisation theorem, a closed, smooth, spin manifold

W can have a definite intersection form only if b2(W ) = 0.

In fact, we can use this to get an obstruction for a 3-manifold to be the boundary of

a spin 4-manifold with ‘small’ homology. The essential idea here is simple. If Y bounds

a homologically small spin 4-manifold V , such as a rational ball, any other spin manifold

X with boundary Y can be glued to V to give a closed spin manifold as long as the
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spin structure restricts to Y to give the same spin structure as the one obtained from

V . The rank and signature of the intersection form of X and X ∪Y −V will be similar

and so a statement analogous to Furuta’s theorem holds for spin 4-manifolds which share

a boundary with a homologically small 4-manifold. In this section we make this claim

precise. It turns out that, at least for Seifert manifolds, it is sensible to apply these results

to the Neumann-Siebenmann µ-invariant.

If a manifold Y admits a spin structure then the set of spin structures on Y is a torsor

for H1(Y ; Z/2). As with spinc structures, if Y is a 3-manifold which embeds in S4 there

is an isomorphism induced by inclusion maps

H1(Y ; Z/2) ∼= H1(U ; Z/2) ⊕H1(V ; Z/2).

Lemma 3.35. If Y is the double branched cover of a k-component link L then it has 2k−1

spin structures. If Y embeds smoothly in S4 then b1(Y ) is even if and only if k is odd. In

particular, when L is a pretzel link b1(Y ) is zero when k is odd and one when k is even.

Proof. By Corollary 3.2, the number of spin structures on a 3-manifold Y embedding in

S4 is 2b1(Y )l2 for some integer l. This is a square precisely when the first Betti number

is even. By [Tur88] there is a correspondence between quasiorientations of a link and

spin structures on the double branched cover. For a k-component link there are 2k−1 spin

structures on the double branched cover and this is a square precisely when k is odd.

When L is a pretzel link, Y is a Seifert manifold with base S2 and it follows from, for

example, [Hil09, Theorem 3.1], that b1(Y ) ≤ 1.

Let Y be given as the boundary of a 2-handlebody X represented by a framed link in

S3.

Definition 3.36. A sublink L′ of a framed link L is called characteristic if for every

component K of L the total linking number lk(K,L′) is congruent modulo 2 to the framing

on K.

Spin structures on Y correspond bijectively to characteristic sublinks of the diagram

for X (see [GS99, Proposition 5.7.11] for example). The characteristic sublink of a spin

structure s represents an obstruction to extending s over the 2-handlebody. If the charac-

teristic sublink is empty, the 2-handlebody has a unique spin structure which restricts to

s on the boundary.
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Kaplan [Kap79] gives an algorithm which produces a spin 2-handlebody extending

a given spin structure on any 3-manifold. The algorithm uses handle-slides and blow-

ups to remove the characteristic sublink. We briefly recall the effects of these moves on

characteristic sublinks. (See [GS99, Section 5.7] for a more detailed discussion.) If we slide

one component of a characteristic sublink over another the characteristic sublink in the

new diagram simply contains the new curve, and so has one fewer component. The new

curve added in a blow-up is included in a characteristic sublink if and only if it has an

even linking number with the sublink. If we blow down a component in a characteristic

sublink then the corresponding characteristic sublink in the resulting diagram consists of

the other curves in the original.

Suppose that X is given by plumbing on a tree Γ. The spin structures on the boundary

of X now correspond bijectively to subsets of the vertex set of Γ which are characteristic

for the incidence matrix of Γ. Such sets, or equivalently the classes they represent in

H2(X; Z/2), are called (homology) Wu sets and are always isolated.

Definition 3.37. Let X be a plumbing according to a weighted tree. The Neumann-

Siebenmann µ invariant of Y = ∂X with spin structure s corresponding to a Wu set w is

defined as µ(Y, s) = σ(X) − w · w.

It is shown in [Neu80] that this only depends on (Y, s) and not on the 4-manifold X

used in the construction. It is apparent that this is a lift of the Rochlin invariant.

We would like to consider the µ−invariant for Seifert manifolds with spin structures

which extend over 4-manifolds with simple rational homology. The key result is Furuta’s

10/8 theorem. For Seifert rational homology spheres the µ-invariant is known to be a

spin rational homology cobordism invariant [Ue05] (see also [Sav02] for integer homology

spheres), which is proved using a V-manifold version of the 10/8 theorem [FF00].

Here, we will give an alternative argument which is applicable for the cases we are

most interested in, including some with positive first Betti number. Our approach is

similar to [BL02], which derives a knot sliceness obstruction from Furuta’s theorem.

Lemma 3.38. Let (Y, s) be a 3-manifold with a chosen spin structure. Suppose that

(X, sX) is a spin 2-handlebody and (V, sV ) is a spin manifold with b3(V ) = 0 such that

∂(X, sX) = ∂(V, sV ) = (Y, s).

Then W = X ∪Y −V is spin with signature σ(W ) = σ(X) + σ(V ) and b2(W ) =

b2(X) + χ(V ) − 1.
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Proof. The fact that W is spin follows since the spin structures on X and V agree on the

boundary.

We may compute the signature and second Betti number as in Proposition 3.3: It

is easy to see that χ(W ) = χ(X) + χ(V ) = 1 + b2(X) + χ(V ). Since H1(W,X; Q) ∼=

H1(V, Y ; Q) = 0 it follows from the exact sequence for the pair (W,X) that b1(W ) =

0. The result now follows from the calculation of the Euler characteristic and Novikov

additivity.

To get an obstruction to a 3-manifold Y with b1(Y ) ≤ 1 embedding in S4, we consider

the case where V is one of the spin pieces obtained from the splitting induced by an

embedding.

Corollary 3.39. Let (Y, s) be a spin 3-manifold and let (V, sV ) be a spin manifold and

(X, sX) be a spin 2-handlebody with common boundary (Y, s).

1. If V is a rational ball then either X = D4 or

4b2(X) ≥ 5|σ(X)| + 8;

2. If H∗(V ; Q) = H∗(S1; Q) then either b2(X) = 1 or

4b2(X) ≥ 5|σ(X)| + 12;

3. If H∗(V ; Q) = H∗(S2; Q) then

4b2(X) ≥ 5|σ(X) + σ(V )| + 4.

Proof. By Donaldson’s theorem, the closed, spin manifold W = X ∪Y −V is definite only

if b2(W ) = 0. Otherwise, we apply Furuta’s theorem and Lemma 3.38 to W .

We now construct spin 4-manifolds bounding double branched covers of pretzel links.

Proposition 3.40. Let Y be the double branched cover of a 3 or 4-stranded pretzel link

and let s be a spin structure on Y . Then there is a spin 2-handlebody (X, sX) with spin

boundary (Y, s) with signature σ(X) = µ(Y, s) and 0 ≤ b2(X) − |σ(X)| ≤ 4.

Proof. Let X ′ be one of the 2-handlebodies shown in Figure 3.1. The boundary is the

same as the 2-handlebodies pictured in Figure 1.14 – we can slide over the component

with framing a and then exchange the 0 framed unknot for a 1-handle and cancel.
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12a1

a+ ca+ b

a full

twists
a+ c a+ ba+ d

Figure 3.1: X ′ for n = 3, 4.

Every sublink of X ′ is potentially characteristic, depending on a, b, c and d. For each

spin structure s on ∂X ′ we can arrange by handleslides that the characteristic sublink is

an unknot as follows. If the sublink containing the two components of framings a+ b and

a+ c is characteristic we can slide one over the other to get a single unknotted component

with framing b+ c. In the 4-strand case, there may be a characteristic sublink with three

components. If we perform the handle slide above, the resulting picture has a characteristic

unlink. It is then obvious that we can slide one component over the other.

This gives a new diagram for X ′ in which the characteristic sublink is an unknot with

framing n. The µ invariant of (Y, s) is σ(X ′) − n. This can easily be verified using the

above description of the handle moves needed to convert the plumbing tree to X ′.

By reversing the orientation of X ′ if necessary, we may assume σ(X ′) ≥ 0. Note that

since X ′ has only a small number of handles, σ(X ′) ≤ 3. We now consider various cases

depending on the sign of n.

If n = 0 then we can remove the characteristic sublink by blowing up a +1 meridian of

it and then blowing down the resulting +1 framed curve. This gives an X with signature

µ(Y, s) and b2(X) = b2(X ′) ≤ 3.

If n < 0 then the characteristic sublink can be removed by blowing up |n|−1 meridians

with framing +1 and then blowing down the resulting −1 curve. This produces a spin

manifold X with σ(X) = σ(X ′) − n and b2(X) = b2(X ′) + |n| − 2.

By the assumptions on X ′ and n, σ(X) > 0 so

b2(X) − |σ(X)| = b2(X ′) − n− 2 − σ(X ′) + n

= b2(X ′) − σ(X ′) − 2.

This is at most 1.

If n > 0, the characteristic sublink can be removed by blowing up a −1-framed meridian
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of the characteristic link n − 1 times and blowing down a +1 curve. This gives a spin

manifold X with σ(X) = σ(X ′) − n and b2(X) = b2(X ′) + n− 2.

If σ(X) ≥ 0 then necessarily n ≤ 3. Then b2(X) ≤ b2(X ′) + 1 ≤ 4. Alternatively, if

σ(X) < 0 then

b2(X) − |σ(X)| = b2(X ′) + n− 2 + σ(X ′) − n

= b2(X ′) + σ(X ′) − 2.

