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Abstract. This paper is based on a talk given at the McMaster University Geom-
etry and Topology conference, May 2004. The basic question we address is whether
a given definite form may be the intersection pairing of a smooth four-manifold
bounded by a given rational homology sphere. We survey various obstructions
including linking pairings, rho invariants and the more recent Floer homology in-
variants of Frøyshov and Ozsváth and Szabó. We describe various examples and
compute the four ball genus of some families of knots and links.

Introduction. We first review some basic facts about rational homology spheres and
four-manifolds that they bound. In the next section we describe applications of non-
bounding results to questions regarding knots and links. In the remaining sections we
discuss obstructions to bounding that arise from linking pairings, rho invariants and
gauge theory. All manifolds in this paper are assumed to be smooth and oriented.

Recall that every three-manifold is the boundary of some four-manifold; a simply
connected such four-manifold arises from any (integral) surgery description of the
three-manifold. A rational homology three sphere Y is a closed three-manifold with
b1(Y ) = 0. Suppose Y is the boundary of a four-manifold X. The intersection pairing
QX on H2(X; Z)/Tors is a nondegenerate symmetric bilinear integer-valued form. We
say that the form QX is bounded by Y . Note that every nondegenerate Z-valued form
is bounded by some rational homology sphere. For a given Y we wish to study the
set of forms Q which Y bounds. Recall that a form Q on a free abelian group A is
positive (resp. negative) definite if Q(x, x) > 0 (resp. Q(x, x) < 0) for all nonzero
x ∈ A. We will be particularly interested in constraints on definite forms bounded
by Y .

Examples. • Donaldson’s theorem [1] tells us that the only definite forms that S3

bounds are the diagonal unimodular forms.
• Any lens space L(p, q) bounds both positive and negative definite forms.
• Any Seifert fibred rational homology sphere bounds at least one definite form.
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These examples suggest that one may hope to find an obstruction to Y bounding a
definite form of one sign; or if Y bounds definite forms of both signs one can hope to
find a restriction on the type of a definite form of one sign. We exhibit some examples
of these kinds in the last section.

Applications to knots and links. Let L be an oriented link with µ components in
the three sphere; denote its signature by σ(L). A slice surface F for L is a connected
surface properly embedded in B4 with boundary ∂F = L. The four-ball genus g∗(L)
is defined to be the minimal genus of any slice surface. This is clearly bounded above
by the Seifert genus of L.

Let X be the double branched cover of B4 along a minimal genus slice surface F .
Then the boundary of X is the double cover of S3 branched along L; denote this by
Y . Suppose that Y is a rational homology sphere (for example this will be the case if
L is a knot). It is shown by Kauffman and Taylor in [9] that b2(X) = 2g(F ) + µ− 1,
and the signature of X is equal to σ(L). Thus we have

(1) g∗(L) ≥ |σ(L)| − µ+ 1

2
.

(This bound is originally due to Murasugi [11].) If equality holds then X has a definite
intersection pairing of rank |σ(L)|. We also note that X is a spin manifold (see [12]).
Thus if there is an obstruction to Y bounding an even definite form of rank |σ(L)|,
we must have strict inequality in (1).

Potentially stronger bounds on g∗(L) may be obtained by replacing |σ(L)| in (1)
by |σω(L)| + nω(L); here ω ∈ S1 − {1}, σω(L) is the Tristram-Levine signature and
nω(L) is the nullity. The resulting bound is called the Murasugi-Tristram inequality
(see e. g. [5]). In the case that the Alexander polynomial has no roots on S1 − {1},
then these bounds are equal to that in (1).

The four-ball genus of a knot is a lower bound for the unknotting number u(K),
which is the minimum number of crossing changes in any diagram of K which are
necessary to yield the unknot. Bounds on unknotting number may also be attained
using the Montesinos trick, which describes the effect of a crossing change on the
double branched cover of a knot. In particular if a knot has u(K) = 1 then the
double cover Y of S3 branched along K is obtained by ±(2m − 1)/2 Dehn surgery
along a knot K∗, where m > 0 and 2m− 1 is the determinant of K. Hence Y bounds
the definite rank two form represented by the matrix

Q = ±
(
m 1
1 2

)
.

Ozsváth and Szabó use this as part of an obstruction to u(K) = 1 in [17].

