
SMOOTH, NONSYMPLECTIC EMBEDDINGS OF RATIONAL
BALLS IN THE COMPLEX PROJECTIVE PLANE

BRENDAN OWENS

Abstract. We exhibit an infinite family of rational homology balls which embed
smoothly but not symplectically in the complex projective plane. We also obtain a
new lattice embedding obstruction from Donaldson’s diagonalisation theorem, and
use this to show that no two of our examples may be embedded disjointly.

1. Introduction

A Markov triple is a positive integer solution (p1, p2, p3) to the Markov equation

(1) p21 + p22 + p23 = 3p1p2p3.

Each Markov triple gives rise to an embedding

(2)
3⊔

i=1

Bpi, qi ↪→ CP2

of a disjoint union of three rational homology balls in the complex projective plane.
Here Bp,q is the rational homology ball smoothing of the quotient singularity 1

p2
(1, pq−

1). The embedding in (2) arises by smoothing the three singular points in the weighted
projective space P(p21, p

2
2, p

2
3), and the numbers qi are given by

qi = ±3pj/pk (mod pi),

where i, j, k is a permutation of 1, 2, 3. The apparent sign ambiguity here is due to
the fact that Bp,q

∼= Bp,p−q.
Hacking and Prokhorov proved in [5] that any projective surface with quotient

singularities which admits a smoothing to CP2 is Q-Gorenstein deformation equivalent
to some P(p21, p

2
2, p

2
3) as above. Evans and Smith proved in [4] that any disjoint union⊔

i∈I Bpi, qi which admits a symplectic embedding in CP2 arises in this way, with
|I| ≤ 3.

Let F (2n− 1) denote the nth odd Fibonacci number, defined by the recursion

(3) F (2n + 3) = 3F (2n + 1)− F (2n− 1), F (1) = 1, F (3) = 2.

Then (1, F (2n−1), F (2n+1)) is a Markov triple for each n ∈ N, showing in particular
that BF (2n+1),F (2n−3) admits a symplectic embedding in CP2 for each n > 1.
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In [8] we mentioned but overlooked the significance of the following result. Here
∆p,q is a properly embedded surface in the 4-ball whose double branched cover is Bp,q,
and P+ is the unknotted Möbius band in the 4-ball with normal Euler number 2; see
[8] for further details.

Theorem 1. For each n ∈ N, the slice surface ∆F (2n+1),F (2n−1) admits a simple
embedding as a sublevel surface of the unknotted Möbius band P+. Taking double
branched covers yields a simple smooth embedding

BF (2n+1),F (2n−1) ↪→ CP2.

If n > 1, then BF (2n+1),F (2n−1) does not embed symplectically in CP2.

Theorem 1 gives the first-known smooth embeddings of rational balls Bp,q in the
complex projective plane that do not arise from symplectic embeddings. This shows
that the smooth embedding problem has an as-yet-unknown solution which differs
from that to the symplectic problem solved by Evans-Smith. Bulent Tosun has in-
formed the author that work of Nemirovski-Segal [7] implies the existence of a ratio-
nal ball, bounded by a Seifert fibred space with 3 exceptional fibres, which embeds
smoothly but not sympectically in CP2. Most of the embeddings obtained in [8], but
not those given in Theorem 1, have since been reproved and generalised by different
methods in [9].

A conjecture of Kollár [6] would imply that at most three rational balls Bpi, qi may
embed smoothly and disjointly in CP2. The following result gives some mild support
to this conjecture.

Theorem 2. It is not possible to smoothly embed a disjoint union
⊔

i∈I Bpi, qi of two

or more of the balls from Theorem 1 in CP2, where each (pi, qi) is a consecutive pair
of odd Fibonacci numbers.

This result uses a new obstruction derived from Donaldson’s diagonalisation theo-
rem [3]. This is stated in Proposition 3.2.

