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Concordance groups of links

ANDREW DONALD
BRENDAN OWENS

We define a notion of concordance based on Euler charaatedsd show that
it gives rise to a concordance groupof links in S*, which has the concordance
group of knots as a direct summand with infinitely generamadpmement. We
consider variants of this using oriented and nonorientefdses as well as smooth
and locally flat embeddings.

57M25,57M27,57N70

1 Introduction

A knot K in S is sliceif it bounds a smoothly embedded digkin the four-ball; it is
topologically slice if it bounds a locally flat embedded diskwvo oriented knots<g,

K1 are concordantif the connected sum-Kg#K; of one with the reverse mirror of
the other is slice. This is an equivalence relation, and FaxMilnor showed that the
set of equivalence classes forms a gr@aupnder connected sumf, 12]. Our goal

in this paper is to generalise this construction in a natwayf to links. The starting
point is Lisca’s work 23, 24] on two-bridge links and lens spaces, as well as earlier
work of Florens §, 10]. These indicate that the following is a natural generstisaof
sliceness to links.

Definition 1 A link L in S® is x-slice' if L bounds a smoothly properly embedded
surfaceF in D* without closed components, and witfF) = 1. If L is oriented we
requireF to be compatibly oriented.

Some examples of -slice links are shown in Figuré. Note we do not in general
require thatF is connected or oriented. Observe however thatig a knot thenF is
a disk, so this notion of sliceness coincides with the usnal o

The set of oriented knots is an abelian monoid under condetta, together with an
involution K — —K. We wish to endow the set of links with a compatible monoid

This is calledgeometrically bordanin [10], in the case that the surfageis orientable.


http://www.ams.org/mathscinet/search/mscdoc.html?code=57M25, 57M27, 57N70
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Figure 1: Some links bounding x = 1 surfaces in the four-ball: connected
sum of two Hopf links, (2, 4)-torus link, Borromean rings and connected sum
of Hopf and Whitehead links.

with involution structure. We use the tenpartly oriented linkto denote a link with a
marked oriented component and the remaining componentiented, and the term
marked oriented linko denote an oriented link with a marked component. Condecte
sum is well-defined for these sets of links using the markedpmments. We define
—L to be the mirror ofL, with orientations reversed.

- D - (O
- QD - O

Figure 2: Two partly oriented links H and L; and two marked oriented links A and L;.

This gives the following commutative diagram of monoidshwitvolution, where the
vertical arrow is the map given by forgetting the orientatbm nonmarked components.

{Marked oriented link}

/
{Oriented knot}s\

Q) {Partly oriented links
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We wish to quotient each of these link monoids by a suitablersnoid such that
the maps in 1) induce inclusions of the knot concordance graupto two different
concordance groups of links. Roughly speaking we wouldtikguotient out byy -
slice links, but it turns out we must be a little more carefubrder to get an equivalence
relation, and to preserve connected sums.

Definition 2 Let Lo andLy be partly oriented or marked oriented links. We $ay
andL, are x-concordantwritten Lo ~ L1, if —Lg#L1 bounds a smoothly properly
embedded surfade in D* such that

e F is adisjoint union of one disk together with annuli an@biis bands;
e the boundary of the disk componentofis the marked component ef o #L, ;

e in the marked oriented case, we requirdo be oriented andLq#L, to be the
oriented boundary of .

Note thaty-concordance agrees with the usual definition of smoothaadance ifLg
andL, are both knots. Alsdg ~ Ly implies that—Lg#L, is x-slice, but the converse
does not hold. We will elaborate on this point in Sect®nWe have the following
basic results.

Theorem 1 The set ofy -concordance classes of partly oriented links forms ariabel

group
LE2CD Ly

under connected sum which contains the smooth knot concoedgrouC as a direct
summand. The inclusio@ — L is induced by the inclusion of oriented knots into
partly oriented links.

The complementy of C in L contains &./2 direct summand and &> & (Z/2)>
subgroup.

Theorem 2 The set ofy-concordance classes of marked oriented links forms an
abelian group
L=C® Ly

under connected sum which contains the smooth knot concoedgrouC as a direct
summand (witht — £ induced by the inclusion of oriented knots into marked dgdn
links). Forgetting orientations on nonmarked componentkiées an epimorphism
L — L. In other words, we have the following group homomorphisnagiced by(1):
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The complemenfo of C in L contains & &7 /2 direct summand andz™ subgroup.

We find that many familiar tools from the study of knot conarde are applicable to
these link concordance groups. Lét< £ and\ < £ bethe subgroups consisting of
classes represented by links with nonzero determinante lglemerally forw € SH\ {1}
we let A, < £ be the subgroup of links with vanishing Levine-Tristramlityln,,,
so that\' = N_;. The following contains a collection of invariants that ns/used
in studying £ and .

Theorem 3 Taking total linking number with the marked component gikesiomor-
phisms
|: L —7Z/2,
11 L7
Taking double branched covers gives group homomorphisms
F:N =63,
j‘: . N — @%,Spin
to the rational homology cobordism group (resp., spin reticthomology cobordism
group) of (spin) rational homology three-spheres. Linknaigre and the Oz&th-
Szald correction term of a spin structure in the double brancloeérc give homomor-

phisms N
0,0 : N — 7.

