
KNOTS AND 4-MANIFOLDS

BRENDAN OWENS

Abstract. These notes are based on the lectures given by the author during Win-
ter Braids IX in Reims in March 2019. We discuss slice knots and why they are
interesting, as well as some ways to decide if a given knot is or is not slice. We
describe various methods for drawing diagrams of double branched covers of knots
in the 3-sphere and surfaces in the 4-ball, and how these can be useful to decide
if an alternating knot is slice. We include a description of the computer search for
slice alternating knots due to the author and Frank Swenton.

These notes are a written accompaniment to the series of three lectures given by
the author during the Winter Braids IX school and conference held in Reims, France
in March 2019. The goal of the lectures was to give an inviting introduction to 4-
dimensional aspects of classical knot theory, with a focus on slice knots and some
ways to find or obstruct them. We prioritise intuition over precision, and urge the
interested reader to consult other sources for further reading and detail. We aim to
provide such sources as we go along.

There are many good introductory books on knot theory. Three that are partic-
ularly useful for the material in these notes are those by Lickorish, Livingston, and
Rolfsen [38, 41, 55]. An excellent introduction to smooth 4-dimensional topology is
the book of Gompf and Stipsicz [19].

1. Lecture 1

Slice knots. A knot is a smooth embedding of S1 in S3, considered up to smooth
isotopy, and sometimes also up to reversal. Some examples are shown below, drawn
in the usual way as projections with crossing information at the double points. If our
knots are oriented we indicate this with an arrow, as shown.
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The above diagrams are alternating : as you traverse the knot, you alternate between
over- and under-crossings. A knot is called alternating if it admits an alternating
diagram.

A 2-knot is an embedding of S2 in S4, again up to isotopy. This can be either
smooth or topologically locally flat, the latter meaning that at each point of the
2-knot, one can find continuous local coordinates in which the 2-knot maps to a
coordinate plane [14]. A knot K is slice if K is the intersection of a 2-knot with the
equatorial S3 in S4, as indicated in the cartoon below. We say K is smoothly or
topologically slice, according to whether the 2-knot is smooth or just locally flat.
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Equivalently K is the boundary of an embedded D2 in D4. Perhaps surprisingly,
this simple concept has fundamental significance in 4-dimensional topology. We will
give some examples, and then briefly describe two applications of slice knots.

Slice and ribbon surfaces in the 4-ball. It turns out that surfaces in the 4-ball
can be represented and studied using knot and link diagrams. We begin with a trivial
example: the unknot bounds an embedded disk in S3. Thinking of S3 as the boundary
of the 4-ball, this also gives a disk in D4; we modify it to obtain a properly embedded
disk, with boundary mapping to boundary and interior to interior, by pushing points
in the interior of the disk into the interior of the 4-ball. Two nontrivial slice knots,
the stevedore knot and the square knot, are shown below.
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Consider the top left diagram. One can view this as a narrow strip or band connecting
two disks in S3. The band passes through each of the disks once, making what is called
a ribbon singularity: this is a self-intersection of a surface along an interval, such that
the preimage of the interval consists of one internal interval in the domain surface
and one properly embedded interval, with its endpoints on the boundary. Thus we
see an immersed disk in S3 bounded by the stevedore knot. As with the trivial disk
bounded by the unknot, we can push the interior of this disk into the interior of the 4-
ball. Doing this carefully enables us to resolve the ribbon intersections and obtain an
embedded disk. We simply make sure that the part of the disk containing the internal
interval gets pushed further into the 4-ball than the part of the disk containing the
properly embedded interval. Thus the pictures above demonstrate that the stevedore
and square knots are slice. A surface in S3 is called ribbon-immersed if it is embedded
except for some ribbon singularities as in these examples. We see that in general the
boundary of a ribbon-immersed disk is a slice knot.

It is helpful to view these disks from the point of view of Morse theory (we will
give a brief introduction to Morse theory and handlebodies in Lecture 2). Given any
smooth surface F in the 4-ball, we may isotope it so that the radial distance function
restricts to give a Morse function on F . Then we can draw the intersection of F with
3-spheres of fixed distance from the origin; the result is a sequence of link diagrams
in S3 called a “movie”. The movie version of the same slice disk for the stevedore is
shown below:
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What are the steps in this sequence? From r = 0 to r = 1/2, we have passed two
minima of r|F , resulting in a two component unlink. In general a minimum gives rise
to an extra unknot component in the next frame of the movie. Correspondingly, if
we pass a maximum, then an unknot, which is contained in a 3-ball disjoint from the
rest of the link, disappears. What happens between r = 1/2 and r = 1? On the level
of diagrams, we perform a band move: that is to say, we find an embedded rectangle
in S3 which intersects the link shown in the r = 1/2 picture on two opposite sides,
and then we erase those two sides of the rectangle and replace them by the other two
sides. In terms of Morse theory, we pass a saddle point. To see this it may help to
look at the following picture which might occur at r = 0.9: an isotopy has occurred
between r = 1/2 and r = 0.9, and we can now see that the r = 1 frame results from
this by passing a saddle point.
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An embedded surface F in B4 is called ribbon if the radial distance function restricts

to be Morse with no maxima. From the preceding example, we see that this gives rise
to a ribbon-immersed surface in S3, and that by pushing the interior into the 4-ball
to resolve the singularities we may recover F .