Corrigendum to [8]. In [8, sentence after Theorem 5, and Remark 4.1] we incorrectly
stated that BF (2n+1),F (2n−1) embeds symplectically in CP2. I am very grateful to Gi-
ancarlo Urzúa who reminded me that the Markov triple (1, F (2n−1), F (2n+1)) gives
rise to a symplectic embedding in CP2 of BF (2n+1),F (2n−3), and not of BF (2n+1),F (2n−1).

Further acknowledgements. I am grateful to Jonny Evans, Marco Golla, Ana
Lecuona, Yankı Lekili, Duncan McCoy, Bulent Tosun, and Giancarlo Urzúa for help-
ful comments and conversations. I also thank the anonymous referee for helpful
suggestions.

2. Smooth embeddings

In this section we prove Theorem 1, using the method from [8].
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We refer the reader to [1] for an excellent and readable source on Markov numbers.
Suppose that (p, a, b) is a solution to the Markov equation (1) with p > a, b. By [1,
Corollary 3.4], the integers in a Markov triple are pairwise relatively prime, so that
there are unique solutions x = u, u′ to

b ≡ ±xa (mod p).

These satisfy u + u′ ≡ 0 (mod p), so that one of them (say u) is between 0 and p/2;
we call this number u the characteristic number of the Markov triple (p, a, b). The
Markov equation gives a2 + b2 ≡ 0 (mod p), from which it follows that

u2 ≡ −1 (mod p).

I am grateful to Jonny Evans for helping me to see the following result.

Lemma 2.1. Let n ∈ N. The rational ball BF (2n+1),F (2n−1) embeds symplectically in

CP2 if and only if n = 1.

Proof. From [4, Theorem 4.15] we have that Bp,q embeds symplectically in CP2 if and
only if p is the maximum of a Markov triple (a, b, p), and q = ±3b/a (mod p). Then
in fact q = ±3u, where u is the characteristic number of the Markov triple.

For n > 1, the odd Fibonacci number F (2n + 1) is the maximum of the Markov
triple (1, F (2n − 1), F (2n + 1)), from which it follows that BF (2n+1),F (2n−3) embeds
symplectically. Also note that the characteristic number of this Markov triple is
F (2n− 1), and F (2n− 1)2 ≡ −1 (mod F (2n + 1)).

Then BF (2n+1),F (2n−1) embeds symplectically if and only if F (2n+1) is the maximum
of another Markov triple (a, b, F (2n + 1)), and F (2n − 1) = ±3u, where u is the
characteristic number of the triple (a, b, F (2n + 1)). This would imply that

−1 ≡ F (2n− 1)2 ≡ 9u2 ≡ −9 (mod F (2n + 1)).

The only odd Fibonacci numbers which divide 8 are F (1) = 1 and F (3) = 2, so we
conclude that n = 1.

Finally, F (3) = 2 is the maximum of the Markov triple (1, 1, 2) and BF (3),F (1) = B2,1

does embed sympectically. �

Proof of Theorem 1. As noted in the proof of Lemma 2.1, the Markov triple (1, 1, 2)
gives rise to an embedding of BF (3),F (1) = B2,1 in CP2. Suppose now that n > 1.
Induction using (3) yields the Hirzebruch-Jung continued fraction expansion

F (2n + 1)

F (2n− 1)
= [3n−1, 2].

Now using [8, Lemma 3.1] we have

F (2n + 1)2

F (2n + 1)F (2n− 1)− 1
= [3n−1, 5, 3n−2, 2].
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These continued fractions may be used to describe the surface ∆F (2n+1),F (2n−1), as
described in [8].

The proof that ∆F (2n+1),F (2n−1) is a sublevel surface of P+ is a minor modification
of the proof of [8, Theorem 5]. We refer the reader to that source for details.