This is, again, at most 4.

We can apply Corollary 3.39 to produce the following conclusions.

Corollary 3.41. Let Y be the double branched cover of a 3 or 4 stranded pretzel link with

k components. If Y embeds in S4 then the Neumann-Siebenmann µ invariant vanishes for

at least 2
k+1
2 − 1 spin structures on Y if k is odd and at least 3(2

k−2
2 ) − 1 if k is even.

Proof. Since Y embeds smoothly in S4 we can write S4 = U ∪Y −V . Since Y is the double

branched cover of a pretzel link b1(Y ) ≤ 1. Lemma 3.1 implies that for both U and V the

sum of the first and second Betti number is at most one and the third Betti number is

zero.

For every spin structure s extending over either U or V we apply Corollary 3.39 to the

2-handlebody X given by Proposition 3.40. This shows that

4b2(X) ≥ 5|µ(Y, s)| + 4.

Since b2(X) ≤ |µ(Y, s)| + 4 we see that |µ(Y, s)| ≤ 12.

Since U and V both have signature zero, it follows from Rochlin’s theorem that the µ

invariant vanishes for every spin structure extending over U or V .

The proof of Lemma 3.35 shows that the total number of spin structures on Y is

2b1(Y )l2 where 2b1(Y )l spin structures extend over U and l extend over V . Exactly one

extends over both to give the unique spin structure on S4. The result now follows since

b1(Y ) is determined by the parity of k.

3.5 Double branched covers of pretzel links

Recall that Y (a, b, c) and Y (a, b, c, d) denote the double branched covers of P (a, b, c) and

P (a, b, c, d) respectively. The aim of this section is to prove the following result.
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Theorem 3.42. Let Y be of the form Y (a, b, c) or Y (a, b, c, d) where a, b, c ∈ Z\{−1, 0, 1}

and d ∈ Z\{0}. If Y embeds smoothly in S4 then it is (possibly orientation-reversing)

diffeomorphic to one of the following

• Y (a,−a, a);

• Y (a,−a, a,−a);

• Y (a,−a, b,−b) with b odd;

• Y (a± 1,−a, a,−a);

• Y (2λ− 1,−2λ− 1,−2λ2).

In addition, all but the last of these do embed smoothly in S4.

The proof of Theorem 3.42 will use a combination of the obstructions from Sections

3.2 and 3.4. All of the positive embedding results are demonstrated in Chapter 2. This

section will complete the proof by outlining the necessary obstructions.

It will be convenient to use Corollary 3.41 as our principal obstruction. Accordingly,

we consider cases with different numbers of spin structures separately. By Lemma 3.35

this is equivalent to splitting up into cases according to the number of link components.

We first consider the cases with first Betti number one. Note that these fall under the

hypothesis of Theorem 3.32 and so every example of this type which embeds smoothly in

S4 is of the form Y (a,−a, b,−b).

Proposition 3.43. Suppose that a > b > 0 and that a and b are both even. Then

Y = Y (a,−a, b,−b) does not embed smoothly in S4.

Proof. An easy calculation using the plumbing in Figure 1.14 shows that Y has eight

spin structures and that only four have vanishing µ invariant. The others are ±(a ± b).

Corollary 3.41 shows that these do not embed smoothly in S4.

Remark 3.44. This demonstrates that Theorem 3.32 does not give a complete obstruc-

tion.

We now consider the double branched covers of links with odd numbers of components.
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3.5.1 Double branched covers of knots

Due to interest in the question of knot sliceness, there are previous results we may appeal

to. In particular, for pretzel knots, the possible form of subsets appearing in Theorem 3.8

have been computed [GJ11] [Lec10]. The µ invariant is useful as an obstruction to a knot

being slice since any 4-manifold with the Z/2 homology of D4 is necessarily spin. Indeed,

for Montesinos knots the µ invariant of the double branched cover agrees with the knot

signature [Sav00] and the resulting obstruction is incorporated into the results of [GJ11]

and [Lec10].

To begin with, we consider the double branched covers of 3-stranded pretzel knots.

There are two cases to consider. We assume that Y (a, b, c) has a positive generalised

Euler characteristic and consider how many of a, b, c are positive.

Proposition 3.45. Let Y (a, b, c) be the double branched cover of a knot with a, b > 1 and

e(Y ) > 0. Then if Y embeds smoothly in S4, c < 0 and Y is diffeomorphic to Y (a,−a, a).

Proof. First, note that if c is also positive it is impossible to have a vanishing µ invariant.

Since e(Y ) > 0 we can use the top diagram in Figure 1.14 to see that, for a Wu set w, the

µ invariant is given by 2 − w · w. If c > 0 and a, b > 1, it is not possible to find w with

w · w = 2.

The case where Y (a, b, c) is a Z/2 homology sphere with a, b > 0 and c < 0 is by Greene

and Jabuka [GJ11]. Note that while they only explicitly consider the case where a, b, c

are odd, this is only important in their calculation of the knot signature and has no effect

on their arguments using Donaldson’s diagonalisation theorem or the d invariant. Their

Proposition 3.1 determines the possible subsets in this case to be uniquely determined up

to a choice of a parameter λ such that −c = λ2a+ (λ+ 1)2b.

Greene and Jabuka use the d invariant, in the way described in Theorem 3.33, to show

that this λ must be either −1 or 0 if Y is the boundary of a rational ball. This shows

that −c = a or −c = b. Note that Y (a, b,−a) has first homology of order a2 so it can only

be a homology sphere if it is S3. Otherwise, we may apply Corollary 3.11 to show that

there must be a second subset. This means that both λ = 0 and λ = −1 must be valid. It

follows that a = b = −c.

Now we consider the case where Y (a, b, c) has just a positive.

Proposition 3.46. Let Y = Y (a, b, c) be the double branched cover of a knot with a > 1,
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b, c < −1 and e(Y ) > 0. Then if Y embeds smoothly in S4 then it is a homology sphere of

the form Y (2λ− 1,−2λ− 1,−2λ2).

Proof. Since e(Y ) > 0, for a Wu set w, we can use the top diagram in Figure 1.14 to

calculate the µ invariant as −2−w ·w. If a, b and c are all odd then w ·w is zero. Therefore,

we must have one of these numbers even. Since b, c < −1, the curve with framing a must

be in the Wu set. Up to relabeling b and c, we conclude that a+ b = w · w = −2 and c is

even.

Consider the 4-manifold X ′ with boundary Y shown in Figure 3.2, where 2a refers to

the number of crossings.

12a1

a+ ca+ b

Figure 3.2: X ′.

The intersection form of X ′ has determinant ab + ac + bc > 0 so it is definite. Since

a+ b = −2 it must be negative definite.

The possible subsets we get from applying Corollary 3.11 give matrices of the form

Ai =

1 1

ρ λ

 .

Up to a change of basis of the columns space this is unique. This means that there is

only one subset. This provides an obstruction unless Y is a homology sphere as noted in

Remark 3.12. In this case we require that detA = λ − ρ = ±1. Up to relabelling we can

assume ρ = λ− 1.

It then follows that a = 2λ− 1, b = −2λ− 1 and c = −2λ2.

We now consider the double branched covers of 4-strand pretzel knots.

Proposition 3.47. Let Y = Y (a, b, c, d) with a, b, c, d ∈ Z\{0} be a Z/2 homology sphere

which embeds smoothly in S4. Then Y embeds smoothly in S4 if and only if it is diffeo-

morphic to Y (a± 1,−a, a,−a).
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Proof. Suppose Y embeds smoothly in S4. We consider the condition imposed by Corollary

3.11.

In [Lec10, Lemma V.6] the subset obtained by viewing the standard negative definite

plumbing as a submanifold of a closed definite manifold is uniquely determined and, in

conjunction with the µ invariant, is used to show that if Y bounds a rational ball it is either

Y (−a,−b− 1, a, b) with a, b < −1 or, if a = 1, has the form Y (1,−2, b,−b) ∼= Y (2, b,−b).

The latter is considered above and does not embed smoothly in S4.

The subset S for Y (−a,−b− 1, a, b) is described explicitly by [Lec10, Figure V.5] and

is obtained by adding a new column with a single non-zero entry to the matrix for the

essentially unique rectangular subset for Y (a,−a, b,−b).

On inspection we see that in order to get a second subset, which differs as specified by

Corollary 3.11, we must have a = b.

3.5.2 Double branched covers of 3-component links

Finally we consider double branched covers of pretzel links with three components. By

Lemma 3.35 the double branched covers have four spin structures and, if they embed in

S4, are rational homology spheres.

We first consider the following special case, where Corollary 3.41 is not sufficient.

Proposition 3.48. Let a be odd and b even. If Y (a, b, b, b) embeds smoothly in S4 and

has e(Y ) > 0 then it is diffeomorphic to Y (2,−2, 2).

Proof. In order to find a subset, b must be negative or 2. We can see this by a simple

extension of the proof of [Lec10, Lemma V.5], where we drop the assumption that Y is

a Z/2 homology sphere – we attempt to construct a subset and compare the number of

columns required to the number of vertices in the graph. The µ invariants for Y (a, 2, 2, 2)

can easily be calculated and three are sign a−a. The manifold Y (−1, 2, 2, 2) ∼= Y (2,−2, 2)

embeds in S4 but Y (1, 2, 2, 2) does not as it has first homology of non-square order 20.