Bilinear forms and lattices. Let Q : A × A → Z be a nondegenerate symmetric
bilinear form on a free abelian group A. The form Q is said to be even if Q(x, x) ∈ 2Z
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for all x ∈ A. The pair (A,Q) can be thought of as an integral lattice L in the space
V = A⊗R with a pairing x·y induced by Q. Let L∗ = {x ∈ V |x·y ∈ Z for all y ∈ L}
denote the dual lattice; clearly L ⊂ L∗.

A characteristic covector forQ is an element ξ of the dual lattice for which ξ·y ≡ y·y
(mod 2) for all y ∈ L. A characteristic vector is a characteristic covector which is an
element of L. The set of characteristic covectors is {ξ + 2x |x ∈ L∗}, where ξ is a
characteristic covector. If Q is even one may take ξ = 0.

Linking pairings on finite groups. Let H be a finite abelian group. A nondegen-
erate symmetric bilinear form λ : H×H → Q/Z is called a linking pairing on H. We
say that a bilinear form L = (A,Q) presents (H,λ) if there is a short exact sequence

L−→L∗−→H,
and λ(x, y) = −x̃ · ỹ (mod 1) where x̃, ỹ ∈ L∗ map to x, y in H.

Proposition 1. Let Li = (Ai, Qi) for i = 1, 2 be presentations of a linking pairing
(H, λ) with Ai of rank ni. Then L = (A1, Q1) ⊕ (A2,−Q2) may be embedded in a
unimodular lattice (U,Q) of rank n1 + n2.

If ξ1 and ξ2 are characteristic covectors for Q1, Q2 which both map to the same
element of H, then for some x1 ∈ L∗1 with 2x1 ∈ L1, (ξ1 + 2x1, ξ2) is a characteristic
vector for Q.

Proof. Let {hj} be a generating set for H and let xi,j ∈ L∗i be elements which map
to hj. Then uj = (x1,j, x2,j) ∈ L∗ pair integrally with each other (and with all the
elements of L). Thus U = L+

∑
j Zuj is an integral lattice; this is called a gluing of

the lattices L1 and −L2. To see that U is unimodular note that the index of L in U
is |H|. Note also that if zi ∈ L∗i then (z1, z2) belongs to U∗ = U if and only if z1 and
z2 map to the same element of H.

Now let χ be any characteristic vector in U . Write χ = (χ1, χ2) where χi is a
characteristic covector for Qi. Then χi = ξi + 2zi for some zi ∈ L∗i . Choose z′1 ∈ L∗1
which maps to the same element of H as z2 and let x1 = z1− z′1. Then 2x1 ∈ L1 and
χ− 2(z′1, z2) = (ξ1 + 2x1, ξ2) is a characteristic covector for Q.

Given a linking pairing (H, λ) we define its rho invariant as follows. Let L = (A,Q)
be any presentation of (H,λ). (Wall [20] showed that presentations always exist.) Any
choice of a characteristic vector c ∈ L for Q gives rise to a map ρ̂c : H → Q/2Z: for
x ∈ H let x̃ ∈ L∗ be any lift of x and define

ρ̂c(x) :=
(c+ 2x̃)2 − σ(Q)

4
(mod 2).

Proposition 2. Let Li = (Ai, Qi) be two presentations of (H, λ) and let ci ∈ Li be
characteristic. Then ρ̂c2 = ρ̂c1 ◦ τ , where τ : H → H is translation by an element of
order 2.
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Definition 3. We call the collection of all ρ̂c the rho invariant of (H,λ).

Proof. Consider the unimodular lattice (U,Q) obtained from L1 ⊕−L2 as in Propo-
sition 1; note that the signature σ(Q) equals σ(Q1) − σ(Q2). There is an element
x1 ∈ L∗1 with 2x1 ∈ L1 such that c = (c1 + 2x1, c2) is a characteristic vector for the
unimodular lattice (U,Q). Given x ∈ H choose any x̃i ∈ L∗i mapping to x. Then
(x̃1, x̃2) ∈ U , hence cx = c+ 2(x̃1, x̃2) is also characteristic; its square is

c2x = (c1 + 2x1 + 2x̃1)
2 − (c2 + 2x̃2)

2.