Consider the first diagram shown in Figure 1. This represents a surface Σ bounded
by the unknot, which we claim is P+. Note first that the band move corresponding
to the blue band labelled 0 converts the diagram to one of ∆F (2n+1),F (2n−1), which is
the slice disk described by Casson and Harer [2] for the two-bridge knot S(F (2n +
1)2, F (2n + 1)F (2n − 1) − 1). This shows that ∆F (2n+1),F (2n−1) is a sublevel surface
of the surface Σ. It remains to see that Σ is the unknotted Möbius band P+ whose
double branched cover is CP2 minus a 4-ball.

. . . . . .
0

+1

2n crossings 2n + 1 crossings

Equivariant rational blow up

. . . . . .
00 0 0 0 0 0 0 0

Figure 1. The slice disk ∆F (2n+1),F (2n−1) as a sublevel surface of
P+, and the resulting equivariant rational blow up. Numbers
beside bands give the signed count of half-twists or crossings.

Figure 2 shows a sequence of isotopies and band slides converting Σ to P+ in the
first case of interest which is n = 2. Taking double branched covers we see that B5,2

admits a smooth embedding in CP2. The proof for n > 2 follows by an induction
argument involving band slides similar to those in Figure 2. The inductive step is
shown in Figure 3.

Recall that an embedding of Bp,q in a 4-manifold Z is called simple if the resulting
rational blow up of Z is obtainable by a sequence of ordinary blow ups. The proof
that the embeddings described above are simple follows as in [8, Proposition 5.1]; we
again refer the reader to [8] for more details on equivariant rational blow up, and to
Section 3 for a description of rational blow up. We describe here a slightly shorter
version of the proof at the level of double branched covers. The second diagram in
Figure 1 represents the surface in the 4-ball pushed in from the black surface of the
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+1

0

Slide +1 0

' +10
Slide

+1

0

'

0

−1 Slide

0

−1

'
+1

0
Slide

+1

0

'

0

−1 '
−10

Figure 2. The slice disk ∆5,2 is a sublevel surface of P+.

two-bridge diagram shown, using a chessboard colouring in which the unbounded
region is white. The rational blow up of CP2, minus a 4-ball, is the double cover X
of the 4-ball branched along this black surface, which in turn is the plumbing of disk
bundles over S2 corresponding to the linear graph with weights

(−3)n−1,−2,−1, (−3)n−2,−2,

where (−3)m denotes −3 repeated m times. A sequence of −1 blow downs reduces this

to the linear plumbing with weights −3 and 0, which is diffeomorphic to CP2#CP2,
again minus a ball. It follows that

X ∼= CP2#(2n− 1)CP2.

Together with Lemma 2.1, this completes the proof of Theorem 1. �
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+10

Slides
+1

0

'
+1

0
'

+1

0

Figure 3. The inductive step. The band slides are similar to those
shown in Figure 2. This shows how to transform the first diagram in
Figure 1 with n = k, to the same diagram with n = k − 1.

3. An obstruction from Donaldson’s diagonalisation theorem

In this section, we derive a lattice embedding obstruction to smoothly embedding
a rational homology ball bounded by a lens space, or a disjoint union of such, in CP2.
We begin by setting some conventions and terminology.

All homology and cohomology groups in this section have integer coefficients. Re-
call that if X is a smooth 4-manifold, possibly with boundary, then its intersection
lattice ΛX consists of the free abelian group H2(X)/Tors together with the symmetric
bilinear intersection pairing. The term lens space will be used here to refer to L(p, q)
with p > q ≥ 1; in particular not S3 or S2 × S1. Given integers a1, . . . , ak, the linear
lattice Λ(a1, . . . , ak) is defined to be the free abelian group with generators v1, . . . , vn,
and with symmetric bilinear pairing given by

(4) vi · vj =


ai if i = j;

−1 if |i− j| = 1;

0 if |i− j| > 1.