As usual one can turn such handlebody decompositions upside down. In this con-
text this simply means we run the movie backwards. Now maxima result in adding
split disjoint unknots to our movie frame, and minima correspond to removing them.
(The split union of two links in S3 is the link which contains the given links in disjoint
3-balls.) Saddles still correspond to band moves: the operation of replacing two sides
of an embedded rectangle with the other two sides is its own inverse. Also note that
one may push minima deep into the 4-ball and maxima close to the surface, so that
the corresponding movie events are sorted with minima followed by saddles followed
by maxima, or the reverse. Thus every smooth compact surface in B4 bounded by a
given link L is given by a movie, which in turn is given by a finite set of band moves
applied to a split union of L with an unlink, which results in another unlink. Here
the first unlink corresponds to maxima and the second to minima.

We say a knot is ribbon if it bounds a ribbon disk in B4, or equivalently if it
bounds a ribbon-immersed disk in S3. Since the Euler characteristic of a disk is one,
being ribbon is equivalent to the existence of k band moves applied to the knot which
convert it to the (k + 1)-component unlink. More generally, a knot K is (smoothly)
slice if and only if there exists a set of k band moves applied to the split union of
K and an l-component unlink, converting it to the (k − l + 1)-component unlink. A
longstanding question of Fox asks if every slice knot is ribbon [11].

Exotic R4 from Khovanov homology. From the work of many mathematicians,
including Radó, Moise, and Stallings, we know that in any dimension but 4, there is a
unique smooth structure on Rn [46, 52, 59]. It is an amazing fact that R4 admits more
than one smooth structure. In fact it follows from combining deep work of Donaldson,
Freedman, Gompf, and Taubes [60] that in fact R4 admits uncountably many smooth
structures! This requires gauge theory and in particular a great deal of analysis. We
will give a brief sketch here of a gauge-theory-free proof due to Rasmussen, following
a suggestion of Gompf, in which the existence of an exotic smooth structure on R4
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follows from the existence of a knot which is topologically slice but not smoothly
slice. Examples are the (−3, 5, 7) pretzel knot, shown below, and the untwisted
Whitehead double of the trefoil [19, Figure 6.13]. In both cases topological sliceness
follows from a deep theorem of Freedman [13], which tells us that knots with trivial
Alexander polynomial are topologically slice, while smooth nonsliceness follows from
a computation of Rasmussen’s s-invariant, defined using Khovanov homology [53].

-
It

⇐

Given a knot K in S3 we obtain a 4-manifold with boundary called the knot trace
XK ; this is obtained by gluing a 2-handle to the 4-ball along K. To be slightly more
precise, we have

XK = D4 ∪ (D2 ×D2),

where we quotient by a gluing map defined on ∂D2 ×D2 which takes ∂D2 × 0 to K,
and ∂D2 × 1 to a 0-framing, or if you prefer to a push-off or longitude of K which
is nullhomologous in S3 \ K, or equivalently which lies on a Seifert surface for K.
Cartoon below:

i
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Then we have the following lemma, which holds in either the smooth or topological
category:

Lemma 1.1 (Kirby-Melvin). K is slice ⇐⇒ XK ↪→ S4 ⇐⇒ XK ↪→ R4.

A literal sketch of the proof is as follows:
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The cartoon on the left gives the forward direction, and the converse comes from the
sketch on the right. The smaller D4 inside XK is standard (it is a ball neighbourhood
of the centre of D4 ⊂ XK) so its complement in S4 is a ball in which we see a slice
disk. For details see Kirby-Melvin or Miller-Piccirillo [32, 44].

Finally we take a knot K as above which is topologically but not smoothly slice.
Thus XK embeds topologically in R4. Freedman-Quinn tell us that R4 \XK admits
a smooth structure, and this can be extended over all of R4, with XK as a smooth
submanifold [12]. Since Kirby-Melvin tell us that XK does not embed smoothly in
standard R4, this smooth structure must be exotic.

As a final note about the above, we must mention the proof by Piccirillo that the
Conway knot is not slice, which made a similar use of Lemma 1.1 and Rasmussen’s
invariant [26, 51]. She exhibited a knot K with nonzero Rasmussen invariant which
is therefore not slice, and showed that the knot trace of K is diffeomorphic to that of
the Conway knot.

The concordance group of knots. The set of oriented knots in S3 is an abelian
monoid with the operation given by connected sum. This can be realised diagram-
matically as shown below, or one can excise two standard pairs (D3, D1) from each
of (S3, K1) and (S3, K2) and glue the complements together matching orientations.

000

⑥ →

Sadly there are no inverses for this operation at the level of knots and isotopy: knot
genus is additive by [57] (or see [38, Theorem 2.4]), so the only way to get an unknot
by connected sum is if each summand is the unknot.

An isotopy of knots K ' K ′ is equivalent to an embedding

S1 × I ↪→ S3 × I
which gives K and K ′ on the boundary, and which is the identity on the interval sum-
mand. We can remove this restriction and allow any smooth (or locally flat) proper



WINTERBRAIDS IX: KNOTS AND 4-MANIFOLDS 7

embedding of the annulus into S3× I which cobounds K and K ′. Such an embedded
annulus is called a concordance between K and K ′. It is quite straightforward to
see that this gives an equivalence relation on the set of oriented knots, which we will
write K ∼ K ′.