The sumo + § is divisible by 8 for all links with nonzero determinant arsdziero for
alternating links.

For each prime-power root of unity ¢ St\ {1}, the Levine-Tristram signature.,
gives a homomorphism from¥/,, to the integers.

We note also that the Fox-Milnor condition on the Alexandaypomial of slice knots
extends to links bounding certain surfaces of Euler chargstic one in the four-ball
[27, 10]. We are currently investigating, jointly with Stefan Fdiepossible extensions
of the Fox-Milnor obstruction.
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We also consider topological link concordance grouaspe and Ltop, where we
replace smooth with locally flat embeddings. We state tagiold versions of Theorems

1 and2 in Section4 but for now we note some examples, based on work of Davis and
Cha-Kim-Ruberman-Strle, distinguishing the two categgri

Theorem4 LetK be an alternating knot with negative signature (for exartieight
handed trefoil), and I6€ be a knot with Alexander polynomial one ad{C) +# 0 (such
as the Whitehead double of the right handed trefe, [Theorem 1.5]). The partly-
oriented linksLo#H andLsz#H shown in Figure3 are trivial in Lyop and nontrivial in
L.

Orienting all components dfz#H andLs#H results in marked oriented links which
are trivial in Ltop and nontrivial inL, under the same hypotheseskrandC.

<

> 00

D
.

Figure 3: Partly oriented links L,#H and Ls#H. The band shown passing
through the box marked K is tied in the knot K with zero framing (cf. [ 6]).

Given a pair of coprime integeps> g > 1 we may take a continued fraction expansion

N S
q Q- .
1

am
The two-bridge link (or 4-platS(p, g) is obtained by closing the four string braid

—a —d _—a3 _—d —am
Oy 01 0y 01  ...0j
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at each end with two bridges. Thus for examfi8, 1) is the left handed trefoil. In
generalS(p, g) is a knot ifp is odd or else a two component link. For more details on
two-bridge links see for exampl&,[Chapter 12].

In [23], Lisca proved the slice-ribbon conjecture for two-bridgmts. His results also
covered the case of two-bridge links. Combining his workhveih observation in this
paper yields the following slice-ribbon result for two-dige links.

Corollary 5 Let Sp,q) be a two-bridge link. If= is a smoothly properly embedded
surface inD* with x(F) = 1 and no closed components, boundedy, q), then the
link also bounds a ribbon embeddingfef

Related work. The problem of knots and links bounding non-orientableaza$ in the
four-ball has recently been considered by Gilmer-LivinggtL4] who study connected
nonorientable surfaces bounded by a knot. Orevkov and fdofy, 9, 10] have
considered the problem of links bounding orientable sedaaf Euler characteristic
one. Baaderd] has defined a notion of cobordism distance between oridiriks
such thaty-sliceness is equivalent to cobordism distance zero frattknot.

Hosokawa17] gave a different definition of a concordance graddmf links containing
C as a direct summand, following a suggestion of Fox. Hosokala@showed that

HECPHZ,
in contrast to our results.

Acknowledgements. This paper was inspired by Lisca’s work on two-bridge links
and lens spaces. We are grateful to Stefan Friedl, Camerodo@oMatt Hedden,
Slaven Jabuka, Paul Kirk, Paolo Lisca, Swatee Naik and JakenBssen for helpful
comments and conversations. We also thank the referee faredut reading and
helpful suggestions.

2 Alink concordance group using smooth surfaces ib*

In this section we prove Theorein We show thaty-concordance gives rise to a group
L which contains the classical knot concordance group asatummand, and we
describe some group homomorphisms fré6mWe begin by describing -concordance
using embedded surfaces in the cylin®rx [0, 1].

Lemma 2.1 Partly oriented linkd g, L1 arex-concordant if and only if there exists
a smoothly properly embedded surfdegin S x [0, 1] satisfying
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e Fq is a disjoint union of annuli, including one oriented anrsuy and Mbbius
bands;

e FoNnSx{i}=Lix{i}, i=01;
e OA =Ky x {1} UK{ x {0}, whereK; is the oriented component bf andK{
denotes the knd€y with the opposite orientation.

Proof This follows from Definition2 as in the standard knot situation: one passes
between D%, F) and & x [0, 1], Fo) by drilling out an arc ofA or attaching a (3L)-
handle pair. O

Lemma 2.2 y-concordance is an equivalence relation.

Proof For any partly oriented link., —L#L is y-nullconcordant {-concordant to
the unknot) by the usual argument for knots. That is to sayctinnected sum may
be arranged so that it is symmetric about a plane contaimingobints on the oriented
component—K#K . Rotating the link about this plane in four-dimensionalfisgace
(which is diffeomorphic to the punctured four-ball) yielsurfaceF which is a disjoint
union of a disk bounded byK#K and one annulus for each unoriented component of
L.