In the case where b < 0, the generalised Euler invariant implies that a > 0. Calculating

the µ invariants shows that a = −b− 3. The condition that a > 0 means that b < −3.

We can now express the generalised Euler characteristic as

1
−b− 3

+
3
b

=
−2b− 9
−b2 − 3b

> 0.

Since the denominator in this fraction is ab < 0, this shows that b ≥ −4.
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−1−4 −4

−4

Figure 3.3: Standard negative definite plumbing for Y (1,−4,−, 4,−4).

To show that Y (1,−4,−4,−4) does not embed in S4, we use Corollary 3.11.

For the standard definite plumbing, shown in Figure 3.3 a simple computation shows

that the matrix A(S) is uniquely determined up to reordering or changing the signs of the

columns and must be

A(S) =


−1 0 0 0

1 1 1 1

1 1 −1 −1

1 −1 1 −1

 .

.

Finally, we consider the last remaining case needed to prove Theorem 3.42

Proposition 3.49. Let Y be of the form Y (a, b, c) or Y (a, b, c, d) where a, b, c, d ∈ Z\{0}.

Suppose that Y has four spin structures. Then Y embeds smoothly in S4 if and only if it

is diffeomorphic to either Y (a,−a, a) or Y (a± 1,−a, a,−a).

Proof. We first consider Y = Y (a, b, c). This has four spin structures only when a, b and

c are even. Let τ be the signature of the 4-manifold given by the first diagram in Figure

1.14. The four µ invariants of Y are τ, τ − a − b, τ − a− c and τ − b − c. Three are zero

which implies that either τ = 0 and, up to reordering, a = b = −c or a = b = c. In the

latter case τ = ±2 and so a = b = c = ±1. This does not embed in S4 as it is either the

lens space L(3, 1) or L(3, 2).

Next, consider Y = Y (a, b, c, d). This has four spin structures if exactly one is odd,

which can be assumed to be a. Define τ , similar to the above, using the second picture in

Figure 1.14. The µ invariants are τ − a− b, τ − a− c, τ − a− d and τ − a− b− c− d.

We again require that three are zero. If the the last of these is not, we may apply

Proposition 3.48. Otherwise, up to relabeling, b = c = −d. It follows easily, by considering
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the value of τ for either sign of b, that a = −b± 1.

3.6 Embedding in a homology S4

The obstructions considered thus far give obstructions to embedding a 3-manifold smoothly

in any homology 4-sphere.

It is somewhat surprising that there are no known examples of 3-manifolds which

embed smoothly in a homology 4-sphere but not in S4. Some 3-manifolds are known to

embed in homology spheres but are not known to embed in S4 (see [BB12]; for example

whenever M is a homology 3-sphere, M# −M embeds in a homology S4).

It seems reasonable to expect that more 3-manifolds can be embedded in homology

4-spheres than in S4. This section describes an obstruction to embedding smoothly in

S4 which appears to rely on the fundamental group. It may therefore be able to detect

examples which do not embed in S4 but do embed in a homology S4.

Lemma 3.50. Let U be a 4-dimensional connected submanifold of S4 with boundary Y

and let X be a simply connected 4-manifold with a boundary component homeomorphic to

Y .

Then U ∪Y −X is simply connected.

Proof. Let V be the complement of U in S4. Take group presentations ⟨GU ;RU ⟩ and

⟨GV ;RV ⟩ for π1(U) and π1(V ) respectively. Choose a generating set GY for π1(Y ).

We let ιA denote the map on the fundamental group induced by the inclusion of Y

into A for A = X,U, V .

Applying Seifert-van Kampen gives presentations

⟨GU , GV ;RU , RV , {ιU (γ)ιV (γ)−1}γ∈Gy⟩

for π1(S4) and

⟨GU ;RU , {ιU (γ)}γ∈Gy⟩

for π1(U ∪Y −X).

Mapping generators GU by the identity map and GV by the trivial map induces a

surjective homomorphism from π1(S4) to π1(U ∪Y −X). Since S4 is simply connected, the

result follows.

We use this lemma in conjunction with the following corollary to Taubes’ theorem on

end-periodic manifolds, attributed to Akbulut.
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Proposition 3.51. [ [Tau87, Proposition 1.7]]Let Σ be a homology 3-sphere which bounds

a smooth 4-manifold with nonstandard, definite intersection form and with π1 = 1. Then

Σ# − Σ does not bound a definite 4-manifold with π1 = 1.

Corollary 3.52. Let Σ be as in the above Proposition. If W : Σ# − Σ → Y is a smooth,

definite and simply connected cobordism to a rational homology 3-sphere Y , then Y does

not embed smoothly in S4.

Proof. If Y had a smooth embedding, it would bound a rational homology ball which was

a submanifold of S4. Gluing this to the cobordism would, by Lemma 3.50, give a manifold

contradicting Proposition 3.51.

Remark 3.53. The requirement that Y be a rational homology sphere may be relaxed if

there are sufficient conditions on the cobordism. The key is that a definite manifold can

be obtained.

In practice, it is not too difficult to find surgery diagrams of 3-manifolds which are

obstructed by this. Starting from an integer surgery diagram for a suitable choice of Σ,

such as the Poincaré homology sphere, we may add 2-handles to kill the fundamental

group. The framings of these can be chosen so that the resulting cobordism is definite.

However, we know relatively little about these 3-manifolds. It is not clear that we can

find one which (we know) embeds in a homology sphere.

Remark 3.54. The idea here is somewhat similar to [Auc93], which uses Proposition 3.51

to find a irreducible homology sphere which cannot be obtained by Dehn surgery on a knot

in S3.



Chapter 4

Concordance of links

A useful tool for examining the knot concordance group is the double branched cover.

This gives a homomorphism from C to the rational cobordism group of rational homology

spheres. A useful way to think of the set of oriented knots is as a commutative monoid

with involution. The operation here is connected sum and the involution is K 7→ −K

where −K is the mirror of K with the orientation reversed.

Connected sums of links are not well-defined in general so we only consider links with

a marked oriented component and define the connected sum of two such links by using the

marked components. If the entire link is oriented we call it a marked oriented link while

if only the marked component is oriented we will call it partly oriented. Figure 4.1 shows

partly oriented and marked oriented links.

H = L1=

H̃ = L̃1 =

Figure 4.1: Some partly oriented links H and L1 and marked oriented

versions H̃ and L̃1.

The monoid of oriented knots is naturally included in the monoids of partly oriented

links or marked oriented links and each marked oriented link gives rise to a partly oriented

81
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link by ignoring the orientations on each non-marked component. Each of these monoids

has an involution L 7→ −L given by taking the mirror with all orientations reversed.

.

.

..{Oriented knots} ..{Marked oriented links}

. ..{Partly oriented links}

.

.

.

Figure 4.2: Relationship between monoids with involution.

The smooth knot concordance group C is obtained from this monoid of knots by taking

the quotient under the equivalence relation that states K0 is equivalent to K1 if −K0#K1

is smoothly slice. A variant – the topological concordance group CTOP – is obtained by

taking the quotient by topologically slice knots. In either case the class of −K gives the

inverse of K.

The (smooth) rational homology cobordism group of rational homology spheres Θ3
Q is

the set of equivalence classes of closed oriented 3-manifolds with b1 = 0 up to the relation

Y0 ∼ Y1 if and only if there is a (smooth) cobordism W : Y0 → Y1 with H∗(W ; Q) =

H∗(S3 × I; Q). This is a group with operation given by connected sum. The equivalence

relation can also be stated as Y0 ∼ Y1 if and only if −Y0#Y1 bounds a smooth rational

homology ball. A key property of C is that the double branched cover gives a well-defined

homomorphism Σ2 : C → Θ3
Q.

Our aim is therefore to find concordance groups of links so that the commuting diagram

in Figure 4.2 passes to a quotient level and so that the homomorphism Σ2 lifts to, if not

the whole link concordance group, a large subgroup containing C.

The key result from this point of view is then the following.

Proposition 4.1. Let F be a locally flat properly embedded surface in D4 with no closed

components and Euler characteristic n. Suppose that the boundary of F is a link with

non-zero determinant. Then the double cover of D4 branched along F has b1 = b3 = 0 and

b2 = 1 − n.

The surface here does not have to be connected or oriented. In the case where F is a

ribbon surface and n = 1 this is proved in [Lis07b, Lemma 3.6]. For smoothly embedded
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F one could appeal to [LW95].

Proof. The general strategy of the proof follows that of [KT76, Theorem 3.6]. Let N =

Σ2(D4, F ) be the double cover of D4 branched along F . We will construct N by taking a

double cover of D4 \νF , using a Gysin sequence to compute the homology, before regluing

a copy of νF . We use Z/2 coefficients throughout. The pair (D4, S3) can be decomposed

as (D4 \ F ∪ νF, S3 \ L ∪ L×D2).

We use the Mayer-Vietoris sequence to find

H1(D4 \ F, S3 \ L) ⊕H1(νF, L×D2) ∼= H1(∂νF \ νL,L× S1).

The intersection piece A = ∂νF \ νL is an S1-bundle over F so we can use the relative

Gysin sequence [AGP02, Theorem 11.7.36] to compare H1(νF, L×D2) to H1(A,L×S1).

We get an exact sequence

0 → H1(F,L) → H1(A,S1 × L) → H0(F,L).