Since Q is unimodular it follows that c2x − σ(Q) ≡ 0 (mod 8) (see e.g. [18]). Substi-
tuting for c2x and σ(Q) shows that ρ̂c1(x + t) = ρ̂c2(x), where t ∈ H is the image of
x1.

A complete algebraic classification of linking pairings was obtained by Wall [20]
and Kawauchi-Kojima [7]. Another general property relevant to our application is
the following stable equivalence result.

Theorem 4 ([2, 8, 21]). Two lattices Li = (Ai, Qi) present the same linking pairing
if and only if there exist unimodular lattices Ui with L1 ⊕ U1

∼= L2 ⊕ U2.

Linking pairings and rho invariants of 3-manifolds. The linking pairing of a
rational homology sphere Y is a nondegenerate symmetric bilinear pairing

λ : H2(Y ; Z)×H2(Y ; Z)→ Q/Z

induced by Poincaré duality. Let X be any four-manifold bounded by Y . Then for
any x, y in the image of the restriction map H2(X; Z)→ H2(Y ; Z),

λ(x, y) = −x̃ · ỹ (mod 1),

where x̃, ỹ ∈ H2(X; Z) are any classes whose restriction to Y are x, y, and · denotes
the intersection pairing. In particular, if the restriction map is surjective (e.g., if X is
simply connected), the intersection pairing on H2(X; Z) gives a presentation for the
linking pairing of Y .

Let the intersection pairing on H2(X; Z)/Tors be represented in a chosen basis by a
matrix Q. The natural map H2(X, Y )→ H2(X) induces a map from H2(X, Y )/Tors
to H2(X)/Tors which with respect to the corresponding bases is given by Q. Thus
the quotient of H2(X) by the sum of its torsion subgroup and the image of H2(X, Y )
is isomorphic to Zn/Q(Zn), where n = b2(X). Let H denote H2(Y ) and let h = |H|
and δ = | detQ|. Then h = δt2, where t is the order of the image T of the torsion
subgroup of H2(X) in H2(Y ) (see [12] for more details). The restriction map from
H2(X) to H induces a monomorphism

(2) ψ : Zn/Q(Zn) −→ H/T.
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It follows that on the subgroup ψ(Zn/Q(Zn)) + T of H the linking pairing λ is
T -invariant and is determined by Q. Hence: given a rational homology sphere Y
and a form Q one may find an obstruction to Y bounding a four-manifold with
intersection pairing Q by checking whether there exist such a subgroup T of H and
a homomorphism ψ.

Finally we note that it follows from Theorem 4 that if Q presents the linking pairing
of Y then Y stably bounds Q. More precisely, we have the following

Corollary 5. Let Q be a symmetric bilinear form that presents the linking pairing of
a rational homology sphere Y . Then Y bounds a four-manifold X whose intersection
pairing is Q⊕ U , where U is some unimodular pairing.

Proof. Let X1 be any simply connected manifold that Y bounds. Then its intersection
pairing Q1 presents λY , hence by Theorem 4 there exist unimodular pairings U1 and
U such that Q1 ⊕ U1 = Q ⊕ U . We may assume U1 to be indefinite odd, thus

U1 = n〈1〉 ⊕ m〈−1〉. Then X = X1#nCP2#mCP2
has the required form of the

intersection pairing.

To define the rho invariant of Y we need to discuss spinc structures. Recall that
there is a free and transitive action ofH2(Y ; Z) on Spinc(Y ). Thus if we fix a basepoint
s ∈ Spinc(Y ) the action gives an identification H2(Y ; Z) ∼= Spinc(Y ) which takes
x ∈ H2(Y ; Z) to the tensor product of s with the line bundle x; we denote this spinc

structure by s+x. Note that the Chern class of s+x is c1(s) + 2x. Similarly a choice
of basepoint t ∈ Spinc(X) gives an identification Spinc(X) ∼= H2(X; Z).

The rho invariant of Y is a map

ρ : Spinc(Y )→ Q/2Z
defined as follows. Let X be a four-manifold bounded by Y for which the restriction
map H2(X; Z) → H2(Y ; Z) is onto. For any spinc structure s on Y choose a lift
s̃ ∈ Spinc(X) and define

(3) ρ(s) :=
c1(s̃)2 − σ(X)

4
(mod 2).