Symmetry is immediate from DefinitioB:. applying an orientation reversing diffeo-
morphism to the four-ball takes a surface bounded-ty#L1 to one bounded by
—L1#Lo. Transitivity follows by composing the cobordisriRg from Lemma2.1 Any
resulting closed components may be discarded. O

Lemma 2.3 The set ofy-concordance classes of partly oriented links is an abelian
group L under connected sum, which contains the knot concordameg@s a direct
summand. The direct complemeliy consists of equivalence classes of partly oriented
links L whose oriented componeNt is a slice knot. An isomorphism

L= Ca Lo

is given by
[L] — ([K], [-K#L]).

Proof Connected sum is well-defined, abelian, and associativepddty oriented
links, by a variant of the usual proof for knots (see esgGhapter 7A]). Suppose that
L, Lo andL; are partly oriented links, and that ~ L1. Let Fg be the cobordism in
S® x [0, 1] betweenLg and Ly, as in Lemma2.1, with oriented annulus component
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A. Taking connected sum “along the annulus’shows that_o#L ~ Ly#L. It follows
that connected sum gives a well-defined operatiorCorThe identity is given by the
class of the unknot and the inverse bf [s [-L]. The inclusion of oriented knots into
partly oriented links induces a monomorphigh+—+ L since x-concordance of knots
is the same as knot concordance. A splitting homomorphiggivén by

[L] — [K],

taking the xy-concordance class of a partly oriented link to the conawdeclass of
its oriented component. It follows thalt ][ is in the direct complemen£ty if and only
if the oriented component df is slice. For any partly oriented link with oriented
componentK we have FK#L.] € £y and

L ~ K#—K#L

by associativity, from which the stated isomorphism fokow O

We obtain aZ/2-valued homomorphism frond using mod 2 linking numbers via the
following lemma.

Lemma2.4 LetL be alink inS* bounding a smoothly properly embedded surféce
in D*, and suppose thdt = F1 LI F» is a disjoint union. This gives a decomposition
of L into Ly U Ly, whereL; = OF;. Then the total mod 2 linking number af with
L, is zero, i.e.

> Ik(K1,Kz) =0 (mod 2)

Kj in Lj

Proof We may assume the radial distance functioon D* restricts to give a Morse
function onF with values in [05,1]. Let (F1); (respectively, »);) be the level set
of r restricted toF; (resp. F») for eacht, so that Fj); = L; and §i)o.4 is empty.
The mod 2 suns(t) of the linking numbers of each component ); with each
component in [,); is constant with respect to regular valuesince this sum does not
change at a maximum or minimum and changes by an even numaesaatdle point
of F. Thus,
> Ik(Ky, Ko) = s(1) = 5(0.4) = 0 (mod 2)

KiinL;

It follows from Lemma2.4 that we get a homomorphism

l: L —Z)2
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by taking
IL) = > k(K,K),
K/#£K
whereK is the oriented component &f The Hopf linkH (with one marked oriented

component) satisfiesl = —H andI(H) = 1, and thus generatesZg’2 summand of
Lo.

Example 2.5 Figurel shows a ribbon immersed disk disjoint union annulus bounded
by the connected sum of the Hopf and Whitehead links. How#heeHopf link has
mod 2 linking number = 1 while the Whitehead link has vanishing It follows

that their sum is nontrivial irC. This illustrates a subtlety of the definition Gf the
connected sum of the Hopf and Whitehead links is a partlynéeilink which bounds

a surfacer in the four-ball withxy = 1. However it does not bound any such surface
with its oriented component bounding a disk componeri of

We recall that the grou@é consists of smooth rational homology cobordism classes
of rational homology three-spheres under connected sumo raétonal homology
three-sphere¥p andY; are rational homology cobordant-ifYp#Y; bounds a rational
homology four-ball, or equivalently i~Yy and Y; cobound a rational homology
S x [0,1].

We next show that taking double branched covers yields gognomomorphism
F:N =63,
where is the subgroup of. consisting of classes represented by links with nonzero

determinant. This is a consequence of the following prdjwosi which is proved in
Sectionb. A proofwas given by Lisca ird3] for the case of ribbon embedded surfaces.

Proposition 2.6 Let L be a link inS® with nonzero determinant which bounds a
smoothly (or topologically locally flat) properly embeddsaifaceF in D* without
closed components, and wiif{F) = 1. Then the double cover &* branched along
F is a smooth (or topological) rational homology four-ball.

One consequence of Propositidré is that the determinant of any-nullconcordant
link is a square.
It remains to be seen thdly contains &> @ (Z/2)>° subgroup.

Proposition 2.7 The two-bridge links{S(q? + 1, d) | q odd: generate 47./2)* sub-
group ofLg.
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Proof Each partly oriented link. = Sd? + 1, q) for g odd satisfied = —L and
therefore has order one or two i); since q2 + 1 is not a square the order is two,
by Proposition2.6. The components of a two-bridge link are one-bridge and éaenc
unknots, thus a two-bridge link represents an element@f We could appeal to
Lisca’s results 24] to see that there are no other relations among these lirtkihére

is an easier argument using determinants.