Since F has no closed components we get an isomorphism

H1(A,L× S1) ∼= H1(F,L), (4.1)

and also

H1(D4 \ F, S3 \ L) = 0.

In addition, we see from the Mayer-Vietoris sequence that the isomorphism in (4.1) is

induced by the inclusion of ∂νF into νF .

The relative Gysin sequence can also be applied to the pair (D4 \ F, S3 \ L) with the

real line bundle associated to the double cover. The relevant part of the Gysin sequence is

H1(D4 \ F, S3 \ L) → H1(D̃4 \ F, S̃3 \ L) → H1(D4 \ F, S3 \ L), (4.2)

showing that H1(D̃4 \ F, S̃3 \ L) = 0.

This can be used to calculate the Betti numbers of N , which is constructed from the

double cover of D4\F by attaching νF . Applying the Mayer-Vietoris sequence again gives

0 → H1(N, ∂N) → H1(D̃4 \ F, S̃3 \ L) ⊕H1(F,L) → H1(A,L× S1) → . . . .

Combining this with (4.1) we see that H1(N, ∂N) = 0. Since N is compact and orientable

with rational homology sphere boundary, we have

b1(N) = b3(N) = 0.
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The Euler characteristic of N is given by χ(N) = 2χ(D4)− χ(F ) = 2 − n, from which we

see that b2(N) = 1 − n.

This result allows us to prove the following statement about 2-bridge links.

Corollary 4.2. Let S(p, q) be a two-bridge link. If F is a smoothly properly embedded

surface in D4 with χ(F ) = 1 and no closed components, bounded by S(p, q) then the link

also bounds a ribbon embedding of F .

Proof. Assume p is even, since the odd case was established in [Lis07a]. In order to have

the correct Euler characteristic and number of boundary components, F must be the union

of a disk and a Möbius band. By Proposition 4.1, the double cover of D4 branched over

F is a rational homology ball and is bounded by the lens space L(p, q). By a result of

Lisca [Lis07a, Theorem 1.2], there is a ribbon embedding of F in D4.

Restricting to the case of an oriented surface, still not necessarily connected, we can

apply the same ideas used in Proposition 4.1 to 2k-fold cyclic branched covers.

Corollary 4.3. Let F be an oriented surface, locally flatly embedded in D4 with no closed

components and Euler characteristic n. Let k > 0 and suppose that F bounds an oriented

link whose Alexander polynomial is non-zero at each 2k-th root of unity. Then the 2k-fold

cyclic branched cover of D4 with branch set F has b1 = b3 = 0 and b2 = 2k −1− (2k −1)n.

Proof. We show this using the proof of Proposition 4.1 and induction on k. For k = 1,

this is the proposition above. Let (Dk, Sk) be the 2k-fold cover of (D4 \ F, S3 \ L). There

is an action of Z/2k on (Dk, Sk). From this, we have an action of Z/2 and the quotient

is (Dk−1, Sk−1). By induction we may assume that H1(Dk−1, Sk−1; Z/2) = 0 and so (4.2)

shows that H1(Dk, Sk; Z/2) = 0 as well.

We may now follow the remainder of the proof of Proposition 4.1 as the assumption

on the Alexander polynomial of L guarantees that the 2k-fold cyclic branched cover of L

is a rational homology sphere.

Proposition 4.1 motivates the following definition.

Definition 4.4. A link L ⊂ S3 is called χ-slice if it is the boundary of a properly embedded

surface F (with no closed components) in D4 with χ(F ) = 1.

Some examples of χ-slice links are shown in Figure 4.3. Note that for knots this just

agrees with the usual definition of slice as a surface with Euler characteristic one and one
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boundary component must be a disk. Proposition 4.1 implies that the double branched

cover of every χ-slice link with non-zero determinant bounds a rational ball.

Figure 4.3: The connected sum of two Hopf links bounds a disk and

an annulus; the (2, 4) torus link bounds a disk and a Möbius band;

the Borromean rings bound two disks and a punctured torus; the con-

nected sum of the Hopf and Whitehead links bounds a disk and an

annulus.

Ideally we would like to quotient out by χ-slice links. This turns out to be problematic,

for reasons we will discuss in Section 4.3. Instead we use a more restricted notion. We

will consider the cases of partly oriented links and marked oriented links separately. For

the most part, we will consider smooth surfaces.

Remark 4.5. Some other work has considered links bounding orientable surfaces with

Euler characteristic one [Ore02, Flo04, Flo05]. Baader [Baa12] has defined a notion of

cobordism distance between oriented links such that χ-sliceness is equivalent to cobordism

distance zero from the unknot. Recently Gilmer-Livingston [GL11] and Batson [Bat12]

have considered non-orientable surfaces bound by a knot.

4.1 Partly oriented links and smooth surfaces

Definition 4.6. A pair of partly oriented links L0, L1 are called smoothly χ-concordant

if −L0#L1 bounds a smooth surface F which is properly embedded in D4, has no closed

components and is a union of annuli, Möbius bands and one disk whose boundary is the

marked component of −L0#L1.

We will show that this gives an equivalence relation and leads to a link concordance

group L. First, we describe the relation in terms of embedded surfaces in S3 × [0, 1].
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Lemma 4.7. Partly oriented links L0, L1 are χ-concordant if and only if there exists a

smoothly properly embedded surface F0 in S3 × [0, 1] satisfying

• F0 is a disjoint union of annuli, including one oriented annulus A, and Möbius bands;

• F0 ∩ S3 × {i} = Li × {i}, i = 0, 1;

• ∂A = K⃗1×{1}∪K⃗0
r×{0}, where K⃗i is the oriented component of Li and K⃗0

r denotes

the knot K⃗0 with the opposite orientation.

Proof. This follows from Definition 4.6 as in the knot case. The pairs (D4, F ) and (S3 ×

[0, 1], F0) can be obtained from each other by drilling out an arc of A or attaching a

(3, 1)-handle pair.

Lemma 4.8. χ-concordance is an equivalence relation.

Proof. For any partly oriented link L, −L#L is χ-nullconcordant (χ-concordant to the

unknot) by the usual argument for knots. Taking the description in Lemma 4.7, we set

F0 = L× [0, 1].

Symmetry of the relation is immediate as applying an orientation reversing diffeomor-

phism to the four-ball takes a surface bounded by −L0#L1 to one bounded by −L1#L0.

Transitivity follows by composing the cobordisms F0 from Lemma 4.7. After discarding

any closed components, we are left with annuli and Möbius bands.

Lemma 4.9. The set of smooth χ-concordance classes of partly oriented links forms an

abelian group L under connected sum along the marked component. The knot concordance

group C is a direct summand with complement L0 consisting of links with a slice marked

component. The map

L → C ⊕ L0

taking a link L with marked component K⃗ to(
[K⃗], [−K⃗#L]

)
is an isomorphism.

Proof. Connected sum is well-defined, commutative, and associative for partly oriented

links by a variant of the usual proof for knots (see e.g. [BZ03, Chapter 7A]). Suppose that

L, L0 and L1 are partly oriented links, and that L0 ∼ L1. Let F0 be the cobordism in

S3 × [0, 1] between L0 and L1, as in Lemma 4.7, with oriented annulus component A. A
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copy of L×[0, 1] can be embedded parallel to A and so we can take the connected sum along

A. This shows that L0#L ∼ L1#L and that connected sum gives a well-defined operation

on L. The class of the identity is represented by the unknot and the inverse of [L] is [−L].

The inclusion of oriented knots into partly oriented links induces a monomorphism C → L

since for knots χ-concordance agrees with the usual definition of knot concordance. The

homomorphism

[L] 7−→ [K⃗],

taking the χ-concordance class of a partly oriented link to the concordance class of its

oriented component is a splitting map for the inclusion. It follows that the direct comple-

ment L0 consists of classes [L] where the oriented component of L is slice. For any partly

oriented link L with oriented component K⃗ we have [−K⃗#L] ∈ L0 and

L ∼ K⃗#−K⃗#L

by associativity, giving the claimed isomorphism.

We can obtain an invariant of χ-concordance by considering the linking numbers of

components.

Lemma 4.10. Let L be a link in S3 bounding a smoothly properly embedded surface F in

D4, and suppose that F = F1 ⊔ F2 is a disjoint union. This gives a decomposition of L

into L1 ⊔L2, where Li = ∂Fi. Then the total mod 2 linking number of L1 with L2 is zero,

i.e. ∑
Ki in Li

lk(K1,K2) ≡ 0 (mod 2).

Proof. By isotopy of F , if necessary, we may assume the radial distance function r on D4

restricts to give a Morse function on F . For i = 1, 2, let (Fi)t be the level set of r restricted

to Fi at height t. We can arrange that (Fi)t = ∅ for t < 1
2 . The total linking number of

each component of (F1)t with each component of (F2)t modulo 2 is constant with respect

to t as the sum does not change at regular values, maxima or minima and changes by an

even number at a saddle point of F . Since this is zero for t = 1
3 , the value at t = 1,

∑
Ki in Li

lk(K1,K2) ≡ 0 (mod 2).
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Lemma 4.10 shows that there is a homomorphism

l : L −→ Z/2

given by taking

l([L]) =
∑

K′ ̸=K⃗

lk(K⃗,K ′),

where K⃗ is the oriented component of L. The class of the Hopf link H (with one marked

oriented component) has H = −H and l(H) = 1, and generates a Z/2 summand of L0.