It is also straightforward to see that a knot K is slice if and only if K is concordant
to the unknot. More generally, K ∼ K ′ if and only if K# −K ′ is slice, where −K
denotes the mirror reverse of the oriented knot K. Recall that the mirror of a knot in
S3 is its image under reflection in a plane; thus one obtains a diagram for −K from
one for K by changing all crossings and reversing the orientation. If K ∼ K ′, then
drilling out a regular neighbourhood of the image in S3× I of an arc {1}× I from the
concordance S1× I results in a slice disk in D4 bounded by K#−K ′. Conversely, if
K#−K ′ is slice then we can add a (3, 1) handle pair to (D4, K#−K ′) to obtain a
concordance. Breaking that down: a slice disk for K#−K ′ gives rise to an annulus
in D4 bounded by the disjoint union of K and −K ′ by applying a band move to
undo the connected sum. We then attach a 3-handle to the 4-ball along a 2-sphere
separating K and −K ′ to obtain the required embedded annulus in S3 × I.

One then has that C = {oriented knots}/∼ is a group with operation given by con-
nected sum, and with the inverse of K represented by −K. There are two versions of
this, depending on whether the concordances are smoothly or locally flatly embedded.
For further reading on knot concordance, please see for example [27, 41, 42].

One can also consider concordance of links, with an equivalence relation given by
embeddings of disjoint unions of annuli in S3 × I. This does not give rise to a group
in the same way for links of more than one component. For various approaches to
defining concordance groups of links, see [8, 24, 28].

Basic problem: how to decide if a given knot K is or is not slice?
Showing K is slice:

• exhibit a slice or ribbon disk as described above
• exhibit a handle decomposition of the 4-ball involving 0-, 1-, and 2-handles.

Then the boundaries of the cocores of the 2-handles are slice knots in S3,
and one can apply Kirby calculus to obtain diagrams of them in the standard
picture of S3. This method has been successfully used by Gompf-Scharlemann-
Thompson and also Abe-Tange [1, 18].

To show K is nonslice, there are a plethora of obstructions, some of which obstruct
topological sliceness and some just smooth sliceness. These include

• determinant (square for slice knots)
• signature and Levine-Tristram signatures
• Fox-Milnor condition on the Alexander polynomial
• Herald-Kirk-Livingston condition on twisted Alexander polynomials
• Heegaard Floer concordance invariants
• Rasmussen’s invariant and other invariants coming from variants and refine-

ments of Khovanov homology.
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Some sources for the above include [25, 27, 36, 37, 39, 42, 53].
Some notable progress in recent years includes Lisca’s classification of slice two-

bridge knots, together with his verification that all such are ribbon [40]. The ob-
struction used by Lisca is an application of Donaldson’s diagonalisation theorem, and
double branched covers of the 4-ball; we will look at this in more detail in Lecture 3.
Subsequently, Lecuona applied Lisca’s method to prove that slice implies ribbon for
a family of alternating Montesinos knots [35].

Sample problems:

• Classify slice knots in some chosen family of knots
• Classify ribbon knots in some chosen family of knots
• Prove slice implies ribbon for some chosen family of knots
• Classify slice disks (or ribbon disks, or ribbon disks with up to a certain

number of critical points) for some chosen knot.

The following is the most basic example of the last question above.

Question 1.2. Is there only one isotopy class of ribbon disk for the unknot?

A positive answer for ribbon disks with at most three critical points follows from
theorems of Gabai and Scharlemann [15, 56]. These show that the only way to apply
a band move to the unknot and obtain the 2-component unlink is the obvious planar
diagram, which gives rise to the standard disk pushed in from S3.

For other work on classification of slice disks, see [6, 30, 43].
Our focus for the rest of these lectures will be on alternating knots, and whether we

can determine if they are slice. The powerful obstruction from Donaldson’s diagonal-
isation theorem and double branched covers used by Lisca extends to this case, as we
will describe. We will see that in addition to giving us an obstruction, Donaldson’s
theorem actually helps us to find ribbon disks.

2. Lecture 2

The main goal of this lecture is to look at double branched covers of knots and links
in the 3-sphere and surfaces in the 4-ball. We begin with a very brief introduction
to Morse theory and Kirby calculus, which enables us to draw pictures of smooth 3-
and 4-dimensional manifolds. For more details we refer the reader to [2, 19, 45].

Let Mn be a smooth compact manifold, possibly with boundary. We may choose
a Morse function

f : M → R.
This has the property that at each critical point p of f , there exist local coordinates
in which

f = −x21 − · · · − x2k + x2k+1 + · · ·+ x2n.

We say that the index i(p) of p is k. This leads to a handlebody decomposition of M
as follows. We consider sublevel sets Mb = f−1(−∞, b]. These are the same up to
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diffeomorphism for nearby regular values of b, and change when the level b passes a
critical point of index k by attachment of a k-handle, which is Dk×Dn−k attached to
Mb along ∂Dk ×Dn−k. This is illustrated for the most standard example (the height
function on a torus) below.

- ④
✗

q

- ⑦
9-1I ~

✗

⇒
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There are 4 critical points, of index 0, 1, 1, and 2. The first sublevel set is the empty
set, to which we attach a 0-handle D2 when we pass the minimum of the height
function f . Then each time we pass an index one critical point we attach a band
D1 ×D1 along two opposite faces of the rectangle. Finally we pass a maximum and
attach a 2-handle, which in this dimension is just a 2-disk attached along its boundary
circle.