We will show that the subgroup afo generated by S(g? + 1, q) | g odd} is infinitely
generated and hence is isomorphic #Z)>°. Suppose we have some finite subset
{S(¢* + 1,g)}. Choose a primg congruent to 1 modulo 4 which does not divide
o + 1 for eachi. Since—1 is a quadratic residue modyiathere exists an odd positive
q < p with ¢? + 1 divisible by p but not byp?. It follows, again using Proposition
2.6, that S(g° + 1,q) is not in the subgroup of generated by{S(¢? + 1,q)}. O

Proposition 2.8 (Corollary of [24, Theorem 1.1]) The subgroup of the rational ho-
mology cobordism group of rational homology 3-sph%9generated by lens spaces
is infinitely generated. In particular the set

{L(2k, 1)k > 2}

is independent i®? .

Proof This follows from R4, Theorem 1.1] since fdk > 2, L(2k, 1) is not contained
in any of Lisca’s familiesk or Fy. O

The lens spacé&(2p, g) is the double branched cover of the two-bridge [BRp, q)
each of whose components is an unknot. Combining Proposifi® and2.8 we see
that the two-bridge links

{S(2k,1)| k > 2}

generate &°° subgroup ofLq. (An argument with determinants can be used to show
the subgroup these links generate is not finitely generatidout appealing to44.
However we require Lisca’s result to see that these links hiafinite order.) This
completes the proof of Theorein

3 Using smooth oriented surfaces

In this section we prove Theore®yand complete the proof of Theoredn



CONCORDANCE GROUPS OF LINKS 11

We use the ternrmarked oriented linkor an oriented link inS® with one marked
component. The marked components are used when taking a@ednsums. The
reverse mirror oL, preserving the marked component, is denetéd Marked oriented
links Lo and L; are y-concordant if—Lg#L; bounds an oriented smoothly properly
embedded disjoint union of a disk with annuli B, with the marked component
bounding the disk. Modifying Lemma 1, this is equivalent td.§ x {0} andL; x {1}
being the oriented boundary of a disjoint uniég of properly embedded annuli in
S® x [0, 1], with one component df connecting the marked components. It follows
that Lo andL; have the same number of components modulo two.

Lemmas2.2and2.3can be restated for the case of marked oriented links andithe s
proofs apply. The group of-concordance classes of marked oriented links is denoted
L. Comparing the definitions we see that if marked orientekklinand L’ represent

the same class i then the embedded surface giving rise to theconcordance
also gives rise to g -concordance between the partly oriented links obtainewh i
andL’ by forgetting orientations on nonmarked components. Tdnigdtful map also
commutes with connected sum and so gives rise to an epins;tnnp‘hti)mﬁ~ to L.

Lemma 3.1 LetL be ay-nullconcordant marked oriented link with marked compo-
nentK. Thenz Ik(K,K") = 0, where the sum is taken over all componefitst K
of L.

Proof This follows from a modification of the proof of Lemn&a4, taking F to be a
surface inD* witnessing they -nullconcordance, witlf, the disk component bounded
by K. In the oriented case the sum of linking numbers betweeretra $et ofF; and
that of F, does not change at any critical point g . O

It follows from Lemmag3.1that the total linking number with the marked component
gives a homomorphism

[RY/
which is a lift of | : £ — Z/2. A homomorphismu to Z/2 is given by taking one
plus the number of components of a link modulo two.

The marked oriented (positive) Hopf lintk hasl = =1 a~nd the marked oriented
two component unlinkJ hasl = 9 1 =1 and order two inC. Thus these two links
generate & @ Z/2 summand of .

Letw € SH\ {1} be a prime-power root of unity. The Levine-Tristram sigmatx,, and
nullity n,, are defined to be the signature and nullity of(L)M + (1 — w)MT where
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M is a Seifert matrix for. It follows that both of these invariants are additive under
connected sum of marked oriented links. The nullity is iratr and the signature
changes sign under — —L. We let\V,, be the subgroup consisting of elements with
a representative with zero Levine-Tristram nullity, (or equivalently, withw not a
root of the one-variable Alexander polynomial).

Lemma3.2 LetL be an oriented link wit,, (L) = 0. If L is x -slice therns,(L) = 0.
It follows that the Levine-Tristram signature gives a honoophism

Jw:J\wa—>Z.

Proof The vanishing of the Levine-Tristram signature foy @lice link with n,,(L) =
0 follows directly from the Murasugi-Tristram inequaligge B6, Theorem 2.27], also
[19, 13 10, 7]. O

In [37, 82.2], Turaev constructed a bijection from the set of quésntations (orien-
tations up to overall reversal) on a lirk in S® to the set of spin structures on the
double-branched coveE,(S%,L). In the following Proposition, the proof of which
closely follows B7], we extend this map to the case of an orientable surfaceein th
four-ball.

Proposition 3.3 Let F be an oriented smoothly properly embedded surfacBn
and letN be the double cover db* branched alondr. There is a natural bijective
correspondence between quasiorientations @hnd spin structures oN. The spin
structure ondN determined by the induced orientation on the link= OF c S°
admits an extension ové&, which is unique ifF has no closed components.