Proposition 4.1 shows that taking double branched covers gives a group homomorphism

Σ2 : N → Θ3
Q,

where N is the subgroup of L consisting of classes represented by links with nonzero

determinant. Note in particular that the determinant of any χ-slice link is a square.

We will use this fact to show that L0 contains a Z∞ ⊕ (Z/2)∞ subgroup by looking at

2-component 2-bridge links. These all represent classes in L0 because each component is

a one-bridge knot, and so an unknot.

Proposition 4.11. The two-bridge links {S(q2+1, q) | q odd} generate a (Z/2)∞ subgroup

of L0.

Proof. Each partly oriented link L = S(q2 + 1, q) for q odd satisfies L = −L and therefore

has order at most two in L. Since q2 + 1 is not a square the order is two.

We will show that the subgroup of L0 generated by {S(q2 + 1, q) | q odd} is infinitely

generated and hence is isomorphic to (Z/2)∞. Suppose it is generated by some finite subset

S = {S(q2i + 1, qi)}. Choose a prime p congruent to 1 modulo 4 which does not divide

q2i + 1 for any i. Since −1 is a quadratic residue modulo p there exists an odd positive

q < p with q2 +1 divisible by p but not by p2. Then the connected sum of S(q2 +1, q) with

any linear combination of elements of S has determinant divisible by p but not p2 and so

this determinant is not a square. It follows using Proposition 4.1 that S(q2 + 1, q) is not

in the subgroup of L0 generated by S and this shows that we have an infinitely generated

subgroup of L0.

Proposition 4.12. (Corollary of [Lis07b, Theorem 1.1]) The subgroup of the rational

homology cobordism group Θ3
Q generated by lens spaces

{L(2k, 1) | k > 2}

is independent in Θ3
Q.
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Proof. This follows from [Lis07b, Theorem 1.1] since for k > 2, L(2k, 1) is not contained

in any of Lisca’s families R or Fn.

From Propositions 4.1 and 4.12 we see that the two-bridge links

{S(2k, 1) | k > 2},

generate a Z∞ subgroup of L0.

The results of this section can be combined to give the following statement, describing

the basic features of L.

Theorem 4.13. The set of smooth χ-concordance classes of partly oriented links forms

an abelian group

L ∼= C ⊕ L0

under connected sum which contains the smooth knot concordance group C as a direct

summand. The inclusion C ↩→ L is induced by the inclusion of oriented knots into partly

oriented links.

The complement L0 of C in L contains a Z/2 direct summand and a Z∞ ⊕ (Z/2)∞

subgroup.

4.2 Marked oriented links and smooth surfaces

For marked oriented links, we make a similar definition.

Definition 4.14. A pair of marked oriented links L0, L1 are called smoothly χ-concordant

if −L0#L1 bounds a smooth oriented surface F which is properly embedded in D4, has no

closed components and is a union of annuli and one disk whose boundary is the marked

component of −L0#L1.

Remark 4.15. This definition is largely the same as in the partly oriented case and we

will use the same terminology in each case.

In this section, we will establish a result analogous to Theorem 4.13.

Theorem 4.16. The set of smooth χ-concordance classes of marked oriented links forms

an abelian group

L̃ ∼= C ⊕ L̃0
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under connected sum which contains the smooth knot concordance group C as a direct

summand (with C ↩→ L̃ induced by the inclusion of oriented knots into marked oriented

links). Forgetting orientations on nonmarked components induces an epimorphism L̃ → L.

We obtain group homomorphisms as in Figure 4.4, which are induced from maps in Figure

4.2.

.

.

..C ..̃L

. ..L

.
.

.

Figure 4.4: Relationship between concordance groups.

The complement L̃0 of C in L̃ contains a Z⊕Z/2 direct summand and a Z∞ subgroup.

We can modify Lemma 4.7 to adapt it to this case – now F0 is a collection of properly

embedded annuli, including a ‘marked’ annulus A connecting the marked components. For

marked oriented links L0 and L1, this shows that if they are χ-concordant, they must have

the same number of components modulo 2.

Similarly, Lemmas 4.8 and 4.9 and their proofs can be adapted simply by replacing

any reference to partly oriented links with marked oriented links. We denote the smooth

concordance group of marked oriented links L̃. Recall that there is a map from the set

of marked oriented links to the set of partly oriented links forgetting the orientation of

the unmarked components. This map commutes with connected sum and it is evident

from the definitions that this descends to a surjective homomorphism from L̃ to L as a

collection of properly embedded annuli and a disk bound by the marked component gives

a perfectly adequate χ-nullconcordance for the partly oriented variant. The embedding of

C into L is the composition of this map with the embedding of C into L̃.

The map l : L → Z/2 lifts to a map on L̃.

Lemma 4.17. Let L be a χ-nullconcordant marked oriented link with marked component

K. Then
∑

lk(K,K ′) = 0, where the sum is taken over all components K ′ ̸= K of L.

Proof. This follows by modifying the proof of Lemma 4.10 where F is a surface in D4 given

by the χ-nullconcordance and F1 the disk component bounded by K. In the oriented case
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the sum of linking numbers between the level sets of F1 and F2 does not change at any

critical point of r|F .

This gives a homomorphism

l̃ : L̃ → Z

which is a lift of l : L → Z/2 by taking the total linking number with the marked compo-

nent. There is also a homomorphism µ to Z/2 where µ(L) is the number of components

of L modulo 2.

We can use these maps to get a Z⊕Z/2 summand of L̃0. The marked oriented (positive)

Hopf link H̃ in Figure 4.1 has l = µ = 1 and the marked oriented two component unlink U

has l = 0, µ = 1 and order two in L̃. These two links therefore generate such a summand.

A Z∞ subgroup of L̃0 is generated by marked oriented two-bridge links

{S(2k, 1) | k > 2}.

This follows by the same argument as for L, after we choose an orientation of these links.

This completes the proof of Theorem 4.16.

Remark 4.18. The two-bridge links S(q2 + 1, q) which were shown in Proposition 4.11

to generate a subgroup (Z/2)∞ < L0 have infinite order in L̃ since they map to nonzero

values under l̃.

The Levine-Tristram signature gives another tool for studying L̃. Let ω ∈ S1\{1} be a

prime-power root of unity and M be a Seifert matrix for L. The Levine-Tristram signature

σω and nullity nω of L are defined as the signature and nullity of (1−ω̄)M+(1−ω)MT . The

signature is additive under connected sum of marked oriented links and changes sign under

L 7→ −L. The nullity is also additive with respect to connected sum and is invariant under

reversing orientation. Let Ñω be the subgroup consisting of elements with a representative

with zero Levine-Tristram nullity nω – this is equivalent to saying ω is not a root of the

one-variable Alexander polynomial.

Lemma 4.19. Let L be an oriented link with nω(L) = 0. If L is χ-slice then σω(L) = 0.

It follows that the Levine-Tristram signature gives a homomorphism

σω : Ñω → Z.

Proof. The vanishing of the Levine-Tristram signature for a χ-slice link with nω(L) = 0

follows directly from the Murasugi-Tristram inequality, see [Tri69, Theorem 2.27], also
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[KT76,Gil93,Flo05,CF08]. Since the signature is additive with respect to connected sums,

we get a homomorphism.

Turaev showed that there is a bijection between the set of quasi-orientations (orien-

tations up to overall reversal) on a link L in S3 and the set of spin structures on the

double-branched cover Σ2(S3, L) [Tur88, §2.2]. The following result extends this map to

orientable surfaces in the four-ball. The proof is modelled on [Tur88].

Proposition 4.20. Let F be an oriented smoothly, properly embedded surface in D4 and let

N be the double cover of D4 branched along F . There is a natural bijective correspondence

between the set of quasiorientations of F and the set of spin structures on N . The spin

structure on ∂N determined by the induced orientation on the link L = ∂F ⊂ S3 admits

an extension over N , which is unique if F has no closed components.

Proof. Write F = F1∪. . .∪Fm where {Fi} are the components of F . Let Di be an oriented

meridional disk for Fi and µi = ∂Di. These generate H1(D4 \ F ; Z) ∼= Zm.

The map γ : H1(D4 \F ) → Z/2 given by sending each µi to 1, defines the double cover

π : N \ F̃ → D4 \ F

where F̃ is the preimage of F in N . A loop l in D4 \F lifts to a loop in N \ F̃ if and only if

γ([l]) is even. Thus we can define an element of H1(N \ F̃ ; Z/2) ∼= Hom(H1(N \ F̃ ),Z/2)

by

h =
γ ◦ π∗

2
(mod 2). (4.3)

Choose a framing fi for each meridional disk Di and the induced framing on µi. Let µ̃i

and D̃i be the preimages of µi and Di in N . Note that these also have an induced framing.

A spin structure s on N\F̃ extends uniquely to one on N if and only if the restriction of

s to the framed submanifold (µ̃i, ˜fi|µi) extends over (D̃i, f̃i) for each i.

There are two spin structures on S1. The frame bundle Fr(S1) is a copy of S1 and these

spin structures correspond to the two double covers. The spin structure on D2 restricts

to give the non-trivial spin structure on S1. The pullback of this spin structure to the

non-trivial double cover of S1 is the trivial spin structure.