As this is the lattice associated to a weighted linear graph, we often refer to the
generators v1, . . . , vk as vertices. Recall that a lens space L(p, q) is the boundary of
a plumbing C of disk bundles over spheres determined by the weighted linear graph
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with weights a1, . . . , ak ≥ 2 where

p

p− q
= [a1, a2, . . . , ak] := a1 −

1

a2 − . . . − 1
ak

.

The intersection lattice of C is then Λ(a1, . . . , ak).
Let B be a rational homology ball with lens space boundary. Given an embedding

B ↪→ CP2, we let M be the complement CP2 \B and “rationally blow up” to obtain
the closed positive-definite manifold M ∪C, where C is the positive-definite plumbed
manifold bounded by ∂B. Donaldson’s diagonalisation theorem then implies the
existence of a lattice embedding

(5) ΛM ⊕ ΛC ↪→ Zm,

where ΛM and ΛC are the intersection lattices of M and C respectively, and m is the
sum of their ranks.

The reader familiar with the use of such lattice obstructions will note that since M
is a submanifold of CP2, and since Y = ∂B bounds a rational ball, each of ΛM and ΛC

admit finite-index embeddings in diagonal unimodular lattices, so that an embedding
as in (5) must in fact exist, with the first factor embedding in Z and the second in the
orthogonal Zm−1. We will show that simple topological considerations place further
restrictions on the lattice embedding in (5), giving rise to a useful obstruction, which
also extends to the case of an embedding of a disjoint union of rational balls.

Lemma 3.1. Let Bi be rational homology balls bounded by lens spaces for i = 1, . . . , n,
and suppose that the disjoint union

⊔
iBi embeds smoothly in CP2. Then the comple-

ment M = CP2 \⊔i Bi has H1(M ;Z) = 0 and H2(M ;Z) ∼= Z.

Proof. We use the Mayer-Vietoris sequence and induction. The base case is n = 0
and M = CP2.

Now suppose M ′ = CP2 \⊔n−1
i=1 Bi has H1(M

′;Z) = 0 and H2(M
′;Z) ∼= Z. Then

M ′ = M ∪Y Bn,

where Y = L(p2n, qn) has H1(Y ;Z) ∼= Z/p2nZ. We have H2(Bn;Z) = 0, since it is a
torsion subgroup of H2(M

′;Z) ∼= Z; then from the long exact sequence of the pair
(Bn, Y ), we have H1(Bn;Z) ∼= Z/pnZ. The Mayer-Vietoris sequence, with integer
coefficients, shows that H2(M) is a finite-index subgroup of Z, hence H2(M) ∼= Z.
The same sequence shows that there is a surjection from Z/p2nZ to H1(M)⊕ Z/pnZ,
from which it follows that the latter direct sum is finite cyclic and also that cyclic
summands of H1(M) have orders dividing pn. We conclude that H1(M) must be
trivial. �

We recall the notion of rational blow up, and modify and generalise it for our
convenience. If a disjoint union

⊔
iBi embeds smoothly in some 4-manifold Z, where

each Bi is a rational ball bounded by a lens space L(pi, qi), then we may excise each Bi
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and replace it by the positive-definite plumbed manifold Ci bounded by L(pi, pi− qi)
to obtain a new manifold

X = M ∪ C,

called the positive rational blow up of Z. Here M is the complement of
⊔n

i=1Bi in
Z, and C is the disjoint union

⊔n
i=1Ci of plumbed manifolds. We assume that all

weights in each plumbing Ci are at least 2.

Proposition 3.2. Let Bi be rational homology balls bounded by lens spaces for i =
1, . . . , n, and suppose that the disjoint union

⊔
iBi embeds smoothly in CP2. Let

X = M ∪ C be the resulting positive rational blow up of CP2. Then there exists a
finite-index lattice embedding

(6) ΛM ⊕ ΛC ↪→ Zm,

such that each unit vector e ∈ Zm has nonzero pairing with each of ΛM and ΛC.
Moreover the image of the generator of ΛM is a primitive vector in Zm.