A huge benefit of this description for low-dimensional topologists is that it enables
us to draw (n− 1)-dimensional pictures of n-dimensional manifolds. Let’s see this for
the above example. There is a single minimum point, so there is a single 0-handle.
The boundary of the 0-handle is a copy of S1, and this is where we draw our diagram
of the torus. We just need to specify how the two 1-handles are attached; we will
then have built a surface with a single boundary component, and there is then just
one manifold that we can obtain by attaching a 2-handle, so we don’t need to specify
any more information except that there is a 2-handle to be attached. This results in
the following picture of the torus.
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In a similar way we can obtain 3-dimensional diagrams for 4-manifolds, which is of
great benefit for those of us who have difficulty seeing in 4 dimensions! These are
commonly referred to as Kirby diagrams. Suppose that M is a compact connected
oriented 4-manifold. A suitable Morse function gives rise to a handle decomposition

M4 = 0-handle ∪ {1-handles} ∪ {2-handles} ∪ {3-handles}(∪4-handle?),

where there is a 4-handle attached if the manifold is closed. We draw the attaching
regions in ∂(0-handle) = S3. The attaching region for a 1-handle is ∂D1×D3, which
is a pair of disjoint 3-balls. The attaching region for a 2-handle is ∂D2 × D2 which
is a solid torus. We specify this by giving a knot in S3 and a framing coefficient
which is an integer; the 0-framing of a knot in S3 is equal to a push-off on its Seifert
surface, or in other words a push-off of the knot which is nullhomologous in the knot
complement. More generally the m-framing is a push-off of the knot which has linking
number m with the knot. Here are some examples.

⑤ ⑤
°@ ° v4 - h

s
'
✗ ☐
3 52×52

O' van
① R2 - 2

E- 8 , 2E8=
Poincaré homology

sphere

A result of Laudenbach and Poénaru [34] tells us that any self-diffeomorphism of
a connected sum of copies of S1 × S2 extends over the boundary sum of copies of
S1 × D3. This means that for a closed 4-manifold, we do not need to specify how
the 3- and 4-handles are attached. However, for a 4-manifold with boundary, it is
necessary to specify the embedded 2-spheres along which we attach any 3-handles.

There is a useful alternative way to draw 1-handles in Kirby diagrams, namely as
dotted circles: one draws an unknot with a dot along it which is a meridian of an
arc in the boundary of the 0-handle connecting the two balls which are the attaching
region of the 1-handle. Attaching circles of 2-handles which go over the 1-handle
are instead drawn as passing through the dotted circle. The following local picture
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gives a good idea of how to translate between these two methods of drawing Kirby
diagrams.

Hita ←

It is straightforward to calculate the homology groups and the intersection pairing
QM on the second homology (Poincaré dual to the cup product pairing) from a Kirby
diagram of M . Kirby calculus is the application of certain moves such as handleslides
which are known to preserve M and/or its boundary 3-manifold. For more details on
Kirby diagrams, see [2, 19].

There are two common and useful approaches for drawing pictures of 3-manifolds.
One is to appeal to a theorem of Rohlin [54] which tells us that every (closed oriented)
3-manifold is the boundary of a smooth 4-manifold, and we can just draw a Kirby
diagram of such a bounding 4-manifold. Another is to take a 3-dimensional handle
decomposition and draw our picture in the oriented surface Σ which is the boundary
of the handlebody given by the union of the 0- and 1-handles, which is connected if
there is a single 0-handle. We then draw two sets of circles on Σ: one set, commonly
drawn in blue, which shows where to attach the 2-handles, and one set in red which
if cut along would undo the attachment of the 1-handles. These are called Heegaard
diagrams. Here are some simple examples.

⑤ ~ . -
53 S

'

✗ S
'

Double branched covers. Let L be a link of l components in S3. Denote a regular
neighbourhood of L by ν(L) ∼= L×D2. Let X be the link complement

X = S3 \
◦

ν(L).

Then H1(X) ∼= Zl, generated by meridians µ1, . . . , µl. Let X̃ → X be the double
cover of X which is nontrivial on each meridian. The double cover Σ(S3, L) of S3
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branched along L is then given as follows.

Σ(S3, L) = ν(L) ∪ X̃

S3 = ν(L) ∪ X

z2

In the same way we obtain the double branched cover Σ(D4, F ) of a surface F ,
smoothly properly embedded in the 4-ball. The surface F does not have to be con-
nected or orientable, and it may contain closed components. We would like to learn
to draw Kirby diagrams for these; this will be described in more detail in ongoing
work of the author with Sašo Strle [48], and other accounts are given in [2, 3, 19]. We
follow a method due to Akbulut-Kirby, following a construction of Kauffman, also
used by Gordon-Litherland [3, 20, 31]. This applies to the special case of branch locus
F n−2 in Dn arising from an embedded submanifold in ∂Dn by pushing the interior of
the submanifold into the interior of the n-ball.