That this is well defined follows as in the proof of Proposition 2; moreover, if X is
any manifold with boundary Y and s ∈ Spinc(Y ) is the restriction of s̃ ∈ Spinc(X),
then (3) holds. In the current setting there is no ambiguity in the definition since if
X1, X2 are two four-manifolds with ∂X1 = Y = ∂X2 and s̃i ∈ Spinc(Xi) are spinc

structures whose restrictions to Y agree, then s1 and s2 can be glued to give a spinc

structure on the closed manifold X1 ∪Y −X2.
Consider now any four-manifold X with boundary Y . Recall that the restriction

map from Spinc(X) to Spinc(Y ) is equivariant under conjugation of spinc structures
and the fixed points of this action are exactly the spin structures. Fix a basepoint
s̃0 ∈ Spinc(X) whose Chern class belongs to the sum of the torsion subgroup of
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H2(X) and the image of H2(X, Y ). Use a spin structure s0 as the basepoint in
Spinc(Y ). With these choices the restriction map on spinc structures induces an
affine monomorphism

(4) ψ′ : Zn/Q(Zn) −→ H/T ;

this is equal to the composition of ψ with a translation of H/T by an element of
order 2. Hence: if Y bounds a form Q then there is a subgroup T of H and a map
ψ′ as above so that on the preimage in Spinc(Y ) of the image of ψ′ (for some s0), ρ
is T -invariant and is determined by Q.

The linking pairing and the rho invariant of Y both constrain which forms (not
just definite) may be bounded by Y . There is a close relationship between the two
invariants.

Proposition 6 (c.f. Taylor [19]). The linking pairing λ of Y is completely determined
by the rho invariant ρ of Y . The rho invariant is determined by the linking pairing
and a choice of spin structure on Y . More precisely, let ρ̂ be the rho invariant of λ
(see Definition 3). Then ρ = ρ̂c for some c.

Proof. Let X be a simply connected manifold with boundary Y ; then the restriction
map from H2(X) to H2(Y ) is surjective. Let s̃, x̃, ỹ be lifts of s, x, y to X. It is
straightforward to check that

λ(x, y) =
−ρ(s + x+ y) + ρ(s + x) + ρ(s + y)− ρ(s)

2
(mod 1).

Now choose as the base point in Spinc(X) a spinc structure s̃0 ∈ Spinc(X) whose
Chern class belongs to the image of H2(X, Y ). Then the restriction of s̃0 to Y is a
spin structure s0. Compute ρ̂c using the intersection pairing QX and c = c1(s̃0). Then
clearly ρ is the composition of ρ̂c with the identification of Spinc(Y ) with H2(Y ; Z)
which takes s0 to 0.

Let us consider the rho invariant as an obstruction to Y bounding a form Q. By the
above proposition we see that the rho invariant is equivalent to the linking pairing and
a choice of spin structure. However since the identification of Spinc(Y ) with H2(Y )
may take any spin structure to 0, we still need to test all possible homomorphisms ψ′

as above. Thus the extra information contained in the rho invariant is lost when we
apply it to a quadratic form and the constraint on forms bounded by Y given by the
rho invariant is equivalent to that given by the linking pairing.

Constraints from Donaldson’s theorem. Let Q1, Q2 be Z-valued forms on free
abelian groups A1, A2 of ranks n1, n2 respectively. If a rational homology sphere
Y is known to bound Q1 we may ask can it also bound Q2. Since gluing two four-
manifolds along their common boundary yields a closed four-manifold X = X1∪Y−X2

with a unimodular intersection pairing, we see that if Y bounds Q2 then (A1, Q1)⊕
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(A2,−Q2) may be embedded in a unimodular lattice of rank n1 + n2. In the case
that Q1 is positive-definite and Q2 is negative-definite we get a refinement of this
basic obstruction from Donaldson’s theorem. The closed four-manifold X is positive-
definite in this case, and so its intersection form is the standard pairing on Zn1+n2

as a sublattice of the Euclidean space Rn1+n2 . Thus if Y bounds Q2 then (A1, Q1)⊕
(A2,−Q2) may be embedded as a sublattice of Zn1+n2 .

In particular if (A1, Q1) cannot be embedded in Zm for any m then Y does not
bound any negative-definite form. This approach has been used by Lisca, see for
example [10]. See also [13] for further discussion.