Proof LetFq,...,Fny be the components & and lety; be an oriented meridian of
Fi. The first homology ofD* \ F is freely generated ovef. by the meridians. Let

7 : Hy(D*\ F) — Z be the homomorphism taking each meridian to 1. Denotin§ by
the preimage of in N, the double covering

7:N\F — D*\F

corresponds to the mod 2 reductionpf Hence a lood in D*\ F lifts to N\ F if
and only ify([1]) is even. Thus

_ YO
) h="15" (mod 2)

is an element oH(N \ F; Z/2) = HomMHy(N \ F), Z/2).
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Choose a meridional disk; for each surface componeht, with 0D; = p;. Let D,
and /i; be the preimages db; and z; in N. A spin structures on N \ F extends
uniquely overN if and only if its restriction to.; extends oveD; for eachi.

The frame bundle F&) of St is a copy ofS'. There are two spin structures on the
circle corresponding to the two double covers of3)( The unique spin structure on
D? restricts to the nontrivial spin structure &. The pullback of this nontrivial spin
structure to the nontrivial double cover 8f is trivial.

Let § be the spin structure oN \ F pulled back fromD* \ F. The spin structure on
D# restricts to the nontrivial spin structure on eagh which pulls back to the trivial
spin structure ony~ Thus§ does not extend oveb;. However sinceh(f;) = 1 for
eachi, the spin structuré + h extends ovelN. The proof that this gives a bijection
between quasiorientations &f and Spinl) follows [37]: given two components;
andF; of F, changing orientation on just one of them will change thei@aif h on
a lift of pi + ;. This proves injectivity, and surjectivity follows sincket order of
HY(N;Z/2) is 21 (see for examplel, Theorem 1]).

The spin structure olY = £»(S%, L) described by Turaev i8] is defined in exactly
the same wayzy : H1(S*\ L) — Z takes each oriented meridian to 1 and this defines
he € HY(Y )\ L; 7./2) as in Q). The spin structure pulled back fro8f, twisted byh ,
extends uniquely oveY. Itis clear that this is the restriction 6+ h. The uniqueness

of the extension in the case thathas no closed components follows since restriction
of quasiorientations fronfr to OF is injective. O

Recall that the grow@%’spin consists of smooth spin rational homology cobordism
classes of spin rational homology three-spheres undeectedisum. Two spin rational
homology three-sphere¥, and Y; are spin rational homology cobordant-{Yy#Y1
bounds a spin rational homology four-ball, or equivaleritly-Yy and Y; cobound a
spin rational homologys® x [0, 1].

Given a marked oriented link with nonzero determinant, lety denote the spin
structure or2,(S%, L) determined by the orientation afas in the proof of Proposition
3.3 Itis not hard to see that 4+ = s #s... If marked oriented links. and L’ with
nonzero determinant arg-concordant then by Propositio2s6 and 3.3 we see that
(22(S3, L), 5) is spin rational homology cobordant ta4(S*,L’), s./). Thus takingL
to the pair £2(S%, L), s.) gives a group homomorphism

F N = 03 spin

from the subgroup off represented by links with nonzero determinant to the spin
rational homology cobordism group of spin rational homegltiyyee-spheres.
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For a marked oriented link with nonzero determinant we define
(LD = 4d o F(IL]) = 4d(Z2(S*, L), 50),

whered is the correction term invariant of Ozsth and Szab([28]. This is a composi-
tion of homomorphisms and thus a homomorphism fobto Q. ForaknotK, thisis
double the concordance invariant studied2|{ the basic properties af for links are
established in a similar manner. Frofi®] and Propositior8.3, (X2(S%, L), s, ) is the
boundary of the spin four-manifold given as the double binadccover ofD* along a
Seifert surface fot.; moreover the signature of this manifold is equal to the aligre

of L. By [28, Theorem 1.2], it follows thaé(L) is an integer and is congruent to minus
the signature of. modulo 8.

Lemma 3.4 LetL be a nonsplit oriented alternating link. The(L) + §(L) = 0.

Proof In the special case thdt is an arborescent link associated to a plumbing
graph with no bad vertices, this follows from results of Sieve[34, Theorem 5] and
Stipsicz B5, Theorem 1.4], each of whom show that onesgE), —d(L) is equal to
the Neumann-Siebenmanmninvariant of the plumbing tree.

We follow the proof of 5, Theorem 1.2] which establishes the result for alternating
knots. One may use the negative-definite Goeritz mariaf an alternating diagram
for L to compute the signature, by a theorem of Gordon-Lither[da§l and also to
compute the correction terms of the double branched coveaduts of Ozséth-Szab

[30, Proposition 3.2].

The proof given in 25] may be adapted virtually without change to the case of an
oriented alternating link and leads to the conclusion

o(L) + 4d(Z2(S, L), ) = O,

for somespin structures; on the double branched cover. We will descriyein terms
of a 4-manifold bounded b{,(S?, L) and confirm that it iss .