We cut open the ball along the trace of the homotopy that pushed the interior of
the submanifold into the interior of Dn to obtain the properly-embedded F . This
results in a copy of Dn again, with a regular neighbourhood N of F , which is the
total space of an I-bundle over F , in its boundary. This cut-open Dn has corners, as
illustrated below in the case n = 2, with F a single point, and N drawn in blue.

t

,
:c
0

The pair (Dn, F ) may be recovered from this cut-open ball by gluing N to itself
using the involution τ given by reflection on the fibres. We obtain the double cover
Σ(Dn, F ) of Dn branched along F by taking two copies of the cut-open D2 and gluing
them to each other via the same involution τ .

t

,
:c
0
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We also note for later that if one glues the two copies of the cut-open Dn by identifying
copies of N × I instead of just N , one obtains the same manifold Σ(Dn, F ), up to
diffeomorphism. Here is a sketch for the n = 2 example.

Okay ☒ →④
The double branched cover of a link in S3. As a 4-dimensional example of the
above method, we will explain how to derive a Kirby diagram and also a Heegaard
diagram for the double branched cover of a link in S3. This Kirby diagram was first
obtained by Ozsváth and Szabó, and the closely related Heegaard diagram is due to
Greene [22, 50]; their proofs differed from that given here. We begin with a diagram
of our link L; let’s choose a diagram of the figure-8 knot for an example, shown in
Figure 1 along with the resulting Kirby and Heegaard diagrams.

Egg
-

*.

-

Figure 1. Kirby and Heegaard diagrams for the double
branched cover of the figure-8.
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To draw these, we first choose a chessboard colouring of the diagram: we colour
the regions of the diagram black or white, so that at each crossing the colours meet
like squares on a chessboard. Here is one of the two choices for our example.

Let F be the resulting black spanning surface embedded in S3. We obtain the Kirby
diagram from the link diagram by copying the diagram with the following substitu-
tions at crossings (each crossing gets replaced by a clasp between white regions).

*¥ - *:

¥
.

-

This results in one 2-handle attaching circle for each white region of the diagram.
The framing coefficient of each is given by summing the local contributions (+1 or
−1) from each crossing. We then add one 3-handle; it turns out that this may be
cancelled with any of the 2-handles in the diagram without changing the 4-manifold.
We will see that this is in fact a Kirby diagram for Σ(D4, F ), where by an abuse of
notation we also use F to refer to the properly embedded surface obtained by pushing
the interior of the black surface into the 4-ball.

The Heegaard diagram also makes use of the chessboard colouring and the black
surface F . For this we require F to be connected. Let N again be a regular neigh-
bourhood of F which is the total space of an I-bundle over F . The boundary of N
is our Heegaard surface Σ. The red curves are exactly given by the boundaries of all
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but one of the white regions of the chessboard-coloured diagram; the omitted region
can be chosen arbitrarily. The blue curves are obtained by taking a parallel copy of
the red curves, and then applying a Dehn twist for each crossing in the diagram to
the one or two blue curves passing through that part of Σ (as in Figure 1).

Proposition 2.1. The Kirby diagram described above represents the double cover
Σ(D4, F ) of the 4-ball branched along the pushed-in black surface. The 3-handle
may be cancelled with any of the 2-handles in the diagram. The Heegaard diagram
represents the double cover Σ(S3, L) of S3 branched along the link L.

Proof. We note that the n-ball Dn has a handle decomposition given by a single 0-
handle and a cancelling pair consisting of an (n − 2)-handle and an (n − 1)-handle.
Equivalently we can build Dn by starting with Sn−2×D2 and adding a single (n−1)-
handle, whose attaching sphere is Sn−2 × {point}. Explicitly, we take a regular
neighbourhood of the equatorial Sn−2 — the intersection of the boundary of Dn with
a hyperplane through the origin — and then attach a thickened-up equatorial slice
(a neighbourhood of a disk in the same hyperplane). In particular we can obtain D4

by starting with S2 ×D2 and attaching a 3-handle along S2 × {point}.
So what does this have to do with double branched covers? Suppose we have a

copy of D4 with a link L in its boundary. We project L to the equatorial S2 in the
boundary sphere to obtain our diagram, and we chessboard-colour it to obtain our
black surface F . We take N to be a regular neighbourhood of F in S3 and N × I to
be a regular neighbourhood of F in D4. The intersection of N × I with the 2-sphere
of the diagram contains the black regions, connected together at the crossings; its
complement in this 2-sphere consists of one disk for each white region. By attaching
one 2-handle for each white region of the diagram to N × I we obtain a regular
neighbourhood S2 ×D2 of the sphere containing the diagram, and then we attach a
3-handle to complete the 4-ball.

Now consider the description of Σ(D4, F ) given above, by gluing together two copies
of D4 cut open along the homotopy pushing F into the interior. Each of these has
a copy of N in its boundary, and we recall that N is the total space of an I-bundle
over F . We use the involution τ coming from reflection on the fibres of this I-bundle
to identify the copies of N × I in each cut-open D4; the quotient is Σ(D4, F ). We
want to describe a handle decomposition of this. We take one of the cut-open 4-balls
to be our 0-handle. This also contains N × I from the second copy, via the gluing
map. We then add a 2-handle for each white region and a 3-handle to complete the
second copy of the cut-open D4.

To draw the Kirby diagram, we need to understand how these handles are attached.
To build the 4-ball starting with N×I, the attaching circles for the 2-handles lie in the
plane of the diagram and are 0-framed. After attaching all but one of the 2-handles
to N × I the result is a 4-ball D2 ×D2 ⊂ S2 ×D2; then attaching the last 2-handle
changes this to S2 ×D2, but this is cancelled by the attachment of the 3-handle. To
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build the double branched cover, we need to see the image of these attaching circles
and framings under the gluing map τ . The local picture for this is shown in Figure 2.