Let s̃ be the spin structure on N \ F̃ obtained by pulling back the restriction to D4 \F

of the unique spin structure on D4. This spin structure restricts to the non-trivial spin

structure on each µi. We see that s̃ restricts to the trivial spin structure on µ̃i and

hence does not extend over D̃i. Since h(µ̃i) = 1 for each i, the spin structure s̃ + h does
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extend over N . This gives a bijection between the sets of quasi-orientations of F and

spin structures on N . Following the argument of [Tur88], we see that if we change the

orientation of a component Fi while keeping the orientation of Fj constant, the value of h

changes on a lift of µi + µj . This shows the assignment is injective and we can see that it

is surjective since the number of quasi-orientations of F is the same as the number of spin

structures on N . The latter number can be calculated as it is the order of H1(N ; Z/2)

and in this case it is 2m−1 (see for example [LW95, Theorem 1]).

Tuarev’s bijection between the spin structures on the double branched cover of a link

L and the quasi-orientations of the link is defined in the same way. The map γL : H1(S3 \

L) → Z/2 takes the meridian of each component to 1 and this defines hL ∈ H1(S3\L; Z/2)

as in (4.3). He shows that the spin structure obtained by taking the pullback of the one

on S3 and twisting by hL extends uniquely over ∂N . When the orientation of the link is

obtained from a surface F , it is clear that this spin structure is the restriction of s̃ + h for

this orientation of F . This extension is unique when F has no closed components as then

the restriction map from the set of quasi-orientations of F to the set of quasi-orientation

of ∂F is injective.

The double branched cover of an oriented link then defines a spin manifold. The group

Θ3
Q,Spin consists of smooth spin rational homology cobordism classes of spin rational ho-

mology three-spheres under connected sum. Two spin rational homology three-spheres Y0

and Y1 are spin rational homology cobordant if −Y0#Y1 bounds a spin rational homology

four-ball, or equivalently if there is a spin rational homology cobordism W : Y0 → Y1.

For a marked oriented link L with nonzero determinant, Turaev’s map (as described

in the proof of Proposition 4.20) gives a spin structure sL on Σ2(S3, L). Following the

definition, the spin structure we get on Σ2(S3, L#L′) is the same as the one obtained from

(Σ2(S3, L), sL)#(Σ2(S3, L′), sL′). If the marked oriented links L and L′ are χ-concordant,

Propositions 4.1 and 4.20 show that (Σ2(S3, L), sL) and (Σ2(S3, L′), sL′) are spin rational

homology cobordant. The map taking L to the spin manifold (Σ2(S3, L), sL) therefore

gives a group homomorphism

Σ̃2 : Ñ → Θ3
Q,Spin

from the subgroup of L̃ represented by links with nonzero determinant to the spin rational

homology cobordism group of spin rational homology three-spheres.
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Remark 4.21. The double branched cover of a knot always has a unique spin structure,

as it is a Z/2 homology sphere. The distinction between Θ3
Q and Θ3

Q,Spin is thus irrelevant

in the knot case.

We define an invariant of a marked oriented link L with nonzero determinant by

δ([L]) = 4 d ◦ Σ̃2([L]) = 4d(Σ2(S3, L), sL),

where d is the correction term invariant from Heegaard-Floer homology [OzSz03a].

This is a homomorphism from Ñ to Q, since both Σ̃2 and d are homomorphisms.

When L is a knot, this is double the concordance invariant introduced in [MO07]. We

can see from [KT76] and Proposition 4.20 that (Σ2(S3, L), sL) is the boundary of the spin

four-manifold given as the double branched cover of D4 along a Seifert surface for L and

that the signature of this manifold is equal to the signature of L. By [OzSz03a, Theorem

1.2], it follows that δ(L) is an integer and is congruent to minus the signature of L modulo

8.

For alternating links, a stronger statement can be made.

Lemma 4.22. Let L be a nonsplit oriented quasi-alternating link. Then σ(L)+ δ(L) = 0.

This is proved in [DO12, Lemma 3.4] for alternating links, and is generalised to quasi-

alternating links in [LO13].

The homomorphisms l̃, σ and δ can be used to find a summand of Ñ0 – the subgroup

of L̃ represented by links with nonzero determinant and slice marked component.

The marked oriented links H̃ and L̃1 from Figure 4.1 have

(l̃, σ, δ)(H̃) = (1,−1, 1)

(l̃, σ, δ)(L̃1) = (1, 0, 0).

Let M be the Montesinos link given by plumbing twisted bands according to the

positive definite plumbing graph shown in Figure 4.5. This is a three-component link with

determinant four and every component is an unknot. The values of σ and δ for the four

quasiorientations on M may be computed using the plumbing graph ( [Sav00, Theorem

5], [OzSz03b, Corollary 1.5]) and are

σ = −8, 0, 0, 4

δ = 0, 0, 0,−4.
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2 1 4 2 2

6

Figure 4.5: Plumbing diagram for M .

It follows that H̃, L̃1 and M (with some choice of orientation) generate a Z3 summand of

the direct complement Ñ0 of C in Ñ .

Corollary 4.3 allows us to define homomorphisms on subgroups of Ñ . Let Ñn be the

set of classes in L̃ with a representative whose Alexander polynomial is non-zero on each

2n-th root of unity so that Ñ1 = Ñ . On these subgroups, there is a homomorphism

Σ2n : Ñn → Θ3
Q.

4.3 Difference between χ-slice and χ-concordance

An obvious first attempt to generalise C would be to take the quotient by χ-slice links

in the monoid of either partly oriented or marked oriented links. In order to ensure that

connected sum on the marked components is well-defined on the quotient we need to add

the condition that the marked component should bound a disk (see Lemma 4.9). However,

this relation turns out to be uninteresting.

Proposition 4.23. Let L be a marked oriented link with marked component K⃗ and let H

be the Hopf link. Then there is an unlink U and l ∈ Z such that L# − K⃗#lH#U bounds

a properly embedded surface F with χ(F ) = 1 and with the marked component bounding a

disk.

Proof. The oriented component K ′ of L#−K⃗ is slice and so it bounds a disk. We choose l

so that the linking number of K ′ with the rest of the link L′ = L#− K⃗#lH is zero. Then

we can find an oriented surface bound by L′ \K ′ which has only transverse intersections

with the disk bounded by K ′ and algebraic intersection number zero.

We can remove these intersection points in pairs by adding handles, giving an orientable

surface bounded by L′. By adding new handles if needed, we can assume that the Euler

characteristic is negative. We then add as many disjoint disk components to the surface as
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are needed to increase the Euler characteristic to one. This has the effect on the boundary

of changing L′ to L′#U for an unlink U .

Every odd component unlink bounds a union of a disk and a collection of annuli. If we

were to take the quotient by χ-slice links, all that we need to consider is the concordance

class of the marked component, the total linking number of the marked component with

the rest of the link and the parity of the number of components.

Proposition 4.23 also holds when L is a partly oriented link, although we may take

l ∈ {0, 1} by allowing a non-orientable surface. In this case, H has order two and every

unlink is χ-slice so the class of a link is determined by the marked component and the

linking number of the marked component with the rest of the link modulo 2.

4.4 Topological versions

In [DO12], topological versions of L and L̃ are defined, by allowing locally flat surfaces

as well as smooth ones. This gives topological link concordance groups LTOP and L̃TOP.

They have similar properties to L and L̃ and we get topological versions of Theorems 4.13

and 4.16.

Theorem 4.24. The set of locally flat χ-concordance classes of partly oriented links forms

an abelian group

LTOP
∼= CTOP ⊕ (LTOP)0

under connected sum which contains the topological knot concordance group CTOP as a

direct summand (with CTOP ↩→ LTOP induced by the inclusion of oriented knots into partly

oriented links).

The complement (LTOP)0 of CTOP in LTOP contains a (Z/2)∞ subgroup.

Theorem 4.25. The set of locally flat χ-concordance classes of marked oriented links

forms an abelian group

L̃TOP
∼= CTOP ⊕ (L̃TOP)0

under connected sum which contains the topological knot concordance group CTOP as a di-

rect summand (with CTOP ↩→ L̃TOP induced by the inclusion of oriented knots into marked

oriented links). Forgetting orientations on nonmarked components induces a surjection

L̃TOP → LTOP.
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The complement (L̃TOP)0 of CTOP in L̃TOP contains a Z/2 direct summand and a Z∞

subgroup.

Proof of Theorem 4.24. The proof is largely the same as in the smooth case, in particular

Lemmas 4.8 and 4.9 apply without modification. Proposition 4.1 gives us a topological

version of the branched double cover homomorphism Σ2. Proposition 4.11 shows that the

two-bridge links {S(q2 + 1, q)} generate a (Z/2)∞ subgroup in (LTOP)0.

Proof of Theorem 4.25. This follows the proof of Theorem 4.16 but, as the results of

[Lis07b] do not apply, we use Levine-Tristram signatures to establish that the two-bridge

links

{S(2k, 1) | k > 0},

oriented so that the linking number is +k, are linearly independent in L̃TOP.

The Levine-Tristram signatures of these links are computed by Przytycki in [Prz11,

Example 11]. In particular, it is shown that σω(S(2k, 1)) is a locally constant function

of ω and changes when ψ = (1 − ω)/|1 − ω| satisfies ψ4k = 1 and ψ ̸= ±1. Suppose∑n
i=1 aiσ(S(2ki, 1)) = 0 for some integers ai, with 0 < k1 < · · · < kn and an ̸= 0.