Choose an alternating diagram lofand colour the complementary regions black and
white in chessboard fashion, with white regions to the Ietihe overpass after crossings
as shown in Figurd. Let X denote the double cover &f* branched along the properly
embedded surface obtained by pushing the interior of thekislarface into the interior
of D*. There is a simple procedure (c&(]) for obtaining a Kirby diagram oK from

the given diagram of: each crossing is replaced by a clasp as in Figuresulting

in a link with one component for each white region. The fragnom each link is
minus the number of crossings adjacent to the corresponditg region. These are
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the two-handles oX; we then add a single three-handle. Choose one white region
at random and label ityg. The two-handle corresponding to this region may be slid
off the other two-handles and cancelled with the three-lgan@ihe intersection form

in the basis given by the remaining two-handles is given leyGloeritz matrix of the
diagram, withrg as the “region at infinity”. We note each two-handle is at&athlong

an unknot and therefore there is a two-spher&X iobtained by gluing the core of the
two handle to a disk iD* bounded by the attaching circle.

The spin structure| is described by a characteristic sublink of this diagramve@i
any two white regions in the alternating diagram one may eohthem by a path
consisting of crossings in the diagram. The orientatiorneflink determines a subset
S of the white regions as follows: a regiaris in Sif there is a path fronmg to r using
an odd number of negative crossings (and any number of y@sitossings). This in
turn determines a sublin€ of the Kirby diagram forX consisting of the components
corresponding to regions i8. It is easy to verify (see2b]) that this is a characteristic
sublink, or in other words if we et be the union of two-spheres X corresponding
to the components o then there is a spin structure oh\ > which does not extend
over 3, i.e. which restricts to the trivial spin structure on anyrigi@n of >. The
restriction of this spin structure to the boundaryXofs s .

To verify thats| = s we compare their restrictions to lifts of sums of two menitia
of L. It suffices to consider curves sucha Figure5 which link two adjacent white
regionsr,r’. This lifts to X in the Kirby diagram forX, shown also in Figuré. It
follows thats| restricts to the trivial spin structure onif and only if r andr’ are both
in or both not inS. This is in turn equivalent thy (as in the proof of Propositio®.3)
being nonzero, ansl having trivial restriction, on\. D

L

Figure 4: Colouring convention for alternating diagrams.

We will use the ho~momorphisrﬂs o and§ to exhibit a direct summand oy (this
is the subgroup of represented by links with nonzero determinant and sliceketar
component).
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@ y@

Figure 5: A link diagram and the double cover of D* branched along the black
surface, showing the preimage of a curve\.

U 3-handle

The marked oriented linksl andL; from Figure2 have

(Tv g, 5)(|:|) = (17 _17 l)
d,0,0) (1) = (1,0,0).

Let L4 be the Montesinos link (see for exampks]) given by plumbing twisted bands
according to the positive-definite plumbing graph showniguFe 6. Each of its three
components is an unknot and its determinant is 4. The valuesamd ¢ for the four
guasiorientations ohs may be computed using the plumbing gra@¥(Theorem 5],
[29, Corollary 1.5]); these turn out to be

o =-80,04
5 =0,0,0, —4.

It follows thatH, [; andL,4 (with some choice of orientation) generat&&summand
of the direct complement/y of C in V.

4

Figure 6: The plumbing diagram for the Montesinos link L.
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A Z°° subgroup ofly is given by a marked oriented version of that previously kitad
in Lo, i.e. itis generated by marked oriented two-bridge links

{S(2k, 1) | k > 2).

Foran alternative argumentthatthese links are indepeimlé] using Levine-Tristram
signatures, see the proof of Theordr

This completes the proof of Theorein

Remark 3.5 We note that the two-bridge link§(? + 1,q) which were shown in
EropositionZ.?to generatdZ,/2)>*° < Lo have nonzerd and hence infinite order in
L.

Remark 3.6 The homomorphisms andé do not directly “see” the marked compo-
nent of a marked oriented link but can give information abbubnetheless. There
is an involutionp on L given by reversing orientation. This has two lifisand

to £: the former by reversing the orientation of the marked comemd and the latter
by reversing the orientation on all components. A necessamgition for a marked
oriented linkL to be trivial in L is for o and$ to vanish orL and also orp(L). This
can be used to show which component of the connected sum dfasap/Vhitehead
links (see Figurel) may be marked for that link to be trivial i (though in this
example that is also determined by linking numbers, cf. Exar2.5).

Remark 3.7 One might also expect to obtain homomorphisfs from some sub-

group of L to the rational homology cobordism group of rational horgglahree-
spheres, and possibly also to the spin cobordism g@&gpin, by taking prime power
branched covers. One could then extend Jabuka’s homorsorgHi8]

to a suitable subgroup of the link grouh

Remark 3.8 As we have seen, forgetting orientations on nonmarked caemie
gives a surjection from marked oriented links to partly otéel links, inducing an
epimorphism fromC to £. One could also forget which component is marked, giving
a surjection from marked oriented links to oriented linkse Wéte this doesot induce

a homomorphism front to Hosokawa’s link concordance grotp[17]. For example
the rightmost link in Figurdl. is trivial in L (with appropriate choice of orientation and
marked component), however it is nontrivial in Hosokawasup with any chosen
orientation since the sum of its pairwise linking numbers:is (it is shown in fL7]
that this sum gives an epimorphism onto the direct compleémeé in Hosokawa’s

group).
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4 Using locally flat surfaces

Replacingsmoothgith locally flatin Definition 2 leads to topological link concordance
groupsLrop and Lyop. We have the following topological versions of Theor&rnd
Theorem?2:

Theorem 4.1 The set of locally flaty -concordance classes of partly oriented links
forms an abelian group

Ltop = Ctor® (LT10P)0

under connected sum which contains the topological knat@melance grougBtop as
a direct summand (witbtop — Ltop induced by the inclusion of oriented knots into
partly oriented links).