Example. Let Y be the Poincaré homology sphere, oriented as the boundary of the
positive E8 disk bundle plumbing. Then since the E8 lattice cannot be embedded in
Zm for any m, it follows that Y does not bound any negative-definite four-manifold.

Constraints from Floer homology. Using gauge theory one can define rational-
valued invariants of spinc structures on a rational homology sphere Y that give rise to
obstructions to Y bounding a definite four-manifold X. A result of this type was first
proved by Frøyshov [4] in Seiberg-Witten theory. We recall the version of Ozsváth
and Szabó in Heegaard Floer homology [15]: if X is positive-definite then for every
spinc structure t on X,

(5) c1(t)
2 − rk(H2(X; Z)) ≥ 4d(Y, t|Y );

here d(Y, s) is called the correction term invariant of Y in spinc structure s. Moreover,
since the reduction modulo 2 of the correction term is the rho invariant of Y , the two
sides of the inequality are congruent modulo 8.

Note that to apply these conditions to the question of whether a positive definite
form Q may be the intersection pairing of a four-manifold X bounded by Y one
needs to allow for all possible restriction maps Spinc(X) → Spinc(Y ) (this amounts
to considering maps ψ′ as in (4), see [12] for details). This is particularly simple if
Y is an integer homology sphere. Then Y has a unique spinc structure (which is a
spin structure) and we denote the unique correction term for Y by d(Y ). Then (5)
becomes

ξ2 ≥ n+ 4d(Y ),

where n is the rank of the form Q and ξ is any characteristic vector for Q. If d(Y ) ≥ 0
this inequality combines well with the following result.

Theorem 7 (Elkies [3]). If Q is a unimodular positive-definite form of rank n, then
there exists a characteristic vector satisfying ξ2 ≤ n. Moreover, there is a character-
istic vector with square strictly less than n unless Q = n〈1〉.
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In particular, if d(Y ) = 0, then the two inequalities imply Q = n〈1〉, which gives
Donaldson’s Theorem for Y = S3. If d(Y ) > 0 then Y cannot bound any positive-
definite manifold; for example, this is the case for the Poincaré homology sphere
oriented as the boundary of the negative E8 plumbing.

Short characteristic covectors. As noted above the inequality (5) is not so easy to
use for rational homology spheres. Suppose that Y bounds a positive definite X. For
each s ∈ Spinc(Y ) one needs to determine the smallest square of any characteristic
covector corresponding to a spinc structure on X whose restriction to Y is s. A
weaker but more practical test is provided by the following generalisation of Theorem
7 which gives an upper bound on the length of the shortest characteristic covector
of a positive definite form. Then to check for obstruction to Y bounding a definite
manifold one only needs to know the correction terms of Y .

Theorem 8 ([14]). Let Q be an integral positive-definite quadratic form of rank n
and determinant δ. Then there exists a characteristic covector ξ for Q with

ξ2 ≤
{
n− 1 + 1/δ if δ is odd,
n− 1 if δ is even;

moreover, there exists a characteristic covector for which the inequality is strict unless
Q = (n− 1)〈1〉 ⊕ 〈δ〉.

Corollary 9. Let Y be a rational homology sphere with |H1(Y ; Z)| = δ. If Y bounds
a positive-definite four-manifold X with no torsion in H1(X; Z) then

min
s∈Spinc(Y )

4d(Y, s) ≤
{
−1 + 1/δ if δ is odd,
−1 if δ is even.

The inequality is strict unless the intersection form of X is (n− 1)〈1〉 ⊕ 〈δ〉.

The proof of Theorem 8 is based on gluing of lattices. Using the classification
of linking pairings [20, 7] we show in [14] that the sum of four copies of any lattice
L = (Zn, Q) embeds in a unimodular positive definite lattice U of rank 4n. If U is not
the diagonal lattice Z4n, then Theorem 7 implies the result of Theorem 8. If U = Z4n

we analyze the sublattices of index δ2 in U (for which the exponent of the quotient
group is δ) to arrive at the conclusion of Theorem 8.

Examples.

Example 10. For any m ≥ 1 the two-bridge link Lm = S(16m− 4, 8m− 1), oriented
as in Figure 1, has four-ball genus one.