Choosing ω such that ψ = exp(it) with t ∈ [π/2kn, π/2kn−1], we find

n∑
i=1

aiσω(S(2ki, 1)) = an(σω(S(2kn, 1)) − σ(S(2kn, 1))) ̸= 0.

Linear independence in L̃TOP then follows from Lemma 4.19, which also holds in the

locally flat case.

The smooth and topological knot concordance groups are distinct. It is also interesting

to compare the smooth and topological versions of these link concordance groups.

Theorem 4.26. Let K be an alternating knot with negative signature (for example the

right handed trefoil), and let C be a knot with Alexander polynomial one and δ(C) ̸= 0 (such

as the Whitehead double of the right handed trefoil [MO07, Theorem 1.5]). The partly-

oriented links L2#H and L3#Hshown in Figure 4.6 are trivial in LTOP and nontrivial in

L.

Orienting all components of L2#H and L3#H results in marked oriented links which

are trivial in L̃TOP and nontrivial in L̃, under the same hypotheses on K and C.
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K

C

Figure 4.6: Partly oriented links L2#H and L3#H. The band shown

passing through the box marked K is tied in the knot K with zero

framing (cf. [CKRS10]).

Proof. Each of the links shown in Figure 4.6 is a connected sum of a two-component partly

oriented link Li and the Hopf link H, where the linking number between the components

of each Li is ±1.

Suppose that the partly oriented link Li#H is smoothly χ-nullconcordant. Then it

bounds a smoothly embedded surface F in D4 which is either one disk and two Möbius

bands or a disk and an annulus. In either case with the marked component bounds the

disk. The first possibility is ruled out by linking numbers as in Lemma 4.10, and the

second is equivalent to existence of a concordance in the traditional sense, given by two

properly embedded annuli in S3 × I, between Li and H. This is ruled out in the case of

L3 since δ(C) ̸= 0 implies that C is not slice, and is ruled out in the case of L2 by recent

work of Cha-Kim-Ruberman-Strle [CKRS10].

Both L2 and L3 have Alexander polynomial one ( [CKRS10]) and are therefore locally

flatly concordant (in the traditional sense and hence also χ-concordant) to the Hopf link

by a theorem of Davis [Dav06]. It follows that Li#H is trivial in LTOP and (with an

appropriate choice of orientation) in L̃TOP.



Chapter 5

Heegaard-Floer correction terms

of lens spaces

5.1 d invariants of lens spaces

As we discussed in the introduction, Lisca examined lens spaces which bound smooth

rational balls and discovered a condition which fully characterised such lens spaces. We

consider Heegaard-Floer d invariants of lens spaces in the hope that they can be compared

to a condition of Casson-Gordon [CG86] for a lens space to bound a rational ball.

Ozsváth and Szabó [OzSz03a] give a reciprocity formula for the d invariants of lens

spaces. With respect to an identification of Spinc(L(p, q)) with Z/p = {0, 1, . . . , p − 1}

which arises naturally from a Heegaard triple they show that for p > q > 0 and 0 ≤ i < p+q

d(−L(p, q), i) + d(−L(q, p), i) =
(2i+ 1 − p− q)2 − pq

4pq
. (5.1)

Remark 5.1. Our orientation convention for lens spaces differs from the one used in

[OzSz03a] and [JRX13]. As a result, we state some formulae for −L(p, q).

This formula is similar to reciprocity formulae in number theory for Dedekind sums.

This is used in [JRX13] to give a formula for the d invariants of lens spaces in terms of

Dedekind and Dedekind-Radamacher sums. For a real number x let B1(x) = x−⌊x⌋− 1
2 .

Here ⌊x⌋ is the floor function so B1(x) is just the representative in [−1
2 ,

1
2) for the class of

x− 1
2 in R/Z.

For coprime integers p, q and any integer n, the Dedekind-Radamacher sum1 s(q, p;n)
1This is a version of the Dedekind-Radamacher sum; it is sometimes defined using the sawtooth function

99
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is defined by

s(q, p;n) =
|p|−1∑
k=0

B1

(
kq + n

p

)
B1

(
k

p

)
.

This sum is unchanged by replacing q and n with q + lp and n+mp for integers l,m.

The classical Dedekind sum s(q, p) is given by s(q, p; 0) − 1
4 . Jabuka-Robins-Xinli use

reciprocity formulae to express the d invariant in terms of these sums.

Theorem 5.2 ( [JRX13, Theorem 1.2]). Let p, q be coprime positive integers and n ∈ Z.

Then

d(−L(p, q), n) = 2s(q, p;n) + s(q, p) − 1
2p
. (5.2)

This result is obtained by showing that the two expressions obey the same reciprocity

formula. The formula (5.1) is also used in [JRX13] to find conditions on i, j such that

d(L(p, q), i) ± d(L(p, q), j) is zero. The following is a slight generalisation of [JRX13,

Theorem 1.4].

Theorem 5.3. Let p, q be coprime integers and i, j ∈ Z/p.

If d(−L(p, q), i) − d(−L(p, q), j) ∈ 1
2Z then p|2(i− j)(i+ j − q + 1).

If d(−L(p, q), i) + d(−L(p, q), j) ∈ 1
2Z then p|((i− j)2 + (i+ j − q + 1)2).

The statement differs from [JRX13, Theorem 1.4] only by changing {0} to 1
2Z. For

convenience, we briefly summarise the proof of one statement.

Proof. Suppose that d(−L(p, q), i) − d(−L(p, q), j) ∈ 1
2Z. By (5.1),

2pq [d(−L(p, q), i) + d(−L(q, p), i) − d(−L(p, q), j) − d(−L(q, p), j)]

=
(2i+ 1 − p− q)2 − pq

2
− (2j + 1 − p− q)2 − pq

2

=
4i2 + 41 − 4ip− 4iq − 4j2 − 4j + 4jp+ 4jq

2

= 2
[
i2 − j2 + (i− j)(1 − p− q)

]
= 2(i− j)(i+ j + 1 − p− q).

Since d(−L(q, p), i) is always an integer multiple of 1
2q – this follows from the definition

of the d invariant in [OzSz03a] and is also shown in [JRX13, Lemma 2.2] using (5.2) – our

assumption implies that both sides of this equation are integers divisible by p. We then

see that p|2(i− j)(i+ j − q + 1).

The second statement is proved similarly.

instead of B1.
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5.1.1 Lens spaces with square order

From now on, let p = m2. This case is especially interesting as it includes all lens spaces

which bound smooth rational 4-balls.

Proposition 5.4. Suppose 2i+1−q = lm for some integer l. Then d(−L(m2, q), i) ∈ 1
4Z.

Further, if m is odd, it is integer-valued while if m is even and l is odd, it is half an integer.

Proof. Suppose 2i+ 1 − q = lm. By (5.1),

2m2q
[
d(−L(m2, q), i) + d(−L(q,m2), i)

]
=

(2i+ 1 − q −m2)2 −m2q

2

=
(lm−m2)2 −m2q

2

=
m2(l2 +m2 − 2lm− q)

2
.

Since d(−L(p, q), i) is always a rational number in 1
2pZ, both sides of this equation are

integers. Suppose that either m or l is odd. The right hand side is an integer multiple of

m2. Reducing modulo m2, the left side is 2qm2d(−L(m2, q), i). Thus 2qm2d(−L(m2, q), i)

is divisible by m2. If m is odd, 2q is coprime to m2 and so d(−L(m2, q), i) is an integer

while if m is even d(−L(m2, q), i) is half an integer.

If m and l are even we see that 2qm2d(−L(m2, q), i) is divisible by m2

2 . Arguing

as above, since d(−L(m2, q), i) is an integer multiple of 1
2m2 and q is odd, we see that

d(−L(m2, q), i) ∈ 1
4Z.

In particular, note that for odd m L(m2, q) has m integer-valued d invariants while for

even m there are 2m with quarter integer values.

On the other hand, we may adapt [JRX13, Corollary 1.8] to get an upper bound.

Corollary 5.5. Let m, q be coprime integers. Then L(m2, q) has at most m half integer-

valued d invariants and at most m with values in 1
4Z\1

2Z.

Proof. Theorem 5.3 gives conditions on i, j if d(−L(m2, q), i) ± d(−L(m2, q), j) is half an

integer.

The two conditions together imply, as argued in [JRX13, Corollary 1.8], that i ≡ j

modulo m.

Summarising, we have the following statement.
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Proposition 5.6. If m is odd, L(m2, q) has exactly m integer-valued d invariants. If m

is even, there are exactly m half-integer d invariants and 2m quarter-integer d invariants.

We shall later see that all of the half-integer d invariants are actually even integers. In

the meantime, we can note the following corollary.

Corollary 5.7. Suppose d(L(m2, q), i) ∈ 1
2Z\{0}. Then L(m2, q) does not smoothly bound

a rational ball.

Proof. L(m2, q) bounds a rational ball only if m of its d invariants vanish. Thus all m of

the half-integer valued d invariants are zero.

5.1.2 Lens spaces with square order m2 and m vanishing d invariants

We examine the Dedekind-Radamacher sum formula for the d invariants. Note that the

formula in Theorem 5.2 only depends on n through s(q, p;n).