-

:

'

y
t→ i.

'

"

i

Figure 2. The involution τ near a crossing.

We see that a crossing in the diagram results in a clasp between the 2-handle
attaching circles coming from the white regions on either side of the crossing. The
effect on a framing curve, which is just a pushoff on the surface ∂N , is similar and
results in the framing curve getting a full twist around the attaching circle. These
local contributions exactly correspond to the description given above of the 2-handle
attaching circles and their framing coefficients.

Finally the boundary Σ(S3, L) of Σ(D4, F ) is the union of the boundaries of the
two 4-balls that we glue together, minus the interior of N . The complement of N
in S3 is a 3-dimensional handlebody, and thus the construction naturally yields a
Heegaard decomposition of Σ(S3, L). The red curves of the Heegaard diagram bound
disks in the first copy of S3 \N , and via Figure 2 we see that the blue curves bound
in the second copy. �

More double branched covers of D4. We have seen how to draw a simple Kirby
diagram for the double cover of D4 branched along the black surface of a link diagram.
One can also draw Kirby diagrams of more general surfaces in D4 and hence compute
their homological invariants including intersection form. For details on this see [2, 3,
19, 48]. We give a brief description here for the case of a ribbon surface. We take F
to be a ribbon-immersed surface in S3 with a handle decomposition chosen so that
all ribbon singularities consist of 1-handles passing through 0-handles. Draw this in
R3 with the 0-handles in the xz-plane, lying just below the x-axis. All attachments
of 1-handles to 0-handles should be on the x-axis and all ribbon singularities below
the x-axis in the interiors of the 0-handles. It helps to also “comb the 1-handles up”
so that they mostly lie near the xz-plane and above the x-axis. We then take the
preimage of this diagram under the double branched covering map

φ : R3 → R3, (x, ζ = y + iz) 7→ (x, ζ2).

An example is shown in Figure 3 for the stevedore ribbon disk encountered in Lecture
1. In practice one can draw the preimage of the diagram under φ by taking the
diagram in the upper half plane, away from the x-axis, and revolving it around the
x-axis, then connecting the tangle diagrams in the upper half plane and the lower
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half plane with a half twist of 4 strands for each ribbon singularity, and with no twist
on two strands at the end of each 1-handle (see Figure 3).

→

Figure 3. The double branched cover of the stevedore ribbon disk.

From this we draw a Kirby diagram as follows. Each 1-handle of F gives rise to an
embedded annulus in φ−1(R3); we take the core of this annulus to be the attaching
circle for a 2-handle, and the linking number of the boundary of the annulus is the
framing coefficient. We also draw 1-handles in dotted circle notation, one for all but
one of the 0-handles of F ; these are drawn around the boundary of the preimage
under φ of the corresponding 0-handle of F . Again, see Figure 3 for an example. For
details and more examples see the sources cited above.

The main point here is that given a surface F in D4, there are known methods for
obtaining a Kirby diagram of Σ(D4, F ) and hence computing the homology groups
and the intersection pairing of this manifold. In [48] the author and Strle give a
definition of disoriented homology groups associated to such a surface F , together
with a bilinear pairing on one of the groups. We show that these are isomorphic to
the homology groups of the double branched cover, together with the intersection
pairing. This enables these invariants to be computed directly from a diagram of F ,
without needing to first obtain a Kirby diagram.

For the remainder of these notes, if F is a properly embedded surface in D4 or
a surface embedded or ribbon-immersed in S3 giving rise to a pushed-in surface in
D4, then we will use the notation Σ(D4, F ) to refer to the resulting double branched
cover. We will also use ΛF to refer to the intersection lattice of this manifold, or in
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other words the second homology group modulo torsion of Σ(D4, F ) together with its
intersection pairing.

3. Lecture 3

Our goal in this final lecture is to explain how Donaldson’s diagonalisation theorem
[9] gives rise to a very useful slice obstruction for alternating knots, and also to an
obstruction to any given band move being part of a sequence that yields a ribbon disk.
A computer search for ribbon alternating knots based on this has been implemented
in joint work of the author and Frank Swenton [49] which has resulted in a database
of over 200,000 previously unknown slice knots.

Goeritz, Gordon-Litherland, and Donaldson. We begin by describing the Goeritz
lattice of a connected chessboard-coloured diagram. Label the white regionsR0, . . . , Rm

and then write down a square matrix Ĝ as follows. The rows and columns of Ĝ are

numbered from 0 to m. The diagonal entries Ĝii are given by a signed count of the
crossings around region Ri, with signs given as follows.

% ¥1

"

The off-diagonal terms Ĝij are given by a signed count of the crossings between Ri

and Rj, with the opposite signs to those above. The Goeritz matrix G is obtained

from Ĝ by deleting the 0th row and column. Here is an example.

% ¥1

"

We get

Ĝ =

 2 −1 −1
−1 −2 3
−1 3 −2

 , and G =

[
−2 3
3 −2

]
.

This was introduced by Goeritz in 1933 [17]. He showed that the determinant and
more generally the Minkowski units [47] of G give rise to knot invariants. The astute
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reader may notice that the matrices above represent the intersection pairing which
may be computed from the Kirby diagram for Σ(D4, F ) in Figure 1.