The complementLtop)o Of Crop in Ltop contains &7./2)> subgroup.

Theorem 4.2 The set of locally flaty -concordance classes of marked oriented links
forms an abelian group

Ltop = Crop® (LTop)o

under connected sum which contains the topological knat@elance grougBtop as

a direct summand (witbtop — ZTop induced by the inclusion of oriented knots into
marked oriented links). Forgetting orientations on norkadrcomponents induces a
surjectionLtop — L1op.

The comp/ementETop)o of Ctop In ZTop contains &./2 direct summand and B>
subgroup.

Proof of Theorem 4.1 Most of the proof is the same as that of Theorkenm particular
Lemmas2.2and2.3apply without modification. Propositiah6gives us a topological
version of the branched double cover homomorphiEmProposition2.7 shows that
the two-bridge links{S(¢® + 1,q)} generate a%/2)> subgroup in L1op)o. O

One could presumably reprove Lemrdal using a mod 2 count of intersections of
locally flat surfaces and hence recoveZ g2 summand of £1op)o as in the smooth
case. One can also show using linking forms and results f@nor[[26] that the
two-bridge links{S(2k, 1)| k = 3 (mod 4} generate an infinitely generated subgroup
of (L1op)o consisting of elements of order at least 4.
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Proof of Theorem 4.2 This largely follows the proof of Theore@but this time we
make use of Levine-Tristram signatures to establish tleatwo-bridge links

{S(2k, 1) [k > 0},
oriented so that the linking number sk, are linearly independent ifiTop.

The Levine-Tristram signatures of these links are complyderzytycki in B2, Exam-
ple 11]. In particulatr,(S(2k, 1)) is a locally constant function of and changes when
Y = (1-w)/|1-w| satisfies)®™ = 1 andy # +1. Suppos& [, a(S(2k;, 1)) =0
for some integersy, with 0 < k; < --- < ky, anda, # 0. Choosingw such that
1 = exp(t) with t € [7/2k,, 7/2Kk,—1], we find

n
Z 30,(S2ki, 1)) = an(0w(S(2kn, 1)) — 0(S(2kn, 1)) # 0.
i=1
Linear independence iETop then follows from Lemma.2, which also holds in the
locally flat case. O

Proof of Theorem4 Each of the links shown in Figur@ is a connected sum of a
partly oriented linkL; and the Hopf linkH, and eachL; is a 2-component link with
the same linking number as the Hopf link.

Suppose that the partly oriented link#H is (smoothly) x-nullconcordant. Thus it
bounds a smoothly embedded surf&ice D* which is either one disk and two &bius
bands, or a disk and an annulus, in each case with the markepoo@nt bounding
the disk. The first possibility is ruled out by linking numbexs in Lemma&.4, and the
second is equivalent to existence of a concordance in tdéitmaal sense, given by
two properly embedded annuli i x |, betweenL; andH. This is ruled out in the
case ofL3 sinced(C) # 0 impliesC is not slice, and is ruled out in the caselafby
recent work of Cha-Kim-Ruberman-Strlé]]

Each ofL, and L3 has Alexander polynomial one€]) and hence is locally flatly
concordant (in the traditional sense and hence glsmncordant) to the Hopf link by
a theorem of Davisd], from which it follows thatLi#H is trivial in Ltop and (with a
choice of orientation) irfTop. O

5 Double branched covers of the four-ball

The following is a slight generalisation of Propositi2ré.
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Proposition 5.1 Let F be a locally flat properly embedded surfaceDfi with no
closed components and Euler characteristicSuppose that the boundary Bfis a
link L with non-zero determinant. Then the double coveDbfbranched alon§ has
b1 =bs3=0andb, =1—n.

Note that the surface here does not have to be connectectateati In the case where
F is a ribbon surface witin = 1 this is proved in 24, Lemma 3.6]. For smoothly
embedded~ one could appeal tdfl]. It follows from Proposition5.1 that theslice
Euler characteristicys(L) of a link with nonzero determinant is bounded above by 1
(presumably this is well-known). Hergs(L) is the maximal Euler characteristic of a
(smooth) surfacé as in Propositiorb. 1

Proof The general strategy of the proof follows that dO] Theorem 3.6]. Let
N = ¥,(D* F) be the double cover dd* branched along. We will constructN by
taking a double cover db* \ vF, using a Gysin sequence to compute the homology,
before regluing a copy ofF. We useZ/2 coefficients throughout.
The pair D%, S%) can be decomposed aB4\ F U vF, S\ L U L x D?). Applying
the relative Gysin and Mayer-Vietoris sequences gives@nasphism
(3) HY(OvF,L x SY = HY(F,L),
and also
HYD*\F,S*\L)=0.
In addition the isomorphism ir8f is induced by the inclusion a¥vF into vF.
The relative Gysin sequencé,[Theorem 11.7.36] can also be applied to the pair