Proof. First note that making one crossing change yields the Hopf link which bounds
a smooth annulus in the four-ball. It follows that

0 ≤ g∗(Lm) ≤ 1.
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(One may also obtain this bound by noting that the Seifert genus of Lm is one.) The
signature σ(Lm) = 1 for m ≥ 1, and the double branched cover of Lm is the lens
space Ym = L(16m − 4, 8m − 1). Thus if g∗(Lm) = 0, it follows that Ym bounds
a positive-definite even four-manifold X with b2(X) = 1. We will show using the
linking pairing that this is not the case.

2

4m

2

oo

oo

Figure 1. The two-bridge link S(16m− 4, 8m− 1). The numbers
indicate the number of crossings (m = 1 in this diagram), and the
arrows specify the chosen orientation.

To compute the linking pairing λ, note that 16m−4
8m−1

has a continued fraction expan-
sion

16m− 4

8m− 1
= 2− 1

4m− 1
2

,

and so Ym bounds a plumbing of disk bundles over S2 according to the linear graph
with weights −2,−4m,−2. The linking pairing on H = H2(Ym) is presented by the
intersection pairing of this plumbing, which is represented on A = Z3 by the matrix

Q =

−2 1 0
1 −4m 1
0 1 −2

 ,

with inverse

Q−1 =
−1

16m− 4

8m− 1 2 1
2 4 2
1 2 8m− 1

 .

Thus we have a short exact sequence

Z3 Q−→ Z3 −→ H.

The second Z3 is the dual lattice, on which the induced pairing is given by x · y =
xTQ−1y. A generator h of H ∼= Z3/Q(Z3) is the image of (0, 0, 1) and its square is

λ(h, h) =
8m− 1

16m− 4
.
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Now suppose that Ym bounds a positive-definite even four-manifold X with b2(X) =
1. The intersection pairing on X is [s] for some even s. From |H| = 4(4m− 1) = st2

we see that s = 4k for some k ≡ 3 (mod 4). The equality of linking pairings yields

(8m− 1)t2

16m− 4
≡ −i

2

s
(mod 1)

for some i. Multiplying by s and reducing modulo k results in i2 ≡ −1 (mod k)
which is a contradiction.

It is not difficult to show that the Alexander polynomial of Lm has no roots on
S1− 1, thus the Murasugi-Tristram inequality gives no information for Lm. However
the fact that g∗(Lm) > 0 may also be deduced using the nonvanishing of the Arf
invariant.

For details on the following examples see [13].

Example 11. If
1

α2

,
1

α3

<
β1

α1

<
1

α2

+
1

α3

and α3 ≥ 3, then the Seifert fibred space Y = Y (−2; (α1, β1), (α2, α2−1), (α3, α3−1))
cannot bound a negative-definite four-manifold.

Proof. Y is the boundary of a positive-definite plumbing whose intersection pairing
does not admit any embedding into Zn. The result now follows from Donaldson’s
Theorem. �

Example 12. The Montesinos knot Kq,r = M(2; (qr− 1, q), (r+ 1, r), (r+ 1, r)) with
odd q ≥ 3 and even r ≥ 2, has signature σ = 1− q and has

g = g∗ =
q + 1

2
.

Proof. The knot Kq,r is equal to M(0; (qr − 1, q), (r + 1,−1), (r + 1,−1)) and has a
spanning surface with genus q+1

2
. The double branched cover Y of Kq,r satisfies the

conditions of Example 11 thus Y does not bound a negative-definite four-manifold;
the genus formula follows. �

Example 13. Let Ya = Y (−1; (2, 1), (3, 1), (a, 1)) with a ≥ 7. Then δ = |H2(Y )| =
a− 6 and

min
s∈Spinc(Y )

4d(Y, s) =

 −1 + 1/δ if δ is odd,

−1 if δ is even.

If Ya bounds a positive-definite four-manifold X with no torsion in H1(X; Z) then the
intersection pairing of X is equivalent to (n− 1)〈1〉 ⊕ 〈δ〉.
Proof. Ya is the boundary of a positive-definite plumbing whose intersection pairing
is equivalent to 3〈1〉 ⊕ 〈δ〉. From this the formula for d(Y, s) follows. Then Corollary
9 implies the claim. �
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