Remark 3.3. Let A be the matrix of the embedding in (6) in terms of a basis
v1, . . . , vm for ΛX , where v1 ∈ ΛM and v2, . . . , vm ∈ ΛC, and an orthonormal ba-
sis for Zm. Then the proposition states that each row of A has at least two nonzero
entries including one in the first column, and also that the entries of the first column
of A, which are all nonzero, have no common divisor.

The known embeddings mentioned earlier in this section each give rise to a block
diagonal matrix A which does not satisfy the condition in the proposition.

Proof of Proposition 3.2. Let Y denote the union of lens spaces which is the common
boundary of M and C. Let e be a unit vector in ΛX . We may write

e = eM + eC ,

where eM ∈ H2(M,Y ) and eC ∈ H2(C, Y ). There are no unit vectors in ΛM , which
is a rank one lattice whose generator squared is the order of the first homology of Y .
There are also no unit vectors in ΛC since we assumed all weights in each plumbing
are at least 2. It follows that eM and eC are both nonzero.

Since H1(M) = 0 by Lemma 3.1, all homology groups of M are in fact torsion-
free by standard arguments using universal coefficients, Poincaré-Lefschetz duality,
and the long exact sequence of the pair. It follows that the second homology group
H2(M) is the underlying group of the lattice ΛM , and the relative homology group
H2(M,Y ) is the underlying group of the dual lattice ΛM

∗ via the universal coefficient
theorem. Then since ΛM is positive definite, we see that an element of H2(M,Y ) is
nonzero if and only if it has nonzero intersection with some element in H2(M). Thus
in particular eM and also e has nonzero intersection with some element of H2(M).
The same argument applies to ΛC , so that eC and also e has nonzero pairing with
some element of H2(C) which is the underlying group of ΛC .
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Finally let v denote the image in H2(X) of the generator of ΛM , and suppose
that v = kw for some k ∈ N and w ∈ H2(X). As above we write w = wM + wC

and we conclude that wC = 0 since it has zero pairing with all of ΛC . This implies
w = wM ∈ ΛM , but then k = 1 since v is the generator. �

In what follows we study lattice embeddings Λ ↪→ Zm up to lattice automorphisms
of Zm, or in other words, up to reordering of the orthonormal basis e1, . . . , em, and/or
changing signs of some orthonormal basis elements. Embeddings of linear lattices all
of whose weights are 2 or 3 are very restricted, since up to Aut(Zm), vectors v ∈ Zm

with v · v = 2 or v · v = 3 take the form v = e1 + e2 or v = e1 + e2 + e3.

Example 3.4. The rational ball B3,1 does not embed smoothly in CP2.

Proof. The boundary of B3,1 is the lens space L(9, 2), which also bounds the positive-
definite plumbing C with weights [2, 2, 2, 3]. Let v2, . . . , v5 be the generators of the
linear lattice ΛC = Λ(2, 2, 2, 3) as in (4), and let v1 be the generator of the rank one
lattice ΛM = Λ(9). Let e1, . . . , e5 be an orthonormal basis for Z5. There is, up to
lattice automorphisms of Z5, a unique embedding

ΛM ⊕ ΛC ↪→ Z5;

this takes v1 to 3e1, vi to −ei + ei+1 for 2 ≤ i ≤ 4, and v5 to e2 + e3 + e4. This does
not satisfy the conditions of Proposition 3.2, since ei has zero pairing with ΛM for
i > 1 and e1 has zero pairing with ΛC . �

Lemma 3.5. Up to Aut(Zm), there are precisely two ways to embed the linear lattice
Λ(2, 2, 2) in Zm, where m ≥ 4. The first has image in a Z3 sublattice of Zm, and its
orthogonal complement in this sublattice is the zero sublattice. The second has image
in a Z4 sublattice, and its orthogonal complement in Z4 is spanned by a vector w with
w · w = 4.