The Goeritz lattice of a chessboard-coloured diagram is described as follows. One
takes the (free) abelian group Λ with one generator given by each white region, and
one relation given by the sum of all of the generators. Note this has basis given by
all but one of the generators. The pairing

λ : Λ× Λ→ Z
is given by the matrix Ĝ. Comparing to the Kirby diagram from Lecture 2, we recover
Gordon-Litherland’s result that the Goeritz lattice is the intersection lattice on the
second homology group of the double branched cover Σ(D4, F ) [20].

We also observe the following. The author learned this proof from Josh Greene.
For more topological proofs see [23, Prop. 4.1] or [49, Lemma 3.1].

Lemma 3.1. The Goeritz lattice of a connected alternating diagram is definite. More
precisely, for one choice of chessboard-colouring the Goeritz lattice is positive definite,
and for the other it is negative definite.

Proof. The Goeritz lattice of the crossingless diagram of the unknot is trivial and
hence both positive and negative definite. Assume now that our diagram has at
least one crossing. Being alternating is equivalent to all crossings having the same
sign when computing the Goeritz matrix. Assume that all of these signs are +1,

so that the diagonal entries of Ĝ are all positive and the off-diagonal entries are all

nonpositive. The rows of Ĝ sum to zero (for any diagram). Let ri denote the sum of

the absolute values of the off-diagonal entries of G in the ith row. Then ri = Gii−|Ĝ0i|
is less than or equal to Gii. The eigenvalues of the symmetric matrix G are real and
by Gershgorin’s circle theorem [16], they are contained in⋃

[Gii − ri, Gii + ri]

and hence nonnegative. Since their product is the determinant of a link with con-
nected alternating diagram and hence nonzero [7], the eigenvalues are all positive.
The proof for the other colour is similar. �

We note that Josh Greene and Josh Howie independently proved in 2015 that the
property in Lemma 3.1 characterises alternating links: a link admits a connected
alternating diagram if and only if it bounds two embedded surfaces in S3 for which
the double branched cover of D4 has definite intersection pairing (one positive and
one negative) [23, 29].

We now describe a key slice obstruction for alternating knots. The double cover
of S3 branched along the unknot is S3, and the double cover of D4 branched along
an unknotted properly embedded D2 — or in other words along the standard slice
disk for the unknot — is again D4. An imprecise slogan that has some validity is
that “rational homology does not see knotting”. This manifests itself here in the
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fact that the double cover of S3 branched along any knot is a rational homology S3

[38, Chapter 9], and the following fact due to Casson-Gordon [4]: the double cover
Σ(D4,∆) branched along any properly embedded disk has the same rational homology
as the 4-ball.

We can combine this with Donaldson’s celebrated diagonalisation theorem [9],
which states that if X is a closed smooth 4-manifold with a positive-definite intersec-
tion form then in fact its intersection lattice ΛX = (H2(X;Z)/Tors , QX) is isomorphic
to the standard Zn lattice; in other words, ΛX admits an orthonormal basis. This
gives us the following.

Lemma 3.2. Let K be an alternating knot and let F be the black surface of its
alternating diagram, with chessboard colouring chosen so that ΛF is positive definite.
Let b be a band move applied to K. Then

(1) if K is slice, then ΛF embeds as a finite index sublattice of a standard Zm

lattice;
(2) if b is part of a sequence of band moves giving a ribbon disk for K, then there

is a commutative diagram of lattice morphisms

ΛF Zm,

ΛF∪b

where the horizontal arrow is the inclusion from (1), and F ∪ b is a ribbon-
immersed surface in S3 obtained by attaching the band b to F .

Proof sketch. For part (1), we use the fact that the double branched cover Σ(D4, F )
of F is positive definite and the double branched cover Σ(D4,∆) of a slice disk is a
rational homology ball. Gluing these along their common boundary gives a smooth
closed manifold X = Σ(S4, F ∪∆); this is the double cover of the 4-sphere branched
along a properly embedded closed surface obtained from F and ∆. The Mayer-
Vietoris sequence shows that ΛF is a finite index sublattice of the intersection lattice
of X. It follows that the latter is also positive definite, and thus diagonalisable by
Donaldson. (This is the slice obstruction used by Lisca in [40].)

Part (2) follows from the fact that the closed manifold X = Σ(S4, F ∪∆) is built
from Σ(D4, F ) by adding a 2-handle for each 1-handle of ∆ followed by a 3-handle
for each minimum of ∆ and finally a 4-handle (see for example [19, 48]). This gives
a commutative diagram of manifold inclusions

Σ(D4, F ) X,

Σ(D4, F ∪ b)

from which the commutative diagram of lattice morphisms follows. �
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There are a couple of points to note about Lemma 3.2. The first is that the mirror
of a slice knot is slice, so one may change the crossings and the colour and apply the
lemma twice to each alternating knot and to each band move. The second is that
following Greene and Jabuka [21], one may strengthen the lemma using Heegaard
Floer homology. This puts extra conditions on the lattice embedding in the lemma,
namely that every equivalence class in Zm/ΛF is represented by an element of {0, 1}m.

As an example let’s consider the stevedore knot K together with the following band
move b.