Theorem 5.8. The d invariants d(−L(m2, q), n+ lm) are equal for each l ∈ Z if and only

if {⌊
n+ iq

m

⌋
mod m

}m−1

i=0

= {i}m−1
i=0 . (5.3)

Proof. By Theorem 5.2 we have s(q,m2;n) = s(q,m2;n + lm). Let {x} denote the frac-

tional part of a rational number x. Note that

s(q, p;n) =
m2−1∑
k=0

[({
kq + n

m2

}
− 1

2

)({
k

m2

}
− 1

2

)]

=
m2−1∑
k=0

[{
kq + n

m2

}{
k

m2

}
− 1

2

({
kq + n

m2

}
+
{
k

m2

})
+

1
4

]
As k runs between 0 and m2 − 1 both{

kq + n

m2

}
and

{
k

m2

}
take every value in {

0, . . . ,
m2 − 1
m2

}
.

Therefore s(q,m2, n) = s(q,m2, n′) whenever

m2−1∑
k=0

{
kq + n

m2

}{
k

m2

}
=

m2−1∑
k=0

{
kq + n′

m2

}{
k

m2

}
. (5.4)



CHAPTER 5. HEEGAARD-FLOER CORRECTION TERMS OF LENS SPACES 103

Let n′ = n + jqm for some j ∈ Z. Choose r
m2 for some 0 ≤ r < m2. This residue

appears in the sums in equation (5.4) as{
kq + n

m2

}
and as

{
kjq + n+ jqm

m2

}
,

for some k, kj . Modulo m2 we have

kq ≡ kjq + jqm,

and so k ≡ kj + jm.

The coefficients of r
m2 in the two sums in equation (5.4) are multiples of 1

m2 between

zero and m2−1
m2 . If n is changed to n′ = n+ jqm, the coefficient of r

m2 is reduced by j
m if

r

m2
=
{
kq + n

m2

}
for some k ≥ m(m− j). Otherwise the coefficient increases by 1 − j

m .

If s(q, p;n) = s(q, p;n+ lm) for every l ∈ Z, it follows that

m−1∑
k=0

{
kq + n

m2

}
=

2m−1∑
k=m

{
kq + n

m2

}
= . . . =

m2−1∑
k=m2−m

{
kq + n

m2

}
. (5.5)

Since kq + n is the same as (k +m)q + n modulo m, the set{{
kq + n

m2

}}
contains one value in {

0,
1
m2

, . . .
m− 1
m2

}
.

By the same reasoning, the same is true for each set{
i

m
,
im+ 1
m2

, . . .
im+m− 1

m2

}
,

with 0 ≤ i < m, from which (5.3) follows.

Conversely, (5.3) immediately implies (5.5) asm, q are coprime. Any difference between

s(q, p;n) and s(q, p;n + lm) arises from permuting these sums of residues so we see that

these Dedekind-Radamacher sums must be equal and thus that the d invariants are also

equal.

The correction terms of lens spaces can also be computed from a plumbing diagram

[OzSz03b]. J. Greene explained to me how to use this approach to obtain the following

result. Indeed, a similar method can also be used to show that Lisca’s diagonalisation
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condition (for lens spaces) translates to one on the d invariants. The d invariants of the

manifold are the same as the d invariants of a certain lattice, which for lens spaces is the

same as the standard definite lattice. A detailed description appears in [Gre11].

Proposition 5.9. Suppose

d(L(m2, q), n) = d(L(m2, q), n+ lm)

for each l ∈ Z. Then all of these d invariants are zero.

Proof. By (5.3), for 0 ≤ i ≤ m − 1, we can write {n + iq} as {mai + bi} where {bi} =

{0, . . . ,m− 1} and {ai mod m} = {0, . . . ,m− 1}. The sum is

m−1∑
i=0

n+ iq = nm+
1
2
qm(m− 1).

This is equal to

m
m−1∑
i=0

ai +
m−1∑
i=0

bi = m

(
1
2
m(m− 1) + km

)
+

1
2
m(m− 1),

for some k ∈ Z. We then have

2n− q + 1 = m(m− q + 2k).

Modulo m, 2n− q + 1 is zero. When m is even q is odd, so 2n− q + 1 is an odd multiple

of m. For either parity of m this condition specifies n mod m. By Proposition 5.4 this

implies that d(L(m2, q), n+ lm) is half an integer.

Let Λ be a definite lattice whose discriminant group is Z/m2. There is a unimodular

integral lattice Z such that Λ ⊂ Z ⊂ Λ∗. This is given by the preimage of the unique

Z/m subgroup of Λ∗/Λ. We know it is integral because there is only one linking form on

a cyclic group and it vanishes on this subgroup. The d invariants corresponding to Z/Λ

can be computed using characteristic vectors on Z. Since it is unimodular, the square of

any characteristic vector is the same as the rank modulo 8 and these d invariants are even

integers.

The d invariants of L(m2, q) are calculated by a definite lattice Λm2,q. If there is a

set of m equal d invariants, they are precisely the d invariants which have half-integer

values. It follows from Proposition 5.6 that these must be the invariants calculated by the

unimodular lattice Z. Up to replacing L(m2, q) by L(m2,m2−q) we can assume that each

d(L(m2, q), n + lm) ≥ 0. By a theorem of Elkies [Elk95] the d invariant of a unimodular

lattice is at most 0 and so these d invariants are zero.
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5.1.3 Casson-Gordon condition

Casson and Gordon [CG86, Corollary on p.188] give a necessary condition for L(m2, q) to

bound a rational ball when m is odd. This condition is observed to also be sufficient for

m ≤ 105. We can translate the condition to one which appears similar to (5.3).

To state their condition, we require the following definitions. Let x, y,∈ R and ∆(x, y)

be the triangle in R2 with vertices at (0, 0), (x, 0) and (x, y). A count Int∆(x, y) of

the integer points in the triangle is given by counting integer points in the interior with

multiplicity one; integer points on the edges with multiplicity 1
2 ; integer points at vertices

with multiplicity 1
4 and the point (0, 0) with multiplicity zero.

Proposition 5.10 ( [CG86]). Suppose S(p, q) is a ribbon knot. Then p = m2 and for

each r = 1, . . . ,m− 1

Area
(
∆
(
mr,

qr

m

))
− Int

(
∆
(
mr,

qr

m

))
= ±1

4
. (5.6)

By [Lis07a], S(p, q) is ribbon if and only L(p, q) smoothly bounds a rational ball, so we

can restate the hypothesis in the terms of the lens space. We can reinterpret the condition

as follows.

Corollary 5.11. Suppose L(m2, q) smoothly bounds a rational ball, with m odd. For

r = 1, . . . ,m− 1 let

nr =
⌈qr
m

⌉
=
qr

m
+
sr

m
.

Then there is an ϵr ∈ {0, 1} such that∣∣∣∣{i ∈ [0,mr] ∩ Z |
{
iq

m2

}
>
{qr
m

}}∣∣∣∣ = rsr − ϵr. (5.7)

Proof. The square S in Figure 5.1 has edges parallel to the axes and vertices at (0, 0) and

(mr, nr) and it decomposes into two copies of ∆
(
mr, qr

m

)
and a parallelogram A. Counting

the vertex (mr, nr) with multiplicity zero, we can easily see that

Int
(
∆
(
mr,

qr

m

))
=

1
2

(Int(S) − Int(A)) .

By identifying the left and right edges of S and the top and bottom edges, we see that

Int(S) = mrn− 1
2 , where each integer point contributes one apart from the point obtained

from identifying all the vertices of S, which contributes two quarters and two zeros. Since

the gradient of the diagonal line of ∆ has slope q
m2 and length at most m2 −m, there are
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(0, 0) (mr, 0)

(0, nr) (mr, nr)

Figure 5.1: The square S decomposes as two copies of ∆
(
mr, qr

m

)
and a

parallelogram A.

never any integer points on this line. Consequently, all the integer points of A are in the

interior. Above an integer i on the x-axis, there is an integer point in A if and only if the

interval [
iq

m2
,
iq

m2
+
sr

m

]
contains an integer. Thus the left side of (5.7) is∣∣∣∣{i ∈ [0,mr] ∩ Z |

{
iq

m2

}
>
{qr
m

}}∣∣∣∣ = Int(A).

The area of ∆
(
mr, qr

m

)
is 1

2qr
2 so using (5.6) in the second step

Int(A) = Int(S) − 2Int
(
∆
(
mr,

qr

m

))
= mrnr −

1
2
− qr2 ± 1

2

= mr
(qr
m

+
sr

m

)
− qr2 − ϵr

= rsr − ϵr.

We may interpret condition (5.7) in terms of the function taking i ∈ {0, . . .m2 − 1} to

the fractional part of iq
m2 . The condition says that the values here are distributed in a way

which can be imprecisely described as ‘fairly even’. We sample the first mr values and

compare to a threshold 1 − sr
m . Of our m2 values of i, there are srm with corresponding
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fractional part above this threshold and our condition is that roughly as many as we would

expect lie in the first mr.

This is similar to condition (5.3), which can also be interpreted as saying that the

values of

i 7→
{
iq

m2

}
are distributed evenly. This condition is that, if we start from n, the values of this function

on a set of m consecutive numbers lie in different intervals
[

j
m ,

j+1
m

)
.

It would be interesting to compare these conditions for odd m. For m < 105, Casson

and Gordon showed that their condition is equivalent to L(m2, q) smoothly bounding a

rational ball but it is unknown if this holds for all m.
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