Let n > 1 and let Λ denote the linear lattice Λ(3n−1, 2, 2, 3n−1, 2), with rank r =
2n + 1. Up to Aut(Zm), there are precisely three ways to embed Λ in Zm, where
m ∈ N is sufficiently large. The first has image in a Zr sublattice, and its orthogonal
complement in this sublattice is the zero sublattice. The second has image in a Zr+1

sublattice, and its orthogonal complement in Zr+1 is spanned by a vector w with w·w =
F (2n + 1)2. The third has image in a Z4n sublattice, and its orthogonal complement
in Z4n contains no unit vectors.

Proof. For the first case, we can either map the vertices of Λ(2, 2, 2) to −e1+e2,−e2+
e3, e1 + e2 or to −e1 + e2,−e2 + e3,−e3 + e4. It is straightforward to see there are no
other possibilities.

In the second case we begin by embedding the two adjacent vertices of weight
two. Up to automorphism of Zm, these are mapped to −e1 + e2 and −e2 + e3. By
inspection, the linear lattice Λ(3, 2, 2, 3), which is a sublattice of Λ, admits three
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possible embeddings up to symmetry as follows:

−e2 − e3 − e4,−e1 + e2,−e2 + e3, e1 + e2 − e4;

−e2 − e3 − e4,−e1 + e2,−e2 + e3,−e3 + e4 + e5;(7)

or e1 + e4 + e5,−e1 + e2,−e2 + e3,−e3 + e6 + e7.

The first of these does not extend to an embedding of Λ(3, 2, 2, 3, 2) or Λ(3, 2, 2, 3, 3)
so we discard it. By a simple induction argument, the second of these extends uniquely
to an embedding of Λ(3n−1, 2, 2, 3n−1) as follows:

−e2n−2 − e2n−1 − e2n, . . . ,−e4 − e5 − e6,−e2 − e3 − e4,−e1 + e2,

−e2 + e3,−e3 + e4 + e5,−e5 + e6 + e7, . . . ,−e2n−1 + e2n + e2n+1.

This can be extended to an embedding of Λ in precisely two ways: we may map the
additional weight two vertex to e2n − e2n+1 or to −e2n+1 + e2n+2. The first choice
results in an embedding in Zr. The second choice results in an embedding in Zr+1.
The orthogonal complement in Zr+1 has rank one and so is generated by a vertex
w. We may compute w and hence its square directly or use the fact that Λ is a
primitive sublattice of Zr+1 with determinant F (2n + 1)2, which is therefore also the
determinant of its rank one orthogonal complement.

Finally another simple induction argument shows that the third embedding in (7)
extends uniquely to Λ(3n−1, 2, 2, 3n−1), and also extends uniquely up to symmetry to
give the following embedding of Λ:

(8)
e4n−7 + e4n−4 − e4n−3, . . . , e5 + e8 − e9, e1 + e4 − e5,−e1 + e2,−e2 + e3,

−e3 + e6 + e7,−e7 + e10 + e11, . . . ,−e4n−5 + e4n−2 + e4n−1,−e4n−1 + e4n.

We see that each of e1, . . . , e4n appears in (8), and therefore has nonzero pairing with
the image of this embedding. �

Proof of Theorem 2. For the duration of this proof, we denote by Bn the rational ball
BF (2n+1),F (2n−1), and by Cn the positive-definite plumbed manifold with the same
boundary as Bn, for each n ∈ N. For n = 1, the boundary of the rational ball
B1 = B2,1 is L(4, 1), and the plumbing C1 has weights [2, 2, 2]. For n > 1, Cn is the
plumbing with weights [3n−1, 2, 2, 3n−1, 2], as may be seen using [8, Lemma 3.1].