We can calculate ΛF using the Goeritz matrix: we find this has rank 2 and the

pairing is given by G =

[
5 −1
−1 2

]
, using generators v1 and v2 corresponding to the

white regions R1 and R2. The first part of Lemma 3.2 tells us that this admits a
lattice embedding in Z2 with the dot product: sure enough if we map v1 to (2, 1)
and v2 to (−1, 1), this preserves the pairing. Moreover, this embedding is unique up
to symmetries. Now we apply the second part of the lemma. The band b, shown in
purple, would become part of the black surface for the new diagram. This would split
R0 into two new regions. We can choose the new generator v3 to correspond to the
resulting small white region on the right side of the band. Then we can calculate the
Goeritz of the new diagram and we find that

v3 · v1 = 0

v3 · v2 = −1.

By part (2) of the lemma, if b is part of a sequence giving a ribbon disk, then there
exists a vector (x, y) ∈ Z2 with

(x, y) · (2, 1) = 0

(x, y) · (−1, 1) = −1.

Solving over the rationals we find (x, y) = (1/3,−2/3) /∈ Z2. We conclude that this
band move is not part of any sequence giving a ribbon disk for K.

The reader may compare this to the band move given below, and see that it converts
K to the two-component unlink, and in fact is obtained by reversing the movie shown
for K in Lecture 1. In this case the new white region to the right of the band gets
sent to (0,−1) ∈ Z2.
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'

For more complicated band moves one cannot always compute ΛF∪b using the
Goeritz matrix. One may always either draw a Kirby diagram, or calculate using
disoriented homology [48]. This helpful tool does not seem to be sufficient to give an
answer to the following.

Question 3.3. Is there a unique isotopy class of ribbon disk for the stevedore knot?

The search algorithm of [49] is based on the band obstruction of Lemma 3.2, and
on an optimistic notion that alternating knots like to stay alternating. Recall that the
nullity of a link in S3 is the first Betti number of its double branched cover. The nullity
of a knot is zero, and that of an unlink is one less than the number of components.
In a movie of a ribbon disk starting with a knot and ending with an unlink, each
band move increases the nullity by one. Connected alternating diagrams have nullity
zero, and in fact the nullity gives a lower bound on how many “nonalternating”
crossings a diagram can have. Our algorithm then applies the following steps to a
given alternating knot:

(1) Check if the knot is obstructed by Lemma 3.2 (1) from being slice.
(2) Try all band moves which are unobstructed by Lemma 3.2 (2) and which

keep the resulting link as close to alternating as possible (i.e., the number of
nonalternating crossings and the nullity both increase by 1).

(3) For each such band move, simplify the resulting link diagram using Tsukamoto-
type moves.

(4) Repeat the previous two steps until all possibilities are exhausted or a cross-
ingless diagram is obtained. In the latter case, we declare the knot to be
algorithmically ribbon.

Some remarks are in order. We show in [49] that the bands to be considered in
step (2) take the following form,

FH . f-#
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so that there are always finitely many to consider. There are also finitely many
alternating diagrams of a given knot, and we have to deal with all of them.

Also, what are Tsukamoto-type moves? These are a set of local modifications
on diagrams which preserve isotopy type, and also the property of being close to
alternating and unobstructed by a slight generalisation of Lemma 3.2 which applies
to such diagrams [49, Prop. 3.5]. They include Reidemeister I and II moves and five
others shown below, the first of which is the famous flype move of P. G. Tait.

# → =EH 0¥ →¥
→ →I

→==☐
The third of these was called the untongue move by Tsukamoto, who proved in [61]
that every almost-alternating1 diagram of the two-component unlink may be con-
verted to the crossingless diagram by a sequence of flypes, untongues, and Reide-
meister I and II moves. It follows that if an alternating knot admits a ribbon disk
which can be presented by a single band move converting it to an almost-alternating
diagram of the unlink, then in fact this disk will be detected by our algorithm. This
together with experimental evidence and optimism led us to state the following in
[49].

Conjecture 3.4. If an alternating knot admits a ribbon disk with three critical points,
then in fact it is algorithmically ribbon.

1A diagram is almost alternating if it contains exactly one nonalternating crossing.
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If true, this would give an effective classification of such alternating knots: Tsukamoto’s
theorem gives a recursive construction of all almost-alternating diagrams of the two-
component unlink, and each of these would arise from four possible band moves from
alternating diagrams as shown below. This set of alternating diagrams would contain
repetitions and would include diagrams of links as well as knots.

HE
→ -

:÷.

"

i

→-

The algorithmic search for alternating knots may be considered a work in progress.
We have applied it to all 250,912,342 prime alternating knots of up to 20 crossings,
using the prime alternating knot generator of Flint, Rankin, and de Vries [10]. Of
these, we find 438,375 are unobstructed from being slice by Lemma 3.2 and 231,968
turn out to be algorithmically ribbon. We also know of a further 628 examples of
ribbon alternating knots of up to 20 crossings which are not algorithmically ribbon.
The first of these was 12a631, shown to be ribbon by Seeliger [58] using symmetric
union diagrams (see also [5, 33]).

How can we improve the algorithm? One straightforward way is to implement more
obstructions, including Levine-Tristram signatures and the Fox-Milnor condition (see
for example [42]). Beyond this the hope is that we may understand better how ribbon
disks can arise and expand the algorithm to find more of them. Thus we will expand
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the set of knots on which our algorithm is able to determine the answer to the question
“Slice: yes or no?” and hopefully one day it will include all alternating knots.

For more details on the algorithm and to download Swenton’s software package
KLO in which it is implemented, we direct the reader to

www.klo-software.net/ribbondisks.
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