(D*\ F, S*\ L) with the real line bundle associated to the double covee rElevant
part of the Gysin sequence is

HYD*\ F, S\ L) — HY(D4\ F, S\ L) - HY(D*\ F, S\ L),

whenceHl(I;\\/F, S\ L) =0.
This can be used to calculate the Betti numberdlofvhich is constructed from the
double cover oD* \ F by attachingD? x F. Applying the Mayer-Vietoris sequence
again gives

0 — HL(N,ON) — HY(D*\ F, S\ L) @ HY(F, L) — HY(OvF,L x S — ...

Combining this with 8) we see thaH*(N, ON) = 0. SinceN is compact and orientable
with rational homology sphere boundary, we have

bi(N) = bg(N) = 0.
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The Euler characteristic df is given byx(N) = 2y(D* — x(F) = 2—n, from which
we see thabp(N) =1 —n. O

Proof of Corollary 5 Assumep is even, since the odd case was establishe@3h [

In order to have the correct Euler characteristic and nurabkeoundary components,

F must be the union of a disk and &lldius band. By Propositidb. 1, the double cover

of D* branched oveF is a rational homology ball and is bounded by the lens space
L(p,q). By a result of Lisca23, Theorem 1.2], there is a ribbon embeddingFofn

D4, O

In the wake of Lisca’s work, the slice-ribbon conjecture watablished by Greene and
Jabuka for three-strand pretzel kn®&, b, c) with a, b, c odd [16], and by Lecuona
for a different family of 3-tangle Montesinos knot2&(]. It seems likely that their
methods may be combined with Propositiaré to prove a statement analagous to
Corollary5 for some 3-tangle Montesinos links.

6 Quotients of monoids with involution

The reader may have noticed that we have made use of varjpoisdacal obstructions

to a link being-slice, that is being the boundary of a properly embeddethsafF

of Euler characteristic one iB*. Most of these obstructions do not take account of
the marked component. One may ask, why not simply take theeqi@f links by
x-slice links?

The first point to note is that in order for connected sum usiragked components to
be well-defined on the quotient (see Lem&d), we need to specify that the marked
component of ay-slice link is the boundary of a disk componentff The second
point regards transitivity of the -concordance relation. This may be understood in
terms of the following simple lemma about monoids with imtan.

Lemma 6.1 Let (A #,—) be a commutative monoid with involution and BtC A
be a submonoid closed under. Let A/B denote the quotient ok by
a; ~ a <= ai#h; = axty, for someb; € B.

ThenA/B is an abelian group with-[a] = [—a], and the equivalence relation can be
rewritten as
a ~a < —aiffap € B,

if the following conditions hold:
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(1) —at#taeB,forallac A, and
(2) a#thbe B — ac€B.

Conversely, suppose there is a morphism of monoids witHtitiem from A to a group,
where the involution on the group is given by sending eacimelf to its inverse. The
kernel is a submonoid with involution satisfyirit)) and(2).

Proof Straightforward exercise. O

For example, one may tak& to be oriented knots, witlB given by slice knots. One
may also takeA to be partly oriented or marked oriented links, wBhgiven by x -
nullconcordant links as in DefinitioB. As the following lemma shows, the smallest
submonoid satisfying the conditions of Lem@a which containsy-slice links is “too
large”, in that the resulting quotient would be an uninténgsextension of the knot
concordance group.

Lemma 6.2 LetL be a partly oriented link with marked oriented componiéniand
let H be the Hopf link. Then for somec {0, 1} and some unlink), L# —K#H#U
is x -slice. The same conclusion holds witk Z if L is a marked oriented link.

Proof The marked component (callit’) of L’ = L# —K#H is slice and has linking
number zero (respectively even) with \ K’, if | = —Ik(L,K) (resp., modulo 2).
Let A be a slice disk, and |gt be a smoothly properly embedded orientable surface
bounded byL’ \ K’, intersectingA transversely with algebraic intersection number
zero (resp., even). Adding handlesKato remove intersection points in pairs results
in an orientable (resp., a possibly nonorientable) emheddefaceF’ bounded by’

with Euler characteristien, which we may assume to be negative after adding some
extra handles. Connect summihgwith an unlink, and boundary summirkg with a
union of disks, gives the result. D

7 Open questions

Here are a few questions that seem interesting to the authors

e What are the orders of the Whitehead linkdrand the Borromean rings ifi or
L£? Their branched double covers have orders 2 an@%inThe referee pointed
out that since the Whitehead link has nonvanishing sigeatinas infinite order
in £ by Lemma3.2
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Is there any interesting torsion (not resulting from negatimphichiral links)
in either £ or L?

Does lhe Rasmusseminvariapt B3] (see also4, 22]) give a homomorphism
from £ (or some subgroup of) to Z? Is there a generalisation of the Oagwv
Szald 7 invariant B1] to links which gives such a homomorphism?
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