Suppose first that B1 tBn embeds smoothly in CP2. Let r1 = 3 and r2 denote the
ranks of ΛC1 and ΛCn respectively. By Proposition 3.2, there is a finite-index lattice
embedding

ΛM ⊕ ΛC1 ⊕ ΛCn ↪→ Zm,

where m = r1 + r2 + 1 = r2 + 4. By Lemma 3.5, the restriction of this to ΛC1 is either
contained in a Z3 or is contained in a Z4, spanned by e1, . . . , e4 say, with orthogonal
complement spanned by a vector w of self-pairing 4. Since the image of the generator
of ΛM is orthogonal to the image of ΛC1 and has nonzero pairing with every unit
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vector in Zm by Proposition 3.2, it must be the second possibility. The image of ΛC2

lies in the orthogonal complement to that of ΛC1 . If it is contained in the span of
e5, . . . , em then this is a finite-index embedding in Zr2 which again contradicts the
fact that the image of the generator of ΛM has nonzero pairing with every unit vector.
Thus at least one vertex of ΛC2 contains a nonzero multiple of w. This vertex then
has self-pairing greater than that of w, contradicting the fact that the vertices of ΛC2

all have self-pairing 2 or 3.
We next suppose that Bk t Bn embeds smoothly in CP2 with n ≥ k > 1. Let

r1 = 2k + 1 and r2 = 2n + 1 denote the ranks of ΛCk
and ΛCn respectively. By

Proposition 3.2, there is a finite-index lattice embedding

ΛM ⊕ ΛCk
⊕ ΛCn ↪→ Zm,

where m = r1 + r2 + 1 = 2k + 2n + 3.
Arguing as in the previous case, we see that the restriction of this embedding to

ΛCk
(respectively ΛCn) cannot have image in either Zr1 or Zr1+1 (respectively Zr2 or

Zr2+1). By Lemma 3.5, this leaves the possibility that the restriction to ΛCk
lies in

a Z4k sublattice, and similarly the restriction to ΛCn lies in a Z4n sublattice, in both
cases with the orthogonal complement in said sublattice containing no unit vectors.
In particular we have

4n ≤ 2k + 2n + 3,

and hence n is either k or k + 1.
If n = k + 1, we have m = 4n+ 1. Up to Aut(Zm), we may suppose that the Z4n−4

sublattice containing the image of ΛCk
includes the vectors −e1 + e2,−e2 + e3 as the

image of the two adjacent weight two vertices. The Z4n sublattice of Z4n+1 containing
the image of ΛCn has to intersect the Z3 sublattice spanned by e1, e2, e3 nontrivially.
This means that some vertex of ΛCn maps to a vector of the form v + a(e1 + e2 + e3),
where v is a nonzero vector in the span of e4, . . . , em and a 6= 0, noting that the
image of this vertex is orthogonal to −e1 + e2,−e2 + e3 and has pairing −1 with a
neighbouring vertex. This contradicts the fact that all vertices in ΛCn have weight 2
or 3.

Finally if n = k then m = 4n+3. We keep the notation ΛCn and ΛCk
to distinguish

the two copies of ΛCn . We may suppose that the Z4n sublattice containing the image
of ΛCk

is the span of e1, . . . , e4n, and that it includes the vectors −e1 + e2,−e2 + e3 as
the image of the two adjacent weight two vertices. Arguing as in the case n = k + 1,
the image of ΛCn has to be orthogonal to the span of e1, e2, e3, and so is contained in
the span of e4, . . . , em. We may also suppose that the two adjacent weight two vertices
in ΛCn map to −e4n+1 +e4n+2,−e4n+2 +e4n+3. We consider the image of ΛCn and ΛCk

under the projection to Z4n−3 spanned by e4, e5, . . . , e4n. From (8) we see that each
of these is isomorphic to the orthogonal direct sum Λ(3n−2, 2)⊕Λ(2, 3n−2, 2), and has
rank 2n − 1. This leads to a contradiction, since it is not possible to orthogonally
embed two lattices of rank 2n− 1 in Z4n−3